This invention relates to the MR imaging of, and magnetic navigation of devices in, an operating region in a subject.
MR imaging provides high quality medically useful images of regions of the body without exposure of the subject or the physician to x-rays. Magnetic navigation of devices allows fast and accurate control of very small, highly flexible devices by selectively changing an externally applied magnetic field. It has been proposed to use the static magnetic field of an MR imaging system to magnetically navigate devices in an operating region in a subject by selectively changing a magnetic moment at the distal end of the device, typically by changing the currents in coils disposed in the end of the device. Examples of such devices are disclosed in Kuhn, U.S. Pat. No. 6,216,026, Arenson, U.S. Pat. No. 6,304,769, and Hastings et al., U.S. Pat. No. 6,401,723, the disclosures of all of which are incorporated herein by reference.
A somewhat surprising limitation on the magnetic navigation of medical devices using a static magnetic field is the existence of a “forbidden” plane in which the medical device cannot be directly magnetically turned. This “forbidden” plane is perpendicular to the direction of the static magnetic field, and it is not possible to magnetically orient a medical device in a direction with a component in this plane. Other apparatus or techniques are required to provide for navigation in a static magnetic field, such as from an MR imaging system.
The present invention relates to systems for, and methods of, the MR imaging of, and magnetic navigation in, an operating region in a patient using the same static magnetic field.
According to a first embodiment of this invention, at least two magnets are provided for generating static magnetic fields in at least two different directions. Each field is sufficiently strong and uniform over the operating region for MR imaging and for magnetic navigation. At least a first magnet is used to create a first static field sufficient for MR imaging of the operating region, and for navigating in the operating region. When it is desired to magnetically navigate in a direction with a component in a plane perpendicular to the first static field, at least a second magnet is used to create a second static field sufficient for MR imaging of the operating region, and for navigating in the operating region so that MR imaging and magnetic navigation can continue (because the forbidden plane of the second static field is different from the forbidden plane of the first static field).
According to a second embodiment of this invention at least a first magnet is used to create a first static field sufficient for MR imaging of the operating region, and for navigating in the operating region. When it is desired to magnetically navigate in a direction with a component in a plane perpendicular to the first static field, the magnet(s) are moved to create a second static field sufficient for M imaging of the operating region, and for navigating in the operating region so that MR imaging and magnetic navigation can continue (because the forbidden plane of the second static field is different from the forbidden plane of the first static field).
According to a third embodiment of this invention, at least a first magnet is used to create a first static field sufficient for MR imaging of the operating region, and for navigating in the operating region. When it is desired to magnetically navigate in a direction with a component in a plane perpendicular to the applied static field, the subject support is moved to change the direction of the magnetic field with respect to the operating region, and thus the orientation of the forbidden plane with respect to the operating region.
Thus a combined MR imaging and magnetic navigation system can be provided that is not limited to navigations that don't involve orientation in the “forbidden” plane. These and other features and advantages will be in part apparent and in part pointed out hereinafter.
A combined MR imaging and magnetic navigation system in accordance with a first preferred embodiment of this invention is shown schematically as 20 in
As illustrated in the Figures the first and second magnets 28 and 30 can be arranged in a number of different positions, provided only that theirs fields are not parallel or substantially parallel, so that their respective forbidden planes are different. The positions of the magnets 28 and 30 are preferably chosen so that the forbidden plane of each relative to the anatomy of the subject is such that it is not necessary to frequent shift between the first and second magnets 28 and 30. This speeds up the navigation process, and avoids gaps in the MR imaging. Thus, as shown in
As illustrated in
The magnet(s) 58 are preferably movable so that there is no overlap in the forbidden planes of the two magnetic fields. Alternatively the motions are selected so that the overlap (which would typically be a line), is in a direction with minimal interference with likely navigations.
A combined MR imaging and magnetic navigation system in accordance with a third embodiment of this invention indicated generally as 100, is shown in
The system 100 also includes at least one magnet 106 for applying a static magnetic field in direction B to the operating region. The magnet 106 may be one stationary magnet; it may be multiple magnets, as shown and described in the first embodiment, or there may be one or more moveable magnets, as shown or described in the third embodiment.
In accordance with the principles of this third embodiment, the subject support 102 is pivotable with respect to the magnets 108 to move the subject and thereby change the orientation of the “forbidden” plane P with respect to the subject. The movement is preferably a pivoting motion about an axis extending through or near to the operating region so that while the direction of the static magnetic field B and thus the orientation of the “forbidden” plane P relative to the operating region changes, the field strength remains relatively constant.
Thus as shown in
Operation
In the first embodiment the first magnet 24 is operating to apply a first static magnetic field to the operating region in a subject on the support 22. This first static field is used for MR imaging and for magnetic navigation. An elongate medical device is oriented with respect to the first static magnetic field by changing the magnetic moment at the tip of the device. Typically the devices is provided with one or more (magnetic) coils (or other magnetic elements) at its distal tip, and the magnetic moment at the tip is controlled by controlling the currents in the coils.
When it is desired to turn the distal end of the device in a direction with a component in the plane perpendicular to the first static magnetic field, the first magnet 24 is turned off, and the second magnet 26 is turned on to establish a second magnetic field in a second direction different from the first direction. The MR imaging can continue, using this second magnetic field, and because the direction of the second field is different from the direction of the first field, the directions of their “forbidden” planes are different, so that navigation can continue as well. Once the turn is completed, the magnets 24 and 26 can be operated to again apply the first static field to the operating region, or the MR imaging and navigation can continue using the second static field until is it is desired to turn the distal end of the device in a direction with a component in the plane perpendicular to the second static magnetic field. Then the second magnet 26 is either turned off, and the first magnet 24 is either turned on to reestablish establish the first magnet field. At least one of the magnets used in to create one of the fields is preferably not used to create the other of the fields. However, it is possible that one of more of the magnets used to create one field are also used to create the other field.
Thus a system for, and a method of MR imaging and magnetic navigation is provided, in which magnetic navigation is not restricted in any particular plane or direction.
In the second embodiment, the magnet 58 is operated to apply a first static field B1 to the operating region in a subject on the support 52. This first static field is used for MR imaging and for magnetic navigation. An elongate medical device is oriented with respect to the first static magnetic field by changing the magnetic moment at the tip of the device. Typically, the device is provided with one or more magnetic coils (or other magnetic elements) at its distal tip, and the magnetic moment at the tip is controlled by controlling the currents in the coils.
When it is desired to turn the distal end of the device in a direction with a component in the plane perpendicular to the first static magnetic field, the magnet 58 is moved to a position to establish a second static magnetic field in a second direction different from the first direction. If the magnet 58 is a permanent magnet the magnet may be moved away from the operating region before it is move, to minimize the effect of the changing field in the operating region. If the magnet 58 is an electromagnet, the magnet may be turned down or turned off before the magnet is moved, to minimize the effect of the changing field in the operating region.
In the third embodiment the magnet 108 is operated to apply a static magnetic field to the operating region in a subject on the support 102. This static field is used for MR imaging and for magnetic navigation. An elongate medical device is oriented with respect to this static field by changing the magnetic moment at the tip of the device. Typically the device is provided with one or more magnetic coils (or other magnetic elements) at its distal tip, and the magnetic moment at the tip is controlled by controlling the currents in the coils.
When it is desired to turn the distal end of the device in a direction with a component in the plane perpendicular to the static magnetic field, the support 102 is moved to change the direction of the static field relative to the operating region, and thereby change the orientation of the “forbidden” plane. If the magnet 108 is a permanent magnet, the magnet may be moved away from the operating region before the support 102 is moved, to minimize the effect of the changing field in the operating region. If the magnet 108 is an electromagnet, the magnet may be turned down or turned off before the magnet is moved, to minimize the effect of the changing field in the operating region.
The motion of the support 102 is preferably about an axis through the operating region so that while the orientation of the “forbidden” plan changes, the distance between the magnet 108 and the operating region does not. Some various in the distance between the magnet 108 and the operating region can be tolerated, and some can be accommodated by movement of the magnet.
Depending upon the motion of the patient, the patient is preferably moved back to the patient's original positions as soon as practical after the desired turn in the “forbidden” plan to avoid discomfort.
This application claims priority of U.S. Patent Application Ser. No. 60/518,496, filed Nov. 7, 2003, the disclosure of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60518496 | Nov 2003 | US |