Magnetic sensor with thin capping layer

Abstract
A magnetic sensor for use in a data storage device is described. The magnetic sensor includes a composite layer comprising a free layer portion and a bias layer portion each comprising a magnetic material, a shield layer comprising a magnetic material, and a continuous spacer layer comprising a non-magnetic material, the spacer layer separating the shield layer from the composite layer such that the magnetic coupling between the shield layer and the bias layer portion is stronger than the magnetic coupling between the shield layer and the free layer portion. A disk drive comprising a rotatable magnetic recording disk and the slider including the magnetic sensor arranged with the magnetic recording disk is also described.
Description
BACKGROUND

A magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating, but when the disk rotates air is swirled by the rotating disk. When the slider rides on the air bearing, the write and read heads are employed for writing magnetic impressions to and reading magnetic impressions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.


The write head includes at least a coil, a write pole and one or more return poles. When a current flows through the coil, a resulting magnetic field causes a magnetic flux to flow through the write pole, which results in a magnetic write field emitting from the tip of the write pole. This magnetic field is sufficiently strong that it locally magnetizes a portion of the adjacent magnetic disk, thereby recording a bit of data. The write field, then, travels through a magnetically soft under-layer of the magnetic medium to return to the return pole of the write head.


A sensor such as a Giant Magnetoresistive (GMR) sensor, or a Tunnel Junction Magnetoresistive (TMR) sensor can be employed to read a magnetic signal from the magnetic media. The sensor includes a nonmagnetic conductive layer (if the sensor is a GMR sensor) or a thin nonmagnetic, electrically insulating barrier layer (if the sensor is a TMR sensor) sandwiched between first and second ferromagnetic layers, hereinafter referred to as a pinned layer and a free layer. Magnetic shields are positioned above and below the sensor stack and can also serve as first and second electrical leads so that the electrical current travels perpendicularly to the plane of the free layer, spacer layer and pinned layer (current perpendicular to the plane (CPP) mode of operation). The magnetization direction of the pinned layer is pinned perpendicular to the air bearing surface (ABS) and the magnetization direction of the free layer is located parallel to the ABS, but free to rotate in response to external magnetic fields. The magnetization of the pinned layer is typically pinned by exchange coupling with an antiferromagnetic layer.


When the magnetizations of the pinned and free layers are parallel with respect to one another, scattering of the conduction electrons is minimized and when the magnetizations of the pinned and free layer are antiparallel, scattering is maximized. In a read mode the resistance of the spin valve sensor changes about linearly with the magnitudes of the magnetic fields from the rotating disk. When a sense current is conducted through the spin valve sensor, resistance changes cause potential changes that are detected and processed as playback signals.


A sensor also includes a spacer layer formed at the top of the sensor stack, which is usually formed on top of the free layer. This spacer layer, which can be constructed of a material such as Ta, protects the free layer during various manufacturing processes, such as high temperature annealing that is used to pin the magnetization of the pinned layer structure.


One of the parameters that affects the overall performance of a sensor is the volume of the free layer. The space required by the spacer layer inhibits the available volume of the free layer at a fixed shield to shield distance.


Thus, there is a need in the art for a magnetic sensor in which more volume is available for the free layer.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present invention will now be presented in the detailed description by way of example, and not by way of limitation, with reference to the accompanying drawings, wherein:



FIG. 1 is a top view of an exemplary embodiment of a disk drive.



FIG. 1A is a more detailed view of an area shown in FIG. 1.



FIG. 1B is a side view of the exemplary embodiment of the disk drive in FIG. 1.



FIG. 2 is an ABS view of an exemplary embodiment of a magnetic read sensor;



FIG. 3 is a partial ABS view of a portion of the exemplary embodiment of the magnetic read sensor of FIG. 2;



FIG. 4 is a partial ABS view of a portion of another exemplary embodiment of a magnetic read sensor;



FIGS. 5A-5C are ABS views showing an exemplary method of manufacturing the exemplary embodiment of the magnetic read sensor of FIG. 2.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The detailed description set forth below in connection with the appended drawings is intended as a description of various exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the present invention. Acronyms and other descriptive terminology may be used merely for convenience and clarity and are not intended to limit the scope of the invention.


The various aspects of the present invention illustrated in the drawings may not be drawn to scale. Rather, the dimensions of the various features may be expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus or method.


The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiment” of an apparatus, method or article of manufacture does not require that all embodiments of the invention include the described components, structure, features, functionality, processes, advantages, benefits, or modes of operation.


Any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element.


As used herein, the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “about” followed by a numeric value means that the value may deviate in accordance with engineering or manufacturing processes and/or tolerances


In the following detailed description, various aspects of the present invention will be presented in the context of a magnetic sensor for use with magnetic media in a hard disk drive (HDD). However, those skilled in the art will realize that these aspects may be extended to any suitable application of a magnetic sensor. Accordingly, any reference to a magnetic sensor for use with an HDD is intended only to illustrate the various aspects of the present invention, with the understanding that such aspects may have a wide range of applications.


Aspects of a magnetic sensor include a composite layer comprising a free layer portion and a bias layer portion each comprising a magnetic material, a shield layer comprising a magnetic material and a continuous spacer layer comprising a non-magnetic material, the spacer layer separating the shield layer from the composite layer such that the magnetic coupling between the shield layer and the bias layer portion is stronger than the magnetic coupling between the shield layer and the free layer portion.


Aspects of a hard disk drive include a rotatable magnetic recording disk; and a slider including a magnetic sensor for use with the magnetic recording disk. The magnetic sensor includes a composite layer comprising a free layer portion and a bias layer portion each comprising a magnetic material, a shield layer comprising a magnetic material, and a continuous spacer layer comprising a non-magnetic material, the spacer layer separating the shield layer from the composite layer such that the magnetic coupling between the shield layer and the bias layer portion is stronger than the magnetic coupling between the shield layer and the free layer portion.


Aspects of a method of manufacturing a magnetic sensor include depositing a free layer portion comprising a magnetic material, depositing a bias layer portion comprising a magnetic material, thereby forming a composite layer comprising the free layer portion and the bias layer portion, depositing a continuous spacer layer comprising a non-magnetic material and depositing a shield layer comprising a magnetic material such that the spacer layer separates the shield layer from the composite layer. The magnetic coupling between the shield layer and the bias layer portion is stronger than the magnetic coupling between the shield layer and the free layer portion.



FIG. 1 illustrates a disk drive 10 used for data storage. FIGS. 1, 1A, and 1B are not drawn to scale and only certain structures are depicted for clarity. A disk media 50 is attached to spindle motor and hub 20. The spindle motor and hub 20 rotate the media 50 in a direction shown by arrow 55. A Head Stack assembly (HSA) 60 includes a magnetic recording head 30 on an actuator arm 70 and positions the actuator arm 70 by positioning the voice coil motor (VCM) 25 over a desired data track, shown as a recording track 40 in this example, to write data onto the media 50.



FIG. 1A illustrates an enlarged view of area 30 of FIG. 1. A magnetic sensor 90 is fabricated on slider 80. Slider 80 may be attached to suspension 75 and suspension 75 may be attached to actuator arm 70 as shown in FIG. 1B. Slider 80 may also incorporate a write transducer 92.


Referring again to FIG. 1A, slider 80 is illustrated above recording track 40. Media 50 and track 40 are moving under slider 80 in an in-track direction shown by arrow 42. The cross-track direction is shown by arrow 41.



FIG. 1B illustrates a side view of the disk drive 10 shown in FIG. 1. At least one disk media 50 is mounted onto spindle motor and hub 20. HSA 60 comprises at least one actuator arm 70 that carries suspension 75 and slider 80. Slider 80 has an air bearing surface (ABS) facing media 50. When the media is rotating and actuator arm 70 is positioned over the media 50, slider 80 floats above media 50 by aerodynamic pressure created between the slider ABS and the surface of media 50 facing the ABS of slider 80.



FIG. 2 illustrates an ABS view of an exemplary embodiment of magnetic sensor 200 that is on slider 80 as shown in FIG. 1A. The ABS view is the view looking at the ABS from the viewpoint of the media surface. The sensor 200 includes a sensor stack 202 that is sandwiched between first and second, electrically conductive, magnetic shields 204, 206 that also function as electrically conductive leads. The magnetic shield material may comprise or consist of a NiFe alloy.


The sensor stack 202 may include a non-magnetic layer 208 that is sandwiched between a magnetic pinned layer structure 210 and a magnetic free layer structure 212. The non-magnetic layer 208 can be an electrically conductive material, if the sensor 200 is a Giant Magnetoresistive (GMR) sensor, and can be a thin electrically insulating material layer if the sensor structure 200 is a Tunnel Junction Sensor (TMR). In an exemplary embodiment, the free layer structure may be a single layer.


The pinned layer structure 210 can include first and second magnetic layers, with a non-magnetic, antiparallel coupling layer such as Ru sandwiched between the first and second magnetic layers. The first magnetic layer has its magnetization pinned in a first direction perpendicular to the ABS. This pinning is a result of exchange coupling with a layer of antiferromagnetic material 220 such as IrMn. The second magnetic layer has its magnetization pinned in a second direction that is antiparallel with the first direction as a result of antiparallel coupling between the first and second magnetic layers across the antiparallel coupling layer.


The magnetic free layer 212 has a magnetization that is biased in a direction that is generally parallel with the ABS, but that is free to move in response to a magnetic field. The biasing of the free layer is provided by a magnetostatic coupling with first and second soft bias layers 222, 224. The soft bias layer may comprise or consist of a soft magnetic layer, e.g., a NiFe alloy. The free layer structure may comprise a material suitable for magnetic coupling with the shield layer, which is discussed below.


The free layer structure 212 may comprise or consist of a single layer or multiple layers. In one example embodiment the free layer structure may comprise or consist of a single layer of one of CoFe alloy (including Fe), CoFeB alloy, or CoB alloy. In another example embodiment the free layer structure may comprise or consist of CoB with Ru lamination, such that the free layer comprises or consists of a trilayer structure of CoB alloy/Ru/CoB alloy. In the exemplary embodiment shown in FIGS. 2 and 3, the magnetic free layer 212 may include a first free layer 214 and a second free layer 216. In this exemplary embodiment, the first free layer 214 may comprise or consist of any of the above-listed free layer materials, while the second free layer 216 may comprise or consist of the same or different one of the above-listed free layer materials. However, the second free layer 216 may also comprise or consist of NiFe, which would not be suitable for the first free layer 214. One or more seed layers 226 may be provided at the bottom of the sensor stack 202 in order to ensure a desired grain growth of the other layers of the sensor stack 202 deposited thereon. The second free layer 216 may further comprise any number of multiple sublayers comprising the above-listed materials suitable for the second free layer e.


The portion the sensor 200 where the soft bias layers 222, 224 align with the free layer 212 is referred herein a composite layer 218. Thus, the composite layer 218 includes a soft bias portion 222, 224 and a free layer portion 212.


A spacer layer such 228 may be provided at the top of the sensor stack 202. As shown in FIGS. 2 and 3, the spacer layer 228 may be provided between the shield layer 204 and the composite layer 218. In particular, the spacer layer 228 may be provided between the shield layer 204 and the bias layer 224, between the shield layer 204 and the bias layer 222, and between the shield layer 204 and the free layer structure 212. The spacer 228 may be provided so that it lies directly between the above-noted layers, e.g., such that that the spacer 228 contacts shield layer 204, the bias layers 222, 224, and the free layer 212. In the example embodiment shown in FIGS. 1 and 2, the spacer 228 may be located between the shield layer 204 and the first free layer 224. For example the spacer layer 228 may contact the shield layer 204 and the first free layer 214, but not contact the second free layer 216.


The spacer layer 228 may be constructed of a non-magnetic, electrically conductive metal having a thickness sufficient to cause a difference in magnetic coupling between portions of the shield layer 204 and the composite layer 218. For example, the spacer layer may include a material and thickness such that the magnetic coupling between the shield layer 204 and the bias layers 222, 224 is relatively large as compared to the magnetic coupling between the shield layer 204 and the free layer structure 212. For example the spacer material may comprise or consist of a material selected from the group consisting of Ru, Cu, Cr, Au, and Ag. Preferably, the spacer layer 228 is comprise or consists of Ru. Example thicknesses include from about 1 to about 30 angstroms, more preferably from about 3 and about 20 angstroms, and still more preferably from about 5 to about 10 angstroms.


The tri-layering of shield 204 (e.g., NiFe)/spacer 228 (e.g. Ru)/bias layer 222, 224 (e.g. NiFe), when the spacer has the appropriate thickness will provide a relatively strong magnetic coupling between the shield 204 and the bias layers 222, 224. The tri-layering of shield 204 (e.g., NiFe)/spacer 228 (e.g. Ru)/free layer structure 212 (e.g. CoB), when the spacer has the appropriate thickness, will provide a relatively weak magnetic coupling between the shield 204 and the free layer structure 212. For example, in the exemplary embodiment shown in FIGS. 2 and 3, the spacer 228 may contact the first free layer 214, where the first free layer comprises one of the above-listed free layer materials that are suitable for resulting in relatively weak magnetic coupling when the spacer is provided between the shield layer 204 and the first free layer 214. That is, the selection of material for the shield layer 204, the soft bias layers 222, 224, the spacer 228, and the free layer structure 212, and the selection of the thickness of the spacer 228, provides for a relatively strong magnetic coupling between the shield layer 204 and the bias layer 222, 224, while also providing a relatively weak magnetic coupling between the shield layer 204 and the free layer structure 212. For example the materials of the above layers and thickness of the spacer layer may be chosen such that the strength of the magnetic coupling between the shield layer 204 and the bias layer 222, 224 is greater than about 0.5 erg/cm2, more preferably greater than about 1.0 erg/cm2, and the magnet coupling between the shield layer 204 and free layer structure 212 is less than about 0.1 erg/cm2, more preferably less than about 0.01 erg/cm2. In an exemplary embodiment the magnetic coupling may be Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling. As noted above, because the second free layer 216 is separated from the spacer 228 via the first free layer 214, the second free layer may comprise or consist of NiFe without substantially interfering with the magnetic coupling of the shield 204/spacer 228/first free layer 214 tri-layer.


The sensor 200 may further comprise an insulating layer 230 between the soft bias layers 222, 224 and the free layer structure 218. The insulating layer 230 may thus comprise a material that electrically and magnetically decouples the bias layers 22, 224 from the free layer structure 281. For example, the insulating layer 230 may comprise or consist of alumina. As shown in FIG. 3, the insulating layer 230 may also be provided between the soft bias layers 222, 224 and the shield layer 206, as well as between the soft bias layers 222, 224 and all of the layers 208, 210, 220, 230.


As a result of the above structure, the shield-to-shield thickness 232 (i.e., the distance between the bottom of the first shield 204 and the top of the second shield 206) is typically about 20 nm to about 30 nm.



FIG. 4 shows a partial ABS view of a portion of another exemplary embodiment of a magnetic read sensor 400. The layers not shown in FIG. 4 are arranged in the same manner as in the exemplary embodiment of FIG. 2, e.g., a nonmagnetic layer, pinned layer, antiferromagnetic material, seed, and a bottom layer. These layers are omitted for clarity.


As shown in FIG. 4, the sensor 400 includes a sensor stack (partially shown) that is sandwiched between first and second, electrically conductive, magnetic shields 404 (lower magnetic shield not shown) that also function as electrically conductive leads. The magnetic shield material may comprise or consist of a NiFe alloy.


Similar to the exemplary embodiment illustrated in FIG. 2, the sensor stack may include a non-magnetic layer that is sandwiched between a magnetic pinned layer structure (not shown) and a magnetic free layer structure 412. The non-magnetic layer may the same as above. The pinned layer may have the same structure and function as discussed above.


The magnetic free layer 412 has a magnetization that is biased in a direction that is generally parallel with the ABS, but that is free to move in response to a magnetic field. The biasing of the free layer is provided by a magnetostatic coupling with first and second soft bias layers 422, 424. The soft bias layer may comprise or consist of the same materials as discussed above. The free layer structure may comprise or consist of a material suitable for magnetic coupling with the shield layer, which is discussed below.


The free layer structure 412 may comprise or consist of a single layer or multiple layers. In the exemplary embodiment shown in FIG. 4, the free layer structure 412 may comprise or consist of a first free layer 414 and a second free layer 416 with a first spacer 420 separating the first free layer 414 from the second free layer 416. The material of the first free layer and the second free layer may be selected from the group consisting of CoFe alloy (including Fe), CoFeB alloy, or CoB alloy. The second free layer may also include NiFe alloy. The first free layer 414 materials may comprise the same or different materials as the second free layer 416. In one exemplary embodiment the second free layer 416 may comprise or consist of CoB with Ru lamination, such that the second free layer 416 comprises or consists of a trilayer structure of CoB alloy/Ru/CoB alloy. The first free layer 414 may also be referred to as a free layer sublayer. The free layer sublayer 414 has a thickness of about 10 angstroms to about 25 angstroms, more preferably about 15 to about 20 angstroms. The second free layer 416 may be about 70 angstroms thick. By having two separate free layers separated by the first spacer 420, the milling process, described below, only acts on the free layer sublayer 414 and not on the second free layer 416. This allows the second free layer 416 to properly maintain the desirable volume to function in the read process even if there is variation in the milling depth because there is no milling of the second free layer 416. Because the second free layer 416 is decoupled from the first free layer, the spacer, and the shield, the second free layer may also comprise or consist of NiFe without substantially interfering with the magnetic coupling of the shield 404/second spacer 428/free layer sublayer 414 tri-layer.


The first spacer 420 of the free layer structure 412 may be constructed of a non-magnetic, electrically conductive metal having a thickness sufficient to provide relatively small magnetic coupling between the first free layer 414 and second free layer 416. For example, the magnetic coupling may be is less than about 0.1 erg/cm2, more preferably less than about 0.01 erg/cm2. The spacer 420 material may comprise or consist of a material selected from the group consisting of Ta, Ru, Cu, Cr, Au, and Ag. Preferably, the spacer layer 420 comprises or consists of Ru. Example thicknesses include from about 1 to about 30 angstroms, more preferably from about 3 and about 20 angstroms, and still more preferably from about 5 to about 10 angstroms.


As with the exemplary embodiment shown in FIG. 2, one or more seed layers (not shown) may be provided at the bottom of the sensor stack.


The portion the sensor 400 where the soft bias layers 422, 424 align with the free layer 412 is referred herein a composite layer 418. Thus, the composite layer 418 includes a soft bias portion 422, 424 and a free layer portion 412.


A second spacer layer such 428 may be provided at the top of the sensor stack similar to the exemplary embodiment of FIG. 2. As shown in FIG. 4, the spacer layer 428 may be provided between the shield layer 404 and the composite layer 418. In particular, the spacer layer 428 may be provided between the shield layer 404 and the bias layer 424, between the shield layer 404 and the bias layer 422, and between the shield layer 404 and the first free layer 414. The spacer 428 may be provided so that it lies directly between the above-noted layers, e.g., such that that the spacer 228 contacts shield layer 204, the bias layers 222, 224, and the first free layer 414.


The second spacer layer 428 may be constructed of the same materials and have the same thickness range as discussed above with respect to the exemplary embodiment shown in FIG. 2. For example, the spacer layer may include a material and thickness such that the magnetic coupling between the shield layer 404 and the bias layers 422, 424 is relatively large as compared to the magnetic coupling between the shield layer 404 and the first free layer structure 412.


Similar to the exemplary embodiment shown in FIG. 2, the tri-layering of shield 404 (e.g., NiFe)/second spacer 428 (e.g. Ru)/bias layer 422,424 (e.g. NiFe), when the second spacer 428 has the appropriate thickness will provide a relatively strong magnetic coupling between the shield 404 and the bias layers 422, 424. The tri-layering of shield 404 (e.g., NiFe)/second spacer 428 (e.g. Ru)/first free layer 214 (e.g. CoB), when the second spacer 420 has the appropriate thickness, will provide a relatively weak magnetic coupling between the shield 404 and the first layer structure 214. As above, the selection of material for the shield layer 404, the soft bias layers 422, 424, the second spacer 428, and the first free layer 214, and the selection of the thickness of the second spacer 428, provides for a relatively strong magnetic coupling between the shield layer 404 and the bias layer 422, 424, while also providing a relatively weak magnetic coupling between the shield layer 404 and the first free layer 412.


As shown in FIG. 4, the sensor 400 may similarly include an insulating layer 430 having the same material and function and location as discussed above with respect to the exemplary embodiment shown in FIGS. 2 and 3.



FIGS. 5A-5C are ABS views showing an exemplary method of manufacturing the magnetic read sensor 200. Turning to FIG. 5A, a capping layer 502, a sensor stack 524, and shield layer 536 are deposited. Depositing of the sensor stack 524 includes depositing a free layer structure 504, a nonmagnetic layer 516, a pinned layer 518, an antiferromagnetic material 520, and a seed layer 226. Depositing of the free layer structure 504 may include depositing a first free layer 506 (corresponding to first free layer 214 in FIG. 2) and a second free layer 508 (corresponding to second free layer 215 in FIG. 2). As noted above, the free layer structure may consist of a single layer of material or multiple layers. Each of the layers of the sensor stack 524 and the shield layer 536 may comprise the same material discussed above with respect to FIG. 2.


After the cap layer 502, the shield layer 526, and all of the layers of the sensor stack 524 have been deposited, milling is performed to remove portions of the sensor stack 524. Next, after the milling, insulating layers 510 are deposited such that the thickness of the insulating layers extend along the entire combined thickness of the sensor stack 524 and cap 502. Then, the soft bias layers 512, 514 are deposited, also extending along the entire sensor stack 524 and cap 502. As shown in FIG. 5B, the insulating layers 510 are between bias layers 512, 514 and the combined structure of the sensor stack 524 and the capping layer 502.


As shown in FIG. 5C, after the soft bias layers are deposited, the method may proceed to milling away the capping layer 502, a portion of the free layer structure 504 adjacent the capping layer 502, and a corresponding portion of the soft bias layers 512, 514 and insulating layers 510 that are aligned with the capping layer 502 and aligned with the portion of free layer structure 504. After the milling step, a spacer 530 may be deposited such that it extends across the soft bias layers 512, 514, the insulating layers 510, and the free layer structure 504. The spacer 530 corresponds to the spacer 228 of FIGS. 2 and 3 and the spacer 428 of FIG. 4, and may have the same composition and thickness as discussed above. After the spacer has been deposited, a shield layer 528 may be deposited across the spacer 530, thereby resulting in the structure shown in FIG. 2. The shield layer 528 corresponds to the shield layer 204 of FIGS. 2 and 3 and the shield layer 404 of FIG. 4, and has the same composition as discussed above.


The method for manufacturing the exemplary embodiment of the sensor 400 shown in FIG. 4 follows similar steps described above. When manufacturing the sensor 400, however, at the step of depositing the free layer structure of the sensor stack, there is an additional step of depositing a secondary spacer on top of a second free layer, and then depositing a first free layer onto secondary spacer. Then, when the milling step occurs, the milling is only performed on the first free layer. This allows the second free layer to properly maintain the desirable volume to function in the read process even if there is variation in the milling depth because there is no milling of the second free layer. The composition and thicknesses of the second free layer and the second spacer would be the same as discussed above with respect to the exemplary embodiment of FIG. 4.


The various aspects of this disclosure are provided to enable one of ordinary skill in the art to practice the present invention. Various modifications to exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be extended to other devices. Thus, the claims are not intended to be limited to the various aspects of this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the various components of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112(f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A magnetic sensor comprising: a composite layer comprising a free layer portion and a bias layer portion surrounding opposing sides of the free layer portion, each of the free layer portion and the bias layer portion comprising a magnetic material;a first shield layer comprising a magnetic material;a second shield layer comprising a magnetic material;a seed layer between the second shield layer and the composite layer; anda continuous spacer layer comprising a non-magnetic material selected from the group consisting of Ru, Cu, Cr, Au, and Ag, the continuous spacer layer separating the first shield layer from the composite layer such that the magnetic coupling between the first shield layer and the bias layer portion is stronger than the magnetic coupling between the first shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the first shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the first shield layer and the bias layer portion, andwherein the continuous spacer layer contacts the free layer portion.
  • 2. The magnetic sensor of claim 1, wherein the continuous spacer layer comprises a thickness of from about 1 to about 30 angstroms.
  • 3. The magnetic sensor of claim 1, wherein the continuous spacer layer comprises a thickness of about 3 to about 20 angstroms or less.
  • 4. The magnetic sensor of claim 1, wherein the continuous spacer layer comprises a thickness of about 5 to about 10 angstroms.
  • 5. The magnetic sensor of claim 1, wherein the free layer portion comprises a first free layer and a second free layer, wherein the first free layer is located between the continuous spacer layer and the second free layer, and wherein the first free layer is selected from the group consisting of CoFe alloy or a CoFeB alloy.
  • 6. The magnetic sensor of claim 1, wherein the magnetic coupling between the first shield layer and the free layer portion is less than about 0.01 erg/cm2 and the magnetic coupling between the first shield layer and the bias layer portion is greater than about 0.5 erg/cm2.
  • 7. The magnetic sensor of claim 1, wherein the continuous spacer layer contacts the bias layer portion.
  • 8. The magnetic sensor of claim 1, wherein the continuous spacer layer comprises a material that provides magnetic coupling between the first shield layer and the bias layer portion and magnetic coupling between the first shield layer and the free layer portion.
  • 9. The magnetic sensor of claim 8, wherein the magnetic coupling comprises Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling.
  • 10. The magnetic sensor of claim 1, wherein the material of the free layer portion is a CoFe alloy or a CoFeB alloy.
  • 11. The magnetic sensor of claim 10, wherein the free layer portion comprises elemental iron or a CoB alloy.
  • 12. The magnetic sensor of claim 10, wherein the material of the bias layer portion comprises a NiFe alloy.
  • 13. A disk drive comprising: a rotatable magnetic recording disk; anda slider including a magnetic sensor arranged with the magnetic recording disk, the magnetic sensor including: a composite layer comprising a free layer portion and a bias layer portion surrounding opposing sides of the free layer portion, each of the free layer portion and the bias layer portion comprising a magnetic material;a first shield layer comprising a magnetic material;a second shield layer comprising a magnetic material;a seed layer between the second shield layer and the composite layer; anda continuous spacer layer comprising a non-magnetic material selected from the group consisting of Ru, Cu, Cr, Au, and Ag, the continuous spacer layer separating the first shield layer from the composite layer such that the magnetic coupling between the first shield layer and the bias layer portion is stronger than the magnetic coupling between the first shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the first shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the first shield layer and the bias layer portion, andwherein the continuous spacer layer contacts the free layer portion.
  • 14. The disk drive of claim 13, wherein the continuous spacer layer comprises a thickness of from about 1 to about 30 angstroms.
  • 15. The disk drive of claim 13, wherein the continuous spacer layer comprises a thickness of about 3 to about 20 angstroms or less.
  • 16. The disk drive of claim 13, wherein the continuous spacer layer comprises a thickness of about 5 to about 10 angstroms.
  • 17. The disk drive of claim 13, wherein the free layer portion comprises a first free layer and a second free layer, wherein the first free layer is located between the continuous spacer layer and the second free layer, and wherein the first free layer is selected from the group consisting of CoFe alloy or a CoFeB alloy.
  • 18. The disk drive of claim 13, wherein the magnetic coupling between the first shield layer and the free layer portion is less than about 0.01 erg/cm2 and the magnetic coupling between the first shield layer and the bias layer portion is greater than about 0.5 erg/cm2.
  • 19. The disk drive of claim 13, wherein the continuous spacer layer contacts the bias layer portion.
  • 20. The disk drive of claim 13, wherein the continuous spacer layer comprises a material that provides magnetic coupling between the first shield layer and the bias layer portion and magnetic coupling between the first shield layer and the free layer portion.
  • 21. The disk drive of claim 20, wherein the magnetic coupling comprises Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling.
  • 22. The disk drive of claim 13, wherein the material of the free layer portion is a CoFe alloy or a CoFeB alloy.
  • 23. The disk drive of claim 22, wherein the free layer portion comprises elemental iron or a CoB alloy.
  • 24. The disk drive of claim 22, wherein the material of the bias layer portion comprises a NiFe alloy.
  • 25. A method of manufacturing a magnetic sensor, the method comprising: depositing a first shield layer comprising a magnetic material;depositing a seed layer;depositing a free layer portion comprising a magnetic material, such that the seed layer is disposed between the first shield layer and the free layer portion;depositing a bias layer portion comprising a magnetic material such that the bias layer portion surrounds opposing sides of the free layer portion, thereby forming a composite layer comprising the free layer portion and the bias layer portion;depositing a continuous spacer layer comprising a non-magnetic material selected from the group consisting of Ru, Cu, Cr, Au, and Ag; anddepositing a second shield layer comprising a magnetic material such that the continuous spacer layer separates the second shield layer from the composite layer,wherein the magnetic coupling between the second shield layer and the bias layer portion is stronger than the magnetic coupling between the second shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the second shield layer and the free layer portion,wherein the continuous spacer layer is disposed between the second shield layer and the bias layer portion, andwherein the continuous spacer layer contacts the free layer portion.
  • 26. The method of claim 25, further comprising milling a portion of the free layer portion prior to depositing the bias layer portion.
  • 27. The method of claim 25, wherein the continuous spacer layer comprises a thickness of from about 1 to about 30 angstroms.
  • 28. The method of claim 25, wherein the continuous spacer layer contacts the bias layer portion.
  • 29. The method of claim 25, wherein the continuous spacer layer comprises a material that provides magnetic coupling between the second shield layer and the bias layer portion and magnetic coupling between the second shield layer and the free layer portion.
  • 30. The method of claim 29, wherein the magnetic coupling is Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling.
US Referenced Citations (618)
Number Name Date Kind
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6268985 Pinarbasi Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Spallas et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8218270 Zeltser et al. Jul 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8225489 Miyauchi et al. Jul 2012 B2
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8305715 Mauri et al. Nov 2012 B2
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8395867 Dimitrov et al. Mar 2013 B2
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8490279 Zhou et al. Jul 2013 B2
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8568602 Sakamoto et al. Oct 2013 B2
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
20040252417 Hasegawa et al. Dec 2004 A1
20050219772 Hayashi et al. Oct 2005 A1
20080253037 Kagami et al. Oct 2008 A1
20090161268 Lin Jun 2009 A1
20090229111 Zhao et al. Sep 2009 A1
20100290157 Zhang et al. Nov 2010 A1
20110014390 Zhou et al. Jan 2011 A1
20110086240 Xiang et al. Apr 2011 A1
20110232079 Miyauchi et al. Sep 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140153138 Le et al. Jun 2014 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1