The present invention relates generally to magnetic structures and a method for defining magnetics structures. More particularly, the present invention relates to magnetic structures having irregular polarity patterns defined in accordance with one-dimensional codes.
In one aspect, the present invention provides a field emission system consisting of a first field emission structure and a second field emission structure each comprising an array of field emission sources each having positions and polarities relating to a spatial force function that corresponds to forces produced by aligned field emission sources of the first and second field emission structures at different spatial alignments within a field domain. The spatial force function is in accordance with a code modulo of a code that defines an irregular polarity pattern that is at least one of an asymmetric polarity pattern or an uneven polarity pattern. A code modulo has a length equal to the length of the code. The code defines at least one peak force per code modulo corresponding to one or more spatial alignments of a plurality of the field emission sources of the first field emission structure and a plurality of the field emission sources of the second field emission structure, where a peak force is a spatial force produced when all aligned field emission sources produce an attractive force or all aligned field emission sources produce a repellant force. The code also defines a plurality of off peak forces per code modulo corresponding to a plurality of spatial missalignments of said first and second field emission structures, where an off peak force is a spatial force resulting from cancellation of at least one attractive force produced by aligned field emission sources of said first and second field emission structures by at least one repellant force produced by aligned field emission sources of said first and second field emission structures.
The code can be a pseudorandom code, a deterministic code, or a designed code. The code can be a one dimensional code, a two dimensional code, a three dimensional code, or a four dimensional code.
Each field emission source of each said array of field emission sources may have a first vector direction or a second vector direction that is opposite the first vector direction.
At least one off peak force of said plurality of off peak forces may be a zero side lobe.
Each array of field emission sources can be one of a one-dimensional array, a two-dimensional array, or a three-dimensional array.
The polarities of the field emission sources may be North-South polarities or positive-negative polarities.
A field emission source can be a magnetic field emission source or an electric field emission source.
At least one of the field emission sources can be a permanent magnet, an electromagnet, an electret, a magnetized ferromagnetic material, a portion of a magnetized ferromagnetic material, a soft magnetic material, or a superconductive magnetic material.
At least one the first and second field emission structures may include at least one of a back keeper layer, a front saturable layer, an active intermediate element, a passive intermediate element, a lever, a latch, a swivel, a heat source, a heat sink, an inductive loop, a plating nichrome wire, an embedded wire, or a kill mechanism.
At least one of the first and second field emission structures may include a planer structure, a conical structure, a cylindrical structure, a curve surface, a stepped surface.
In another aspect, the present invention provides a field emissions method involving defining a spatial force function corresponding to the relative alignment of a first array of field emission sources of a first field emission structure and a second array of field emission sources of a second field emission structure within a field domain and establishing, in accordance with said spatial force function, a position and polarity of each field emission source of said first array of field emission sources and said second array of field emission sources. The spatial force function is in accordance with a code modulo of a code that defines an irregular polarity pattern that is at least one of an asymmetric polarity pattern or an uneven polarity pattern. The code modulo has a length equal to the length of the code. The code defines at least one peak force per code modulo corresponding to one or more spatial alignments of a plurality of the field emission sources of said first field emission structure and a plurality of the field emission sources of said second field emission structure. A peak force is a spatial force produced when all aligned field emission sources produce an attractive force or all aligned field emission sources produce a repellant force. The code also defines a plurality of off peak forces per code modulo corresponding to a plurality of spatial missalignments of said first and second field emission structures. An off peak force is a spatial force resulting from cancellation of at least one attractive force produced by aligned field emission sources of said first and second field emission structures by at least one repellant force produced by aligned field emission sources of said first and second field emission structures.
The code can be a pseudorandom code, a deterministic code, or a designed code.
The code can be a one dimensional code, a two dimensional code, a three dimensional code, or a four dimensional code.
Each field emission source of each said array of field emission sources may have a first vector direction or a second vector direction that is opposite the first vector direction.
At least one off peak force of said plurality of off peak forces may be a zero side lobe.
Each array of field emission sources can be one of a one-dimensional array, a two-dimensional array, or a three-dimensional array.
A field emission source can be a magnetic field emission source or an electric field emission source.
At least one of the field emission sources may be a permanent magnet, an electromagnet, an electret, a magnetized ferromagnetic material, a portion of a magnetized ferromagnetic material, a soft magnetic material, or a superconductive magnetic material.
In yet another aspect, the present invention provides a field emission system including a first field emission structure and a second field emission structure each having arrays of field emission sources having an irregular polarity pattern defined in accordance with a code modulo of a code, where an irregular polarity pattern is at least one of an asymmetrical polarity pattern or an uneven polarity pattern. The code modulo has a length equal to the length of said code. The code defines at least one peak force and a plurality of off peak spatial forces corresponding to a plurality of alignments of said first and second field emission structures per code modulo, where a peak force is a spatial force produced when all aligned field emission sources produce an attractive force or all aligned field emission sources produce a repellant force and where an off peak force is a spatial force resulting from cancellation of at least one attractive force by at least one repellant force.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.
Certain described embodiments may relate, by way of example but not limitation, to systems and/or apparatuses comprising magnetic structures, methods for using magnetic structures, magnetic structures produced via magnetic printing, magnetic structures comprising arrays of discrete magnetic elements, combinations thereof, and so forth. Example realizations for such embodiments may be facilitated, at least in part, by the use of an emerging, revolutionary technology that may be termed correlated magnetics. This revolutionary technology referred to herein as correlated magnetics was first fully described and enabled in the co-assigned U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A second generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 7,868,721 issued on Jan. 11, 2011, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A third generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. patent application Ser. No. 12/476,952 filed on Jun. 2, 2009, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. Another technology known as correlated inductance, which is related to correlated magnetics, has been described and enabled in the co-assigned U.S. Pat. No. 8,115,581 issued on Feb. 14, 2012, and entitled “A System and Method for Producing an Electric Pulse”. The contents of this document are hereby incorporated by reference.
Material presented herein may relate to and/or be implemented in conjunction with multilevel correlated magnetic systems and methods for producing a multilevel correlated magnetic system such as described in U.S. Pat. No. 7,982,568 issued Jul. 19, 2011 which is all incorporated herein by reference in its entirety. Material presented herein may relate to and/or be implemented in conjunction with energy generation systems and methods such as described in U.S. patent application Ser. No. 12/895,589 filed Sep. 30, 2010, which is all incorporated herein by reference in its entirety.
Such systems and methods described in U.S. Pat. Nos. 7,681,256 issued Mar. 23, 2010, 7,750,781 issued Jul. 6, 2010, 7,755,462 issued Jul. 13, 2010, 7,812,698 issued Oct. 12, 2010, 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006 issued Oct. 19, 2010, 7,821,367 issued Oct. 26, 2010, 7,823,300 and 7,824,083 issued Nov. 2, 2011, 7,834,729 issued Nov. 16, 2011, 7,839,247 issued Nov. 23, 2010, 7,843,295, 7,843,296, and 7,843,297 issued Nov. 30, 2010, 7,893,803 issued Feb. 22, 2011, 7,956,711 and 7,956,712 issued Jun. 7, 2011, 7,958,575, 7,961,068 and 7,961,069 issued Jun. 14, 2011, 7,963,818 issued Jun. 21, 2011, and 8,015,752 and 8,016,330 issued Sep. 13, 2011, and 8,035,260 issued Oct. 11, 2011, and 8,174,347 issued May 8, 2012, and 8,279,031 and 8,279,032 issued Oct. 2, 2012, and 8,368,495 issued Feb. 5, 2013 are all incorporated by reference herein in their entirety.
Such systems and methods described in U.S. patent application Ser. Nos. 13/240,335 filed Sep. 22, 2011, 13/246,584 filed Sep. 27, 2011, 13/374,074 filed Dec. 9, 2011, 13/604,939 filed Sep. 6, 2012, 13/659,444 filed Oct. 23, 2012, 13/687,819 filed Nov. 28, 2012, 13/779,611 filed Feb. 27, 2013, and 13/959,201 filed Aug. 5, 2013 are all incorporated by reference herein in their entirety.
The present invention pertains to magnetic structures and methods for defining magnetic structures having irregular polarity patterns in accordance with one-dimensional codes such as Barker codes, where an irregular polarity pattern is at least one of an asymmetrical polarity pattern or an uneven polarity pattern. An uneven polarity pattern will have a greater amount of a first polarity than a second polarity per code modulo, where a code modulo is an instance of a code having a code length N. Such one-dimensional codes define at least one peak force per code modulo corresponding to one or more spatial alignments of a plurality of the field emission sources of a first field emission structure and a plurality of the field emission sources of a second field emission structure, where a peak force is a spatial force produced when all aligned field emission sources produce an attractive force or all aligned field emission sources produce a repellant force. Such codes also define a plurality of off peak spatial forces per code modulo corresponding to a plurality of missalignments of said first and second field emission structures, where an off peak force is a spatial force resulting from cancellation of at least one attractive force produced by aligned field emission sources of said first and second field emission structures by at least one repellant force produced by aligned field emission sources of said first and second field emission structures. Such codes can be used, for example, in linear magnetic structures and cyclic magnetic structures.
The following discussion uses a mathematical approximation of the forces produced between interfacing magnetic structures which assumes individual magnetic poles each have the same magnetic field strength and ignores side magnetic interactions, where interfacing like polarity poles produce a normalized unit repel force (−1) and interfacing opposite polarity poles produce a normalized unit attract force (+1). One skilled in the art will understand that side magnetic interactions do have certain effects and that variation in material and variation of magnetization of material are possible. However, the application of this mathematical approximation approach remains generally applicable for teaching a basic understanding of the correlation characteristics of complementary magnetic structures comprising patterns (or codes) of multiple poles. One skilled in the art will also recognize that magnets of different sizes can be used to implement the codes and that portions of magnetizable material can be magnetized in accordance with a given code.
The exemplary codes, or polarity patterns, or polarity sequences, presented herein uses a notation such as + + − to represent two consecutive same polarity code elements (i.e., magnetic sources) followed by an opposite polarity code element, where a + or − symbol could be a South pole and North pole, or vice versa. Generally, the polarities assigned to a given symbol (e.g., + or −) are interchangeable since the vector math being applied is the same regardless, where the relative locations and the resulting cancellations of forces are determined by the relative polarity pattern. A complementary arrangement of a first magnetic structure in accordance with a first code such as + + + − + is therefore understood to interface with a second magnetic structure having a complementary code − − − + −. Similarly, an anti-complementary arrangement of a first code + + + − + that is interfacing with the same (or duplicate) polarity poles + + + − + is understood to be magnetically equivalent to a second code − − − + − interfacing with the same (or duplicate) polarity poles − − − + −. Additionally, one skilled in the art will recognize that a double width code element (i.e., 2+) is equivalent to consecutive single width code elements (i.e., + +). For example, a Barker 3 code could be implemented using a double length element of a first polarity and a single length element of a second polarity. Such a structure would have the same polarity imbalance (i.e., uneven polarity) as a structure produced with three single length elements and have the same correlation functions when aligned with a complementary or duplicate structure.
In accordance with the invention, a code having an irregular one-dimensional polarity pattern may have more of a first polarity than a second polarity. Alternatively, the amount of the first polarity may be the same as the second polarity but the polarity pattern may be asymmetrical and therefore be an irregular polarity pattern. As such a structure having an irregular polarity pattern in accordance with a one-dimensional code may have more of a first polarity than a second polarity per code modulo. For example, a Barker 3 code (1, 1, −1) defines two magnetic sources of a first polarity and one magnetic source of a second polarity, where two code modulos would have four magnetic sources of a first polarity and two magnetic sources of a second polarity, and so on. Alternatively, an irregular polarity pattern may be an asymmetric polarity pattern such as the one-dimensional pattern (1, −1, 1, −1, −1, 1). One skilled in the art will understand that uniformly alternating polarity patterns such as (1, 1, −1, −1) and (1, −1, 1) are not irregular polarity patterns.
One skilled in the art will also understand that polarity patterns having a first half that is complementary to a second half of the pattern, such as (1, 1, −1, −1, −1, 1) are also not irregular patterns because such patterns are actually instances of an alternating polarity code (1, −1) implemented with a pair of complementary symbols (i.e., ‘1, 1, −1’ and ‘−1, −1, 1’), where a first symbol of a pair of complementary symbols can be multiplied by −1 to produce the second symbol of the pair of complementary symbols, and vice versa. One skilled in the art will also understand that for the symbols to be complementary within a one-dimensional code, their polarity pattern must have the same order (i.e., one symbol cannot be in reverse polarity pattern order as its complementary symbol). For example, a code of (1, 1, −1, 1, −1, −1) does not have complementary symbols because the first symbol (1, 1, −1) must be multiplied by −1 and the order of the resulting polarity pattern must be reversed in order to produce the second symbol (1, −1, −1). However, such a pattern will have even (i.e., balanced) polarity and be symmetrical so it would not be an irregular polarity pattern.
The spatial force functions of
Barker Coded magnetic structures fall into three magnetic behavioral type categories for both linear and cyclic complementary (peak attract) and anti-complementary (AC, peak repel) implementations as detailed in Table 1.
As seen in Table 1, type 1 complementary structures have side lobes (SL) of 0, −1, and 1. Type 2 complementary structures have side lobes of 0 and −1. Type 3 complementary structures have side lobes of 0 and 1. All three types have a main lobe (ML) equal to the number of elements (N). So, Type 1 structures have strong attachment, weak attachment, and weak repel behavioral modes. Type 2 complementary structures have strong attachment and weak repel behavioral modes. Type 3 complementary structures have strong attachment and weak attachment behavioral modes. AC structures have main lobes and side lobes that are the opposite of complementary. Type 1 AC structures have side lobes of 0, −1, and 1. Type 2 AC structures have side lobes of 0 and 1. Type 3 AC structures have side lobes of 0 and −1. All three types have a main lobe equal to minus the number of elements (−N). So, Type 1 AC structures have strong repel, weak attachment, and weak repel behavioral modes. Type 2 AC structures have a strong repel and weak attract behavioral modes. Type 3 AC structures have a strong repel and weak repel behavioral modes.
For certain applications where the movement of magnetic structures is constrained, code wrap families are possible that have desirable auto-correlation and cross-correlation properties. In accordance with the invention, code elements of length N one-dimensional codes, or code element sequences or patterns, e.g., Barker codes, are shifted (or wrapped) to produce families of length N one-dimensional codes. One-dimensional codes can be wrapped, whereby M of N code elements are taken off one end of the code and wrapped (or brought) around to the other side. To produce a code wrap family, a code can be wrapped left to right, where code elements are moved from the left side of a code to the right side of a code, or a code can be or wrapped right to left, where code elements are moved from the right side of a code to the left side of the code, where the members of the resulting code wrap family are the same regardless of which direction of code wrapping is used.
Code wrapping may have the effect of changing the direction (or order) of a code but not otherwise change correlation properties or magnetic behavioral type (e.g.,
Table 2 presents linear Barker 3, Barker 4a, Barker 4b, and Barker 5 code wrap families produced by code wrapping the Barker codes from right to left. The Barker 3, Barker 4a, Barker 4b, and Barker 5 codes are a special class of Barker codes each having 1/(N−1) polarity ratios, where there is one code element of one polarity and N−1 code elements of the opposite polarity in each of the codes of the various code wrap families. The Barker 3 code wrap 2 code is an alternating polarity pattern that doesn't produce canceling forces. As such, it can be discarded from the code wrap family. The side lobe notation discloses the side lobes on one side of the main lobe, where one skilled in the art will recognize that the side lobes on each side of the main lobe are symmetrical. For example, the notation 0, −1 corresponds to the linear Barker 3 correlation function of −1, 0, 3, 0, −1.
−2, −1
1, 0, −1
1, 0, −1
0
1, 0, −1
1, 0, −1
The code wrap families of Table 2 have some interesting magnetic behavior attributes. Each code wrap family has a first family member that is the reversal (in direction) of a second family member, where the Barker 4a, Barker 4b, and Barker 5 code wrap families also have a third family member that is the reversal of a fourth family member. The Barker 3 family includes a uniformly alternating polarity pattern (+ − +), where the alternating polarity magnetic sources are the same size, and the Barker 5 family includes a family member (+ + − + +) that is a non-uniformly alternating polarity pattern, where the right most and left most poles represent twice the pole width as the middle pole. The Barker 4a and 4b code families are the same, which is to be expected given that the Barker 4a code is a shifted or wrapped Barker 4b code. Introduced in the comments portion of the table are the concepts of S1Delta and S2Delta, which are exemplary factors corresponding to the force differences between the closest side lobes to the main lobe and the next closest side lobes to the main lobe. These and other such factors can be important in characterizing the magnetic behavior of two structures because the wrapping of codes can make magnetic behaviors vary substantially over the width of the code (i.e., the code space) and as such it can be important to recognize the distances between a given lobe (e.g., the main lobe) and corresponding nearby side lobes and the force patterns that exist. For example, a Barker 4a and a Barker 4aw3 (i.e., Barker 4 wrap 3) code have a S1Delta of 5, whereas the Barker 4aw1 and Barker 4aw2 codes have a S1Delta of 3. As such, Barker 4a and Barker 4aw3 magnetic structures have a greater net force causing a first magnetic structure to move relative to the second magnetic structure when there relative alignments corresponds to either of the side lobe positions nearest the main lobe position. If S1Delta is greater than N then a negative side lobe is next to the main lobe, which means the structures will be repelled away from the negative side lobe which typically will be towards the main lobe. If S2Delta is greater than S1 Delta then there is a greater tendency for the auto-alignment movement of two structures to begin further away from the main lobe alignment position.
Also of possible interest are the locations of attract (or attach) side lobes. For example, the Barker 4a and Barker 4aw3 codes have stable attract alignments when just one magnet of each of two complementary structures are aligned. As such, when coming from the right or coming from the left, two structures will tend to want to attach to each other. The next lobe over is 0 and then −1. To move one structure across the other, a force sufficient to overcome the attract force must be applied and then a force sufficient to overcome the repel force must be applied before the attractive force of the main lobe will result in auto alignment. In contrast, the Barker 4aw1 and Barker 4aw2 codes require a force sufficient to overcome the outermost repel side lobe but then the inner positive side lobe will pull the magnetic structure(s) to its corresponding alignment position and depending on various factors (e.g., friction, magnet separation distance, etc.) the magnetic structure(s) will then move over to the peak lobe position.
One skilled in the art will recognize that all sorts of differentiating factors can be established for comparing linear (or cyclic) implementations of one-dimensional length N codes, which may include corresponding code family members. Factors such as the number of elements from main lobe to largest side lobe, number of elements between the largest attract side lobe and the largest repel side lobe, the number of attract lobes, the number of repel lobes, the location of the attract lobe furthest from the main lobe, and so on. Generally, a desired magnetic behavior can be selected and one or more factors (or criteria) can be established and used to grade or rate different combinations of magnetic sources having polarities based on the one-dimensional length N codes.
Table 3 presents the code wrap families for the remaining Barker codes, i.e., lengths 7, 11, and 13, that each have polarity ratios greater than 1/(N−1). Correlation functions for the Barker 7 code wrap family are also provided in
2, −1, 2, −3, 0, 1
2, 1, 2, 1, 0, 1, 0, 1, 0, −1, 0, −1
2, −1, 2, 1, −2, −1, 2, 3, 0, −1, 2, −1
2, −1, 2, 3, 0, −1, 2, 1, −2, −1,, 2, −1
2, 1, 0, 1, 0, −1, 2, 1, 0, 1, 0, −1
2, 3, 0, −1, 0, −1, 2, 1, 2, 1, −2, −1
2, 3, 2, 1, 2, 1, 0, −1, 0, −1, −2, −1
Unlike the code wrap families of Table 2, the code wrap families of Table 3 don't have members that are directional reversals of other members. There are also not any symmetrical alternating polarity patterns such as the + − + and + + −+ + patterns. There are however some magnetic behaviors of special interest. For example, the Barker 7 wrap 3 code has an interesting magnetic behavior when compared to the Barker 7 code. In both codes, there is a main lobe and then a saw tooth side lobe behavior on each side of the main lobe. With the Barker 7 code, the saw tooth side lobe behavior has a delta of 1 oscillating from 0 to −1, whereas the Barker 7 wrap 3 code has a saw tooth side lobe behavior that has a delta of 3 oscillating from −2 to 1. Another example is the Barker 7 wrap 6 code that has only one positive side lobe on either side of the main lobe that are on the outer perimeter of the code space where there are zero and negative side lobes in between the positive side lobes and the main lobe. Similarly, the Barker 7 wrap 2 code has only one positive side lobe on either side of the main lobe except the locations of the positive side lobes are shifted inward from the outer perimeter of the code space by two alignment positions.
Barker 11 code wrap 10 has positive side lobes (1) on the outer perimeter of the side lobe code space and has positive side lobes (2) half way between the outer perimeter and the main lobe. Similarly, Barker 11 code wrap 9 and Barker 11 code wrap 6 have attract positions on the perimeter and attract positions between the outer perimeter and the main lobe where they are shifted away from the halfway position by two positions (i.e., left and right, respectively). Barker 13 code wrap 10 has side lobes that vary over space much like a sine wave. Barker 13 code wrap 6 has positive side lobes on the inner halves of the side lobe code space nearest the main lobe and negative and zero side lobes on the outer halves of the side lobe code space. Thus, as can be seen in Table 2 and Table 3, code wrap techniques can be used to achieve desirable magnetic behaviors required to meet different application requirements.
In accordance with the invention, one-dimensional codes other than Barker codes having a code length greater than four (i.e., N>4) can define magnetic structures that produce canceling magnetic forces when the structures are misaligned. As such, these codes define zero and non-zero side lobes when the codes are misaligned. Such codes are referred to as Roberts codes, where code wrap families of Roberts codes can be produced using the wrapping techniques previously described for Barker codes. Table 4 presents Roberts 5 a and Roberts 5b cod e wrap families each having a polarity ratio of 2/3, whereas a Barker 5 code has a polarity ration of 1/5. The Roberts 5a code family is depicted in
2, −1, −2, −1
2, −1, −2, −1
−4, 3, −2, 1
When implemented linearly, certain Roberts 5 codes have greater than a 2/1 main lobe to maximum side lobe ratios and all have greater than a 2/1 main lobe to maximum stable attach (or attract) side lobe except for the case of the discarded uniformly alternating polarity code, where a stable attract side lobe is at a relative alignment position where two magnetic structures will maintain their alignment. When implemented cyclically, Roberts 5a codes have constant repel region from 144° to 216°, where the magnets will tend to rotate to at least one of the +1 off peak positions if not the peak force alignment position. In contrast, due to opposing repel forces on either side of a constant attract force ‘plateau’, cyclically implemented Roberts 5b codes will tend to stay at any alignment position from 144° to 216°, where overcoming the repel forces to a position within 72° of the peak force alignment position will result in the magnetic structures aligning in the peak force alignment position.
Table 5 presents Roberts 6 code wrap families of which several codes are discarded.
1, 2, 1, 0, 1
1, 0, 1, 2, 1
1, 0, 1, 2, 1
1, 2, 1, 0, 1
3, 0, −1, −2, −1
3, 0, −1, −2, −1
3, 0, −3, −2, −1
1, −2, −3, 0, 1
1, −2, −3, 0, 1
3, 0, −3, −2, −1
1, −2, −3, 0, 1
1, −2, −3, 0, 1
Correlation functions corresponding to linear implementations of the Roberts 6a code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 6b code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 6c code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 6d code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 6e code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 6f code wrap family are provided in
Table 6 presents Roberts 7 codes for which the linear and cyclic correlation functions and various comparison factors can be determined for corresponding code wrap families such as disclosed above. The Roberts 7 code wrap families can be compared to the Barker 7 code wrap family provided in Table 3. The correlation functions of linear implementations of the Barker 7 code wrap family members are depicted in
Correlation functions corresponding to linear implementations of the Roberts 7a code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7b code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7c code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7d code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7e code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7f code wrap family are provided in
Correlation functions corresponding to linear implementations of the Roberts 7g code wrap family are provided in
One skilled in the art will recognize based on these teachings herein that various other classes of magnetic behaviors can be defined and corresponding formulas produced enabling the magnetic structure designer to achieve desired force behaviors.
Table 7 presents Roberts Length 8 codes for which the linear and cyclic correlation functions and various comparison factors can be determined for corresponding code wrap families such as disclosed above.
Table 8 presents Roberts Length 9 codes for which the linear and cyclic correlation functions and various comparison factors can be determined for corresponding code wrap families such as disclosed above.
Based on the teachings of Tables 4 through 8, one skilled in the art will recognize that all possible polarity patterns that involve cancellation of forces for off-peak alignments of complementary magnetic structures can be determined for any given number of elements (or code length N), for example, such codes can be determined by a computer program that implements a search algorithm. Moreover, for any such code, a code wrap family having auto-correlation and cross-correlation functions and comparison factors can be determined as described in relation to Tables 2 and 3.
In accordance with another embodiment of the invention, combinations of two or more one-dimensional codes having the same code length N can be configured such that their correlation functions combine into a composite correlation function.
Generally, members of a one or more code wrap families of a given code length can be combined to produce complementary magnetic structures having desirable magnetic properties. Combinations can be selected to have no positive side lobes, to produce a specific type of magnetic behavior, to change the peak to maximum off-peak ratio, to produce constant side lobes, etc. For example, the side lobes of a Roberts 5a code (2, −1, −2, −1) combined with the side lobes of a Roberts 5b wrap 1 code (−2, −1, 2, −1) produce a combined autocorrelation function of (0, −2, 0, −2), where the two length 5 codes each being of type 1 combine to produce type 2 magnetic behavior. A combination of two Roberts 5b codes, a Roberts 5a wrap 2 code, and a Roberts 5a wrap 4 code produces complementary magnetic structures where all side lobes are −2 and the peak is 20, which is 10 to 1 peak to maximum off-peak ratio. As such, in accordance with the present invention two or more one-dimensional codes having different polarity patterns but the same code length can be combined to meet a criteria
In accordance with another embodiment of the invention, combinations of one-dimensional codes can be combined by exchanging at least one one-dimensional code of a code combination with its complementary code.
When magnetic structures coded in accordance with a given Barker wrap family are constrained in the dimension of the codes (e.g., vertically in
The basic concept of constraining a code family enables the use of codes that would have undesirable cross-correlation characteristics if not constrained. As such, male-female type connectors that provide such constraints can be used to design parts that discriminate such that part A will only attach to part A′, B to B′, and so forth. Such magnetic structures can include a magnetic repel bias such that a given part (e.g., A) will attach to its complementary structure (e.g., A′) but will repel every other part (e.g., B, B′, C, C′, etc.). By constraining magnetic structures in two dimensions, codes can be employed in two dimensions such as in
While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.
This application is a continuation in part of non-provisional application Ser. No. 13/959,649, titled: “Magnetic Device Using Non Polarized Magnetic Attraction Elements” filed Aug. 5, 2013 by Richards et al. and claims the benefit under 35 USC 119(e) of provisional application 61/744,342, titled “Magnetic Structures and Methods for Defining Magnetic Structures Using One-Dimensional Codes”, filed Sep. 24, 2012 by Roberts; Ser. No. 13/959,649 is a continuation in part of non-provisional application Ser. No. 13/759,695, titled: “System and Method for Defining Magnetic Structures” filed Feb. 5, 2013 by Fullerton et al., which is a continuation of application Ser. No. 13/481,554, titled: “System and Method for Defining Magnetic Structures”, filed May 25, 2012, by Fullerton et al., U.S. Pat. No. 8,368,495; which is a continuation-in-part of Non-provisional application Ser. No. 13/351,203, titled “A Key System For Enabling Operation Of A Device”, filed Jan. 16, 2012, by Fullerton et al., U.S. Pat. No. 8,314,671; Ser. No. 13/481,554 also claims the benefit under 35 USC 119(e) of provisional application 61/519,664, titled “System and Method for Defining Magnetic Structures”, filed May 25, 2011 by Roberts et al.; Ser. No. 13/351,203 is a continuation of application Ser. No. 13,157,975, titled “Magnetic Attachment System With Low Cross Correlation”, filed Jun. 10, 2011, by Fullerton et al., U.S. Pat. No. 8,098,122, which is a continuation of application Ser. No. 12/952,391, titled: “Magnetic Attachment System”, filed Nov. 23, 2010 by Fullerton et al., U.S. Pat. No. 7,961,069; which is a continuation of application Ser. No. 12/478,911, titled “Magnetically Attachable and Detachable Panel System” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,295; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,950, titled “Magnetically Attachable and Detachable Panel Method,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,296; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,969, titled “Coded Magnet Structures for Selective Association of Articles,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,843,297; Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/479,013, titled “Magnetic Force Profile System Using Coded Magnet Structures,” filed Jun. 5, 2009 by Fullerton et al., U.S. Pat. No. 7,839,247; the preceding four applications above are each a continuation-in-part of Non-provisional application Ser. No. 12/476,952 filed Jun. 2, 2009, by Fullerton et al., titled “A Field Emission System and Method”, which is a continuation-in-part of Non-provisional application Ser. No. 12/322,561, filed Feb. 4, 2009 by Fullerton et al., titled “System and Method for Producing an Electric Pulse”, which is a continuation-in-part application of Non-provisional application Ser. No. 12/358,423, filed Jan. 23, 2009 by Fullerton et al., titled “A Field Emission System and Method”, which is a continuation-in-part application of Non-provisional application Ser. No. 12/123,718, filed May 20, 2008 by Fullerton et al., titled “A Field Emission System and Method”, U.S. Pat. No. 7,800,471, which claims the benefit under 35 USC 119(e) of U.S. Provisional Application Ser. No. 61/123,019, filed Apr. 4, 2008 by Fullerton, titled “A Field Emission System and Method”. The applications and patents listed above are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
61519664 | May 2011 | US | |
61123019 | Apr 2008 | US | |
61123019 | Apr 2008 | US | |
61123019 | Apr 2008 | US | |
61123019 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13959649 | Aug 2013 | US |
Child | 14035818 | US | |
Parent | 13759695 | Feb 2013 | US |
Child | 13959649 | US | |
Parent | 13481554 | May 2012 | US |
Child | 13759695 | US | |
Parent | 13157975 | Jun 2011 | US |
Child | 13351203 | US | |
Parent | 12952391 | Nov 2010 | US |
Child | 13157975 | US | |
Parent | 12478911 | Jun 2009 | US |
Child | 12952391 | US | |
Parent | 12478950 | Jun 2009 | US |
Child | 12952391 | US | |
Parent | 12478969 | Jun 2009 | US |
Child | 12952391 | US | |
Parent | 12479013 | Jun 2009 | US |
Child | 12952391 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13351203 | Jan 2012 | US |
Child | 13481554 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12478911 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12478950 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12478969 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12479013 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US |