Magnetic tunnel junction devices including an optimization layer

Information

  • Patent Grant
  • 10424723
  • Patent Number
    10,424,723
  • Date Filed
    Friday, December 29, 2017
    6 years ago
  • Date Issued
    Tuesday, September 24, 2019
    4 years ago
Abstract
A Magnetic Tunnel Junction (MTJ) device including pillar contacts coupling the free magnetic layer of cell pillars to a top contact. The pillar contacts are electrically isolated from one or more other portions of the cell pillar by one or more self-aligned sidewall insulators. The MTJ device further including one of a static magnetic compensation layer or an exchange spring layer in the cell pillar.
Description
BACKGROUND OF THE INVENTION

Computing systems have made significant contributions toward the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous devices, such as desktop personal computers (PCs), laptop PCs, tablet PCs, netbooks, smart phones, game consoles, servers, distributed computing systems, and the like have facilitated increased productivity and reduced costs in communicating and analyzing data in most areas of entertainment, education, business, and science. One common aspect of computing systems is the computing device readable memory. Computing devices may include one or more types of memory, such as volatile random-access memory, non-volatile flash memory, and the like.


An emerging non-volatile memory technology is Magnetoresistive Random Access Memory (MRAM). In MRAM devices, data can be stored in the magnetization orientation between ferromagnetic layers of a Magnetic Tunnel Junction (MTJ). Referring to FIGS. 1A and 1B, a simplified diagram of a MTJ, in accordance with the convention art, is shown. The MTJ can include two magnetic layers 110, 120, and a tunneling barrier layer 130. One of the magnetic layers 110 can have a fixed magnetization polarization 140, while the polarization of the magnetization of the other magnetic layer 120 can switch between opposite directions 150, 160. Typically, if the magnetic layers have the same magnetization polarization 140, 150, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ bit state; while if the magnetization polarization between the two magnetic layers is antiparallel 140, 160 the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state. Because the data is stored in the magnetic fields, MRAM devices are non-volatile memory devices. The state of a MRAM cell can be read by applying a predetermined current through the cell and measuring the resulting voltage, or by applying a predetermined voltage across the cell and measuring the resulting current. The sensed current or voltage is proportional to the resistance of the cell and can be compared to a reference value to determine the state of the cell.


MRAM devices are characterized by densities similar to Dynamic Random-Access Memory (DRAM), power consumption similar to flash memory, and speed similar to Static Random-Access Memory (SRAM). Although MRAM devices exhibit favorable performance characteristics as compared to other memory technologies, there is a continuing need for improved MRAM devices and methods of manufacture thereof.


SUMMARY OF THE INVENTION

The present technology may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the present technology directed toward Magnetic Tunnel Junction (MTJ) devices.


In one embodiment, a MTJ device can include a plurality of cell pillars. A cell pillar can include a reference magnetic layer, a tunneling barrier layer, a free magnetic layer, a static magnetic compensation layer, a hard mask capping layer, a first sidewall insulator, a pillar contact and a top contact. The tunneling barrier layer can be disposed on the reference magnetic layer. The free magnetic layer can be disposed on the tunneling barrier layer. The static magnetic compensation layer can be disposed on the free magnetic layer. The static magnetic compensation layer can be configured to compensate for one or more parasitic magnetic characteristics proximate the free magnetic layer. The hard mask capping layer can be disposed on the static magnetic compensation layer. The first sidewall insulator can be self-aligned to the cell pillar along the hard mask capping layer and the static magnetic compensation layer. The pillar contact can be self-aligned to the cell pillar. The pillar contact can be insulated from the hard mask capping layer and the static magnetic compensation layer by the first sidewall insulator. The pillar contact can be electrically coupled to the free magnetic layer, and the top contact can be electrically coupled to the pillar contact.


In another embodiment, a cell pillar of the MTJ device can include a reference magnetic layer, a tunneling barrier layer, a free magnetic layer, an exchange spring layer, a hard mask capping layer, a first sidewall insulator, a pillar contact and a top contact. The tunneling barrier layer can be disposed on the reference magnetic layer. The free magnetic layer can be disposed on the tunneling barrier layer. The exchange spring layer can be disposed on the free magnetic layer. The exchange spring layer can be configured to maintain a magnetic state of the free magnetic layer. The hard mask capping layer can be disposed on the exchange spring layer. The first sidewall insulator can be self-aligned to the cell pillar along the hard mask capping layer and the exchange spring layer. The pillar contact can be self-aligned to the cell pillar. The pillar contact can be insulated from the hard mask capping layer and the exchange spring layer by the first sidewall insulator. The pillar contact can be electrically coupled to the free magnetic layer, and the top contact can be electrically coupled to the pillar contact.


The static magnetic compensation layer or the exchange spring layer can be utilized to optimize the MTJ device. The pillar contacts can provide electrical coupling between the free magnetic layer and the top contact so that the static magnetic compensation layer or the exchange spring layer does not impact the over electrical resistance of the device.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present technology are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIGS. 1A and 1B show a simplified diagram of a Magnetic Tunnel Junction (MTJ), in accordance with the convention art.



FIG. 2 shows a block diagram of a Magnetic Tunnel Junction (MTJ) device, in accordance with an embodiment of the present technology.



FIG. 3 shows a block diagram of a Magnetic Tunnel Junction (MTJ) device, in accordance with another embodiment of the present technology.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, it is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.


Some embodiments of the present technology which follow are presented in terms of routines, modules, logic blocks, and other symbolic representations of operations on data within one or more electronic devices. The descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A routine, module, logic block and/or the like, is herein, and generally, conceived to be a self-consistent sequence of processes or instructions leading to a desired result. The processes are those including physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electric or magnetic signals capable of being stored, transferred, compared and otherwise manipulated in an electronic device. For reasons of convenience, and with reference to common usage, these signals are referred to as data, bits, values, elements, symbols, characters, terms, numbers, strings, and/or the like with reference to embodiments of the present technology.


It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels and are to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussion, it is understood that through discussions of the present technology, discussions utilizing the terms such as “receiving,” and/or the like, refer to the actions and processes of an electronic device such as an electronic computing device that manipulates and transforms data. The data is represented as physical (e.g., electronic) quantities within the electronic device's logic circuits, registers, memories and/or the like, and is transformed into other data similarly represented as physical quantities within the electronic device.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” object is intended to denote also one of a possible plurality of such objects. It is also to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


Referring now to FIG. 2, a block diagram of a Magnetic Tunnel Junction (MTJ) device, in accordance with an embodiment of the present technology, is shown. The MTJ device can include a plurality of cell pillars. In one aspect, the MTJ device can include one or more seed layers 202 disposed on a substrate 204. In one implementation, the seed layer 202 can include one or more layers of Tantalum (Ta) with a thickness of approximately 1-20 nanometers (nm), and the substrate 204 can be a silicon (Si) semiconductor wafer. In one instance the Tantalum (Ta) layer can be 5 nm thick.


In one aspect, a first ferromagnetic layer 206 of the cell pillars can be disposed on the seed layer 204. In one implementation, the first ferromagnetic layer 206 can include one or more layers of a Cobalt-Iron (Co—Fe), Cobalt Nickel (CoNi), or Cobalt Platinum (CoPt) alloy with a thickness of approximately 5-15 nm. A first non-magnetic layer 208 of the cell pillars can be disposed on the first ferromagnetic layer 206. In one implementation, the first non-magnetic layer 208 can include one or more layers of a Ruthenium (Ru) alloy with a thickness of approximately 30-100 nm. The first ferromagnetic layer 206, the first non-magnetic layer 208, and a subsequently described reference magnetic layer 210 can form a Synthetic Antiferromagnetic (SAF) 206-210 of the cell pillars.


In one aspect, a reference magnetic layer 210 of the cell pillar can be disposed on the first non-magnetic layer 208. In one implementation, the reference magnetic layer 210 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy with a thickness of approximately 1-5 nm. A tunneling barrier layer 212 of the cell pillars can be disposed on the reference magnetic layer 210. In one implementation, the tunneling barrier layer 212 can include one or more layers of a Ruthenium (Ru) alloy with a thickness of approximately 0.1-1 nm. A free magnetic layer 214 of the cell pillars can be disposed on the non-magnetic tunneling barrier layer 212. In one implementation, the free magnetic layer 214 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy with a thickness of approximately 0.5-2 nm.


In one aspect, the reference magnetic layer 210 in the cell pillars can have its magnetization pinned in a predetermined direction, meaning that the reference magnetic layer 210 has a higher coercivity than other layers and a larger magnetic field or spin-polarized current is needed to change the orientation of its magnetization. The magnetization direction of the free magnetic layer 214 in a given cell pillar can be changed by a smaller magnetic field or sin-polarized current relative to the reference magnetic layer 210. In one implementation, the magnetization vector of the first ferromagnetic layer 206 and the reference magnetic layer 210 can be substantially perpendicular (e.g., within several degrees) to a plane of the layers (e.g., along a z-axis). The magnetization vector of the free magnetic layer 214 can also be substantially perpendicular to the plane of the layer (e.g., along a z-axis), but its direction can vary by 180 degrees.


In one aspect, a static magnetic compensation layer 216 in the cell pillars can be disposed on the free magnetic layer 214. In one implementation, static magnetic compensation layer 216 can be disposed on a core portion of the free magnetic layer 214. The static magnetic compensation layer 216 can be a permanent magnet configured to provide a magnetic field in the free magnetic layer 214 that compensates for one or more parasitic magnetic fields in the free magnetic layer 214. In one implementation, the static magnetic compensation layer 216 can be configured to partially compensate for, balance out, or over compensate for the one or more parasitic magnetic field in the free magnetic layer 214. In one implementation, the static magnetic compensation layer can be Cobalt Platinum (CoPt) or Cobalt Iron (CoFe) with a thickness of approximately 0.5-5 nm.


In one aspect, one or more intermediate capping layers (not shown) in the cell pillars can optionally be disposed on the static magnetic compensation layer 216. The one or more intermediate capping layers can include one or more Perpendicular Magnetic Anisotropy (PMA) enhancement layers. Optionally, one or more intermediate capping layers can be disposed between the free magnetic layer 214 and the static magnetic compensation layer 216. In another option, one or more intermediate capping layers can be disposed between the free magnetic layer 214 and the static magnetic compensation layer 216, and one or more other intermediate capping layers can be disposed on the static magnetic compensation layer 216. The one or more intermediate capping layers formed between the free magnetic layer 214 and the static magnetic compensation layer 216, or on the static magnetic compensation layer 216 can include one or more Processional Spin Current (PSC) coupling layers, one or more Perpendicular Magnetic Anisotropy (PMA) enhancement layers, one or more PSC magnetic layers, or combinations of thereof. In one aspect, a hard mask capping layer 218 in the cell pillars can be disposed on the static magnetic compensation layer 216 or an optional intermediate capping layer. In one implementation, the hard mask capping layer can be Silicon Oxide (SiOx), a Silicon Nitride (SiNx) or Aluminum Oxide (AlOx) with a thickness of approximately 5-20 nm.


In one aspect, first sidewall insulators 220 can be self-aligned to the cell pillars along the hard mask capping layer 218 and the static magnetic compensation layer 216 of the cell pillars. In one implementation, the first sidewall insulators 220 can be silicon dioxide (SiO2), silicon nitride (SiN), or the like with a thickness of approximately 5-10 nm. In one aspect, pillar contacts 222 can be self-aligned to the cell pillars. The pillar contacts can be insulated from the hard mask capping layer and the static magnetic compensation layer by the first sidewall insulators. The pillar contacts 222 can be coupled to the free magnetic layer. In one implementation, the pillar contacts 222 can be coupled along a periphery portion of the free magnetic layer. In one implementation, the pillar contacts can be Copper (Cu), Aluminum (Al), Ruthenium (Ru) with a thickness of approximately 5-20 nm. In one aspect, second sidewall insulators 224 can be self-aligned to the cell pillars along the pillar contacts 222 opposite the first sidewall insulators 222. In one implementation, the first sidewall insulators 220 can be silicon dioxide (SiO2), silicon nitride (SiN), or the like with a thickness of approximately 4-8 nm.


In one aspect, a fill 226 can be disposed between the plurality of cell pillars. In one implementation, the fill 226 can be Silicon Oxide (SiOx) or Silicon Nitride (SiNx). In one aspect, top contacts can 228 can be disposed on the cell pillars. The top contacts can be coupled to the pillar contacts 222. The top contacts can also be coupled to the hard mask capping layer 218. In one implementation, the top contacts can be coupled to the free magnetic layer 212 through the pillar contacts 222, and to the free magnetic layer 212 through the hard mask capping layer 218, the one or more intermediate capping layers if included, and the static magnetic compensation layer 216. In one implementation, the top contacts can be Copper (Cu) or Aluminum (Al) with a thickness of approximately 25 nm. In one aspect, a bottom contact 230 can be disposed through the substrate 204. The bottom contact 230 can be coupled to the first ferromagnetic layer 206 in the cell pillars. In one implementation, the bottom contacts can be Copper (Cu) or Aluminum (Al).


The static magnetic compensation layer 216 configured to compensate for one or more parasitic magnetic fields in the free magnetic layer 212 can advantageously provide additional magnetic factors to assist the optimization of MTJ device without impacting the overall electrical resistance of the device. The static magnetic compensation layer does not deleteriously impact the overall electric resistance because electrical coupling between the top contact 228 and the free magnetic layer 212 is through the pillar contacts 222. In addition, the pillar contacts 222 can advantageously be electrical isolated from the upper portions of the cell pillars by the first and second self-aligned sidewall insulators 220, 224.


Referring now to FIG. 3, a block diagram of a Magnetic Tunnel Junction (MTJ) device, in accordance with an embodiment of the present technology, is shown. The MTJ device can include a plurality of cell pillars. In one aspect, the MTJ device can include one or more seed layers 302 disposed on a substrate 304. In one implementation, the seed layer 302 can include one or more layers of Tantalum (Ta) with a thickness of approximately 5 nanometers (nm), and the substrate 304 can be a silicon (Si) semiconductor wafer.


In one aspect, a first ferromagnetic layer 306 of the cell pillars can be disposed on the seed layer 304. In one implementation, the first ferromagnetic layer 306 can include one or more layers of a Cobalt-Iron (Co—Fe), Cobalt Nickel (CoNi), or Cobalt Platinum (CoPt) alloy with a thickness of approximately 5-15 nm. A first non-magnetic layer 308 of the cell pillars can be disposed on the first ferromagnetic layer 306. In one implementation, the first non-magnetic layer 308 can include one or more layers of a Ruthenium (Ru) alloy with a thickness of approximately 30-100 nm. The first ferromagnetic layer 306, the first non-magnetic layer 308, and a subsequently described reference magnetic layer 310 can form a Synthetic Antiferromagnetic (SAF) 306-310 of the cell pillars.


In one aspect, a reference magnetic layer 310 of the cell pillar can be disposed on the first non-magnetic layer 308. In one implementation, the reference magnetic layer 310 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy with a thickness of approximately 1-5 nm. A tunneling barrier layer 312 of the cell pillars can be disposed on the reference magnetic layer 310. In one implementation, the tunneling barrier layer 312 can include one or more layers of a Ruthenium (Ru) alloy with a thickness of approximately 0.1-1 nm. A free magnetic layer 314 of the cell pillars can be disposed on the non-magnetic tunneling barrier layer 312. In one implementation, the free magnetic layer 314 can include one or more layers of a Cobalt-Iron-Boron (Co—Fe—B) alloy with a thickness of approximately 0.5-2 nm.


In one aspect, the reference magnetic layer 310 in the cell pillars can have its magnetization pinned in a predetermined direction, meaning that the reference magnetic layer 310 has a higher coercivity than other layers and a larger magnetic field or spin-polarized current is needed to change the orientation of its magnetization. The magnetization direction of the free magnetic layer 314 in a given cell pillar can be changed by a smaller magnetic field or sin-polarized current relative to the reference magnetic layer 310. In one implementation, the magnetization vector of the first ferromagnetic layer 306 and the reference magnetic layer 310 can be substantially perpendicular (e.g., within several degrees) to a plane of the layers (e.g., along a z-axis). The magnetization vector of the free magnetic layer 314 can also be substantially perpendicular to the plane of the layer (e.g., along a z-axis), but its direction can vary by 180 degrees.


In one aspect, an exchange spring layer 316 in the cell pillars can be disposed on the free magnetic layer 314. In one implementation, exchange spring layer 316 can be disposed on a core portion of the free magnetic layer 314. The exchange spring layer 316 can be a permanent magnet configured to provide a magnetic field in the free magnetic layer 314 that compensates for one or more parasitic magnetic fields in the free magnetic layer 314. In one implementation, the exchange spring layer 316 can be configured to partially compensate for, balance out, or over compensate for the one or more parasitic magnetic field in the free magnetic layer 314. In one implementation, the static magnetic compensation layer can be a Cobalt Platinum (CoPt) or Cobalt Iron (CoFe) with a thickness of approximately 0.5-5 nm.


In one aspect, one or more intermediate capping layers (not shown) in the cell pillars can optionally be disposed on the exchange spring layer 316. The one or more intermediate capping layers can include one or more one or more Perpendicular Magnetic Anisotropy (PMA) enhancement layers. Optionally, one or more intermediate capping layers can be disposed between the free magnetic layer 314 and the exchange sprint layer 316. In another option, one or more intermediate capping layers can be disposed between the free magnetic layer 314 and the exchange spring layer 316, and one or more other intermediate capping layers can be disposed on the exchange spring layer 316. The one or more intermediate capping layers formed between the free magnetic layer 314 and the exchange spring layer 316, or on the exchange spring layer 316 can include one or more Processional Spin Current (PSC) coupling layers, one or more Perpendicular Magnetic Anisotropy (PMA) enhancement layers, one or more PSC magnetic layers, or combinations of thereof. In one aspect, a hard mask capping layer 318 in the cell pillars can be disposed on the exchange spring layer 316 or an optional intermediate capping layer. In one implementation, the hard mask capping layer can be a Silicon Oxide (SiOx), a Silicon Nitride (SiNx) or Aluminum Oxide (AlOx) with a thickness of approximately 5-20 nm.


In one aspect, first sidewall insulators 320 can be self-aligned to the cell pillars along the hard mask capping layer 318 and the exchange spring layer 316 of the cell pillars. In one implementation, the first sidewall insulators 320 can be silicon dioxide (SiO2), silicon nitride (SiN), or the like with a thickness of approximately 5-10 nm. In one aspect, pillar contacts 322 can be self-aligned to the cell pillars. The pillar contacts can be insulated from the hard mask capping layer and the static magnetic compensation layer by the first sidewall insulators. The pillar contacts 322 can be coupled to the free magnetic layer. In one implementation, the pillar contacts 322 can be coupled along a periphery portion of the free magnetic layer. In one implementation, the pillar contacts can be Copper (Cu), Aluminum (Al), Ruthenium (Ru) with a thickness of approximately 5-10 nm. In one aspect, second sidewall insulators 324 can be self-aligned to the cell pillars along the pillar contacts 322 opposite the first sidewall insulators 322. In one implementation, the first sidewall insulators 320 can be silicon dioxide (SiO2), silicon nitride (SiN), or the like with a thickness of approximately 4-8 nm.


In one aspect, a fill 326 can be disposed between the plurality of cell pillars. In one implementation, the fill 326 can be Silicon Oxide (SiOx) or Silicon Nitride (SiNx). In one aspect, top contacts can 328 can be disposed on the cell pillars. The top contacts can be coupled to the pillar contacts 322. The top contacts can also be coupled to the hard mask capping layer 318. In one implementation, the top contacts can be coupled to the free magnetic layer 312 through the pillar contacts 322, and to the free magnetic layer 312 through the hard mask capping layer 318, the one or more intermediate capping layers if included, and the exchange spring layer 316. In one implementation, the top contacts can be Copper (Cu) or Aluminum (Al) with a thickness of approximately 25 nm. In one aspect, a bottom contact 330 can be disposed through the substrate 304. The bottom contact 330 can be coupled to the first ferromagnetic layer 306 in the cell pillars. In one implementation, the bottom contacts can be Copper (Cu) or Aluminum (Al).


The exchange spring layer 316 can be advantageously configured to maintain a magnetic state of the free magnetic layer. The exchange spring layer does not deleteriously impact the overall electric resistance because electrical coupling between the top contact 328 and the free magnetic layer 312 is through the pillar contacts 322. In addition, the pillar contacts 322 can advantageously be electrical isolated from the upper portions of the cell pillars by the first and second self-aligned sidewall insulators 320, 324.


The foregoing descriptions of specific embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A Magnetic Tunnel Junction (MTJ) device comprising: a reference magnetic layer of a cell pillar;a tunneling barrier layer of the cell pillar disposed on the reference magnetic layer;a free magnetic layer of the cell pillar disposed on the tunneling barrier layer;a static magnetic compensation layer of the cell pillar disposed on the free magnetic layer;a hard mask capping layer of the cell pillar disposed on the static magnetic compensation layer;a top contact disposed on the hard mask capping layera first sidewall insulator self-aligned to the cell pillar, wherein the first sidewall insulator is disposed along the hard mask capping layer and the static magnetic compensation layer and disposed between the free magnetic layer and the top contact; anda pillar contact self-aligned to the cell pillar, insulated from the hard mask capping layer and the static magnetic compensation layer by the first sidewall insulator, and electrically coupled directly between the free magnetic layer and the top contact, wherein the pillar contact is coupled to the free magnetic layer along a periphery portion of the free magnetic layer.
  • 2. The MTJ of claim 1, further comprising: a first ferromagnetic layer of the cell pillar; anda first non-magnetic layer of the cell pillar disposed between the first ferromagnetic layer and the reference magnetic layer.
  • 3. The MTJ of claim 2, further comprising: a substrate; anda seed layer disposed between the substrate and the first ferromagnetic layer.
  • 4. The MTJ of claim 3, further comprising: a bottom contact disposed through the substrate and electrically coupled to the reference magnetic layer.
  • 5. The MTJ of claim 4, wherein the bottom contact is electrically coupled to the reference magnetic layer through the first ferromagnetic layer and the first non-magnetic layer.
  • 6. The MTJ of claim 1, further comprising: a fill disposed between a plurality of cell pillars.
  • 7. The MTJ of claim 1, further comprising: a second sidewall insulator self-aligned to the cell pillar along the pillar contact opposite the first sidewall insulator.
  • 8. The MTJ of claim 1, wherein the top contact is electrically coupled to the free magnetic layer through the hard mask capping layer and the static magnetic compensation layer.
  • 9. The MTJ of claim 1, wherein the static magnetic compensation layer is configured to compensate for one or more parasitic magnetic characteristics proximate the free magnetic layer.
  • 10. A Magnetic Tunnel Junction (MTJ) device comprising: a reference magnetic layer of a cell pillar;a tunneling barrier layer of the cell pillar disposed on the reference magnetic layer;a free magnetic layer of the cell pillar disposed on the tunneling barrier layer;an exchange spring layer of the cell pillar disposed on the free magnetic layer;a hard mask capping layer of the cell pillar disposed on the exchange spring layer;a top contact disposed on the hard mask capping layer;a first sidewall insulator self-aligned to the cell pillar, wherein the first sidewall insulator is disposed along the hard mask capping layer and the exchange spring layer and disposed between the free magnetic layer and the top contact;a pillar contact self-aligned to the cell pillar, insulated from the hard mask capping layer and the exchange spring layer by the first sidewall insulator, and electrically coupled directly between the free magnetic layer and the top contact, wherein the pillar contact is coupled to the free magnetic layer along a periphery portion of the free magnetic layer.
  • 11. The MTJ of claim 10, further comprising: a first ferromagnetic layer of the cell pillar; anda first non-magnetic layer of the cell pillar disposed between the first ferromagnetic layer and the reference magnetic layer.
  • 12. The MTJ of claim 11, further comprising: a substrate; anda seed layer disposed between the substrate and the first ferromagnetic layer.
  • 13. The MTJ of claim 12, further comprising: a bottom contact disposed through the substrate and electrically coupled to the reference magnetic layer.
  • 14. The MTJ of claim 13, wherein the bottom contact is electrically coupled to the reference magnetic layer through the first ferromagnetic layer and the first non-magnetic layer.
  • 15. The MTJ of claim 10, further comprising: a fill disposed between a plurality of cell pillars.
  • 16. The MTJ of claim 10, further comprising: a second sidewall insulator self-aligned to the cell pillar along the pillar contact opposite the first sidewall insulator.
  • 17. The MTJ of claim 10, wherein the top contact is electrically coupled to the free magnetic layer through the hard mask capping layer and the exchange spring layer.
  • 18. The MTJ of claim 10, wherein the exchange spring layer is magnetically softer than the reference magnetic layer and magnetically harder than the free magnetic layer.
  • 19. The MTJ of claim 10, wherein the exchange spring layer is configured to maintain a magnetic state of the free magnetic layer.
US Referenced Citations (442)
Number Name Date Kind
4597487 Crosby et al. Jul 1986 A
5541368 Prinz Jul 1996 A
5541868 Prinz Jul 1996 A
5559952 Fujimoto Sep 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695346 Lange et al. Dec 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Zlonczweski Dec 1997 A
5732016 Chen Mar 1998 A
5751647 O'Toole May 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6064948 West et al. May 2000 A
6075941 Itoh Jun 2000 A
6097579 Gill Aug 2000 A
6112295 Bhamidipati et al. Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154139 Kanai et al. Nov 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6233690 Choi et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6442681 Ryan et al. Aug 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545903 Savtchenko et al. Apr 2003 B1
6545906 Savtchenko Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6731537 Kanamori May 2004 B2
6744086 Daughton Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 Eryurek et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6812437 Levy Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6839821 Estakhri Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006371 Matsuoka Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7057922 Fukumoto Jun 2006 B2
7170778 Kent et al. Jan 2007 B2
7187577 Wang Mar 2007 B1
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7262941 Li et al. Aug 2007 B2
7307876 Kent et al. Dec 2007 B2
7324387 Bergemont et al. Jan 2008 B1
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7372722 Jeong May 2008 B2
7376006 Bednorz et al. May 2008 B2
7386765 Ellis Jun 2008 B2
7436699 Tanizaki Oct 2008 B2
7449345 Horng et al. Nov 2008 B2
7453719 Sakimura Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7573737 Kent et al. Aug 2009 B2
7598555 Papworth-Parkin Oct 2009 B1
7619431 DeWilde et al. Nov 2009 B2
7642612 Izumi et al. Jan 2010 B2
7660161 Van Tran Feb 2010 B2
7733699 Roohparvar Jun 2010 B2
7773439 Do et al. Aug 2010 B2
7776665 Izumi et al. Aug 2010 B2
7852662 Yang Dec 2010 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7936595 Han et al. May 2011 B2
7986544 Kent et al. Jul 2011 B2
8080365 Nozaki Dec 2011 B2
8088556 Nozaki Jan 2012 B2
8094480 Tonomura Jan 2012 B2
8144509 Jung Mar 2012 B2
8148970 Fuse Apr 2012 B2
8255742 Ipek Aug 2012 B2
8278996 Miki Oct 2012 B2
8279666 Dieny et al. Oct 2012 B2
8334213 Mao Dec 2012 B2
8349536 Nozaki Jan 2013 B2
8363465 Kent et al. Jan 2013 B2
8386836 Burger Feb 2013 B2
8432727 Ryu Apr 2013 B2
8441844 El Baraji May 2013 B2
8456883 Liu Jun 2013 B1
8456926 Ong Jun 2013 B2
8492881 Kuroiwa et al. Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8539303 Lu Sep 2013 B2
8549303 Fifield et al. Oct 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8593868 Park Nov 2013 B2
8617408 Balamane Dec 2013 B2
8625339 Ong Jan 2014 B2
8634232 Oh Jan 2014 B2
8716817 Saida May 2014 B2
8737137 Choy et al. May 2014 B1
8780617 Kang Jul 2014 B2
8792269 Abedifard Jul 2014 B1
8852760 Wang et al. Oct 2014 B2
8902628 Ha Dec 2014 B2
8966345 Wilkerson Feb 2015 B2
9019754 Bedeschi Apr 2015 B1
9026888 Kwok May 2015 B2
9043674 Wu May 2015 B2
9082888 Kent et al. Jul 2015 B2
9104595 Sah Aug 2015 B2
9140747 Kim Sep 2015 B2
9165629 Chih Oct 2015 B2
9166155 Deshpande Oct 2015 B2
9229853 Khan Jan 2016 B2
9245508 Chen et al. Jan 2016 B2
9250990 Motwani Feb 2016 B2
9263667 Pinarbasi Feb 2016 B1
9298552 Leem Mar 2016 B2
9299412 Naeimi Mar 2016 B2
9317429 Ramanujan Apr 2016 B2
9337412 Pinarbasi et al. May 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9396991 Arvin et al. Jul 2016 B2
9401336 Arvin et al. Jul 2016 B2
9406876 Pinarbasi Aug 2016 B2
9418721 Bose Aug 2016 B2
9449720 Lung Sep 2016 B1
9450180 Annunziata Sep 2016 B1
9455013 Kim Sep 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9488416 Fujita et al. Nov 2016 B2
9508456 Shim Nov 2016 B1
9548445 Lee et al. Jan 2017 B2
9553102 Wang Jan 2017 B2
9583167 Chung Feb 2017 B2
9728712 Kardasz et al. Aug 2017 B2
9741926 Pinarbasi et al. Aug 2017 B1
9772555 Park et al. Sep 2017 B2
9773974 Pinarbasi et al. Sep 2017 B2
9853006 Arvin et al. Dec 2017 B2
9853206 Pinarbasi et al. Dec 2017 B2
9853292 Loveridge et al. Dec 2017 B2
9865806 Choi et al. Jan 2018 B2
10026609 Sreenivasan et al. Jul 2018 B2
10043851 Shen Aug 2018 B1
10115446 Louie et al. Oct 2018 B1
10163479 Yoha Dec 2018 B2
20020057593 Hidaka May 2002 A1
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20020132140 Igarashi et al. Sep 2002 A1
20030085186 Fujioka May 2003 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040026369 Ying Feb 2004 A1
20040047179 Chan Mar 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040173315 Leung Sep 2004 A1
20040197174 Van Den Berg Oct 2004 A1
20040221030 Huras Nov 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050022746 Lampe Feb 2005 A1
20050029551 Atwood et al. Feb 2005 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050160205 Kuo Jul 2005 A1
20050174702 Gill Aug 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050251628 Jarvis et al. Nov 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20050285176 Kim Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060077734 Fong Apr 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060198202 Erez Sep 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20060271755 Miura Nov 2006 A1
20060284183 Izumi et al. Dec 2006 A1
20060291305 Suzuki et al. Dec 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070094573 Chen Apr 2007 A1
20070096229 Yoshikawa May 2007 A1
20070220935 Cernea Sep 2007 A1
20070226592 Radke Sep 2007 A1
20070242501 Hung et al. Oct 2007 A1
20070283313 Ogawa Dec 2007 A1
20070285972 Horii Dec 2007 A1
20080049487 Yoshimura Feb 2008 A1
20080049488 Rizzo Feb 2008 A1
20080079530 Weidman et al. Apr 2008 A1
20080112094 Kent May 2008 A1
20080144376 Lee Jun 2008 A1
20080151614 Guo Jun 2008 A1
20080181009 Arai Jul 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080294938 Kondo Nov 2008 A1
20080297292 Viala et al. Dec 2008 A1
20090040825 Adusumilli et al. Feb 2009 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090078927 Xiao Mar 2009 A1
20090080267 Bedeschi Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090130779 Li May 2009 A1
20090146231 Kuper et al. Jun 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100039136 Chua-Eoan Feb 2010 A1
20100080040 Choi Apr 2010 A1
20100087048 Izumi et al. Apr 2010 A1
20100110803 Arai May 2010 A1
20100124091 Cowburn May 2010 A1
20100162065 Norman Jun 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100195362 Norman Aug 2010 A1
20100195401 Jeong et al. Aug 2010 A1
20100227275 Nozaki Sep 2010 A1
20100232206 Li Sep 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100248154 Nozaki Sep 2010 A1
20100254181 Chung Oct 2010 A1
20100271090 Rasmussen Oct 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100277976 Oh Nov 2010 A1
20100290275 Park Nov 2010 A1
20100311243 Mao Dec 2010 A1
20110001108 Greene Jan 2011 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110061786 Mason Mar 2011 A1
20110076620 Nozaki Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20110283135 Burger Nov 2011 A1
20110310691 Zhou et al. Dec 2011 A1
20110320696 Fee et al. Dec 2011 A1
20120028373 Belen Feb 2012 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120127804 Ong et al. May 2012 A1
20120155158 Higo Jun 2012 A1
20120163113 Hatano et al. Jun 2012 A1
20120280336 Watts Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120221905 Burger Aug 2012 A1
20120228728 Ueki et al. Sep 2012 A1
20120239969 Dickens Sep 2012 A1
20120254636 Tsukamoto et al. Oct 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20120324274 Hori Dec 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130039119 Rao Feb 2013 A1
20130044537 Ishigaki Feb 2013 A1
20130075845 Chen et al. Mar 2013 A1
20130107633 Kim May 2013 A1
20130244344 Malmhall Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270523 Wang et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130275691 Chew Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140036573 Ishihara Feb 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140048896 Huang et al. Feb 2014 A1
20140063949 Tokiwa Mar 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140089762 Pangal et al. Mar 2014 A1
20140103469 Jan Apr 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140136870 Breternitz et al. May 2014 A1
20140149827 Kim et al. May 2014 A1
20140151827 Zhou Jun 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140219034 Gomez et al. Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140269005 Kang Sep 2014 A1
20140281284 Block et al. Sep 2014 A1
20140289358 Lindamood Sep 2014 A1
20140321196 Ikeda Oct 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150098287 Lee Apr 2015 A1
20150100848 Kalamatianos Apr 2015 A1
20150135039 Mekhanik et al. May 2015 A1
20150143343 Weiss May 2015 A1
20150154116 Dittrich Jun 2015 A1
20150171316 Park et al. Jun 2015 A1
20150206568 Bose et al. Jul 2015 A1
20150206569 Bose et al. Jul 2015 A1
20150242269 Pelley et al. Aug 2015 A1
20150262701 Takizawa Sep 2015 A1
20150278011 Keppel et al. Oct 2015 A1
20150279904 Pinarbasi et al. Oct 2015 A1
20150378814 Webb et al. Dec 2015 A1
20150380088 Naeimi et al. Dec 2015 A1
20160027525 Kim et al. Jan 2016 A1
20160027999 Pinarbasi Jan 2016 A1
20160043304 Chen Feb 2016 A1
20160056072 Arvin et al. Feb 2016 A1
20160087193 Yoha Feb 2016 A1
20160085443 Tomishima et al. Mar 2016 A1
20160085621 Motwani Mar 2016 A1
20160086600 Bauer et al. Mar 2016 A1
20160093798 Kim et al. Mar 2016 A1
20160111634 Lee et al. Apr 2016 A1
20160118249 Sreenivasan et al. Apr 2016 A1
20160124299 Yu et al. May 2016 A1
20160126201 Arvin et al. May 2016 A1
20160126452 Kuo et al. May 2016 A1
20160126453 Chen et al. May 2016 A1
20160148685 Roy May 2016 A1
20160163965 Han et al. Jun 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160181508 Lee et al. Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160260486 Tani Sep 2016 A1
20160268499 You Sep 2016 A1
20160283385 Boyd et al. Sep 2016 A1
20160284762 Wang et al. Sep 2016 A1
20160300615 Lee Oct 2016 A1
20160307860 Arvin et al. Oct 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160315249 Kardasz et al. Oct 2016 A1
20160315259 Fennimore et al. Oct 2016 A1
20160085692 Kwok Dec 2016 A1
20160358778 Park et al. Dec 2016 A1
20160372656 Pinarbasi et al. Dec 2016 A1
20160378592 Ikegami et al. Dec 2016 A1
20170025472 Kim et al. Jan 2017 A1
20170033156 Gan et al. Feb 2017 A1
20170033283 Pinarbasi et al. Feb 2017 A1
20170047107 Berger et al. Feb 2017 A1
20170062712 Choi et al. Mar 2017 A1
20170069837 Choi et al. Mar 2017 A1
20170084826 Zhou et al. Mar 2017 A1
20170123991 Sela et al. May 2017 A1
20170133104 Darbari et al. May 2017 A1
20170199459 Ryu et al. Jul 2017 A1
20170222132 Pinarbasi et al. Aug 2017 A1
20170270988 Ikegami Sep 2017 A1
20180018134 Kang Jan 2018 A1
20180019343 Asami Jan 2018 A1
20180033957 Zhang Feb 2018 A1
20180097175 Chuang Apr 2018 A1
20180114589 El-Baraji Apr 2018 A1
20180119278 Kornmeyer May 2018 A1
20180121117 Berger et al. May 2018 A1
20180121355 Berger et al. May 2018 A1
20180121361 Berger et al. May 2018 A1
20180122446 Berger et al. May 2018 A1
20180122447 Berger et al. May 2018 A1
20180122448 Berger et al. May 2018 A1
20180122449 Berger et al. May 2018 A1
20180122450 Berger et al. May 2018 A1
20180130945 Choi et al. May 2018 A1
20180211821 Kogler Jul 2018 A1
20180233362 Glodde Aug 2018 A1
20180233363 Glodde Aug 2018 A1
20180248110 Kardasz et al. Aug 2018 A1
20180248113 Pinarbasi et al. Aug 2018 A1
20180331279 Shen Nov 2018 A1
Foreign Referenced Citations (27)
Number Date Country
2766141 Jan 2011 CA
105706259 Jun 2016 CN
1345277 Sep 2003 EP
2817998 Jun 2002 FR
2832542 May 2003 FR
2910716 Jun 2008 FR
H10-004012 Jan 1998 JP
H11-120758 Apr 1999 JP
H11-352867 Dec 1999 JP
2001-195878 Jul 2001 JP
2002-261352 Sep 2002 JP
2002-357489 Dec 2002 JP
2003-318461 Nov 2003 JP
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Jan 2013 JP
2014-039061 Feb 2014 JP
5635666 Dec 2014 JP
2015-002352 Jan 2015 JP
10-2014-015246 Sep 2014 KR
2009-080636 Jul 2009 WO
2011-005484 Jan 2011 WO
2014-062681 Apr 2014 WO
Non-Patent Literature Citations (11)
Entry
US 7,026,672 B2, 04/2006, Grandis (withdrawn)
US 2016/0218273 A1, 06/2016, Pinarbasi (withdrawn)
Bhatti Sabpreet et al., “Spintronics Based Random Access Memory: a Review,” Material Today, Nov. 2107, pp. 530-548, vol. 20, No. 9, Elsevier.
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages).
S. Ikeda, et al., “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel , Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages).
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No, 23, Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using a Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages.
Kristen Martens, et al., “Magnetic Reversal in Nanoscropic Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS) 2006, 23 pages.
“Magnetic Technology Spiritronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages.
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43.
Related Publications (1)
Number Date Country
20190207087 A1 Jul 2019 US