Disclosed embodiments are directed, generally, to a method and apparatus for making and using a magnetizable clamp for a catheter.
Many catheters exist for medical interventions. These catheters generally do not have magnetic properties. It is known that a catheter can be manipulated in a body if the catheter has a magnetic tip and the magnetic tip is exposed to a magnetic field applied from a location that is external to the body, for example U.S. Pat. No. 6,428,551 “Magnetically navigable and/or controllable device for removing material from body lumens and cavities”.
Disclosed embodiments provide an apparatus and method for converting a catheter to a magnetic catheter and using the magnetic catheter by coupling a clamp with magnetizable components to a catheter.
In accordance with at least one embodiment, the clamp includes interlocking components, and locking components for securing the clamp to the catheter. The magnetizable components are coupled to or integrally formed with the interlocking components.
In accordance with at least one embodiment an external magnetic field is applied to a clamped portion of a catheter is inside a body, and the external magnetic field manipulates the clamped portion of the catheter via the magnetizable components.
It is understood that the arrangement of magnetic components 150 and 160 as shown in the figure is not limited to that shown, and that many other configurations of magnetizable materials are possible within the purview of the invention. The magnetizable materials may be in shapes that can be controlled independently with different forms and/or components of externally applied magnetic fields, as described by U.S. patent invention application Ser. No. 14/930,126, entitled “Method and Apparatus for Non-Contact Axial Particle Rotation and Decoupled Particle Propulsion” incorporated by reference.
The magnetizable components may be pre-polarized so that they may be pushed by an externally applied magnetic field, as described by U.S. Pat. No. 9,380,959, entitled “MRI-guided Nanoparticle Cancer Therapy Apparatus and Methodology” and related patents incorporated by reference.
It is understood that the magnetic components 170, 180, 190 may be different for different versions of the apparatus, so that an external magnetic field applied to various catheters or sections of catheters with the clamps applied may have different mechanical responses.
It is understood that an appropriately changing magnetic field (for example 100 kHz alternating magnetic field) may heat the magnetic components if desired by the practitioner.
It is understood that the body may be within the field-of-view of an imaging instrument (for example a magnetic resonance imaging device) and the clamp may therefore be visible in the images, thereby assisting in localization of the catheter by a practitioner viewing the image, or by a computer guiding therapy. The catheter may be manipulated by a magnetic system that also provides imaging of the catheter. The magnetic system may be robotic, meaning that the operation may be either autonomous or semi-autonomous.
It is understood that the magnetic polarization and magnitude of the magnetic materials in the apparatus may be nulled by externally applying a rapidly changing magnetic field, for example in order to keep catheters from sticking to one another or to staples in the body.
It is understood that the apparatus is rendered sterile (for example by irradiation) and may be applied to clamp on a catheter by a medical or veterinary practitioner in a clinic (“in the field”). Alternatively, the apparatus may be applied to clamp on a catheter in a factory and shipped with the catheter to the practitioner's site.
It is understood that the term “catheter” is not limited to a tube for carrying fluids, but encompasses more generally a flexible rod or wire that may be hollow or not hollow, may be electrically conductive or non-conductive, and may have tools attached to it, for example a cutting tool or heating section. The catheter may have a cuff for wedging against an airway, as may be useful for bronchoalveolar lavage procedures. The term “lavage” is meant to include the administration and subsequent removal of fluid from tissues or organs containing tissues (for example, the lung).
The catheter may admit a guidewire or one or more optical fibers or an antenna or may be introduced into the body through another tube. The catheter may be used to remove tissue (for example by suction) to biopsy a region of the body or to remove unwanted tissue (for example a cancer). The catheter may itself serve as a guidewire for another catheter, in which case either of those catheters may receive a clamp.
It is understood that the hinges 130 and 140 and locking components 150 and 160 shown are for illustration, and that other means of locking the apparatus in place onto a catheter are included in the invention.
It is understood that the term “clamp” means that the apparatus encloses or partially encloses a catheter and fixes the apparatus in place along the length of the catheter. It is understood that more than one clamp apparatus may be affixed to a catheter.
It is understood that the clamped potion of the catheter is to be inserted into a body.
Moreover, those skilled in the art will recognize, upon consideration of the above teachings, that the above exemplary embodiments may be based upon use of one or more programmed processors programmed with a suitable computer program. However, the disclosed embodiments could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors, application specific circuits and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments.
Moreover, it should be understood that control and cooperation of the above-described components may be provided using software instructions that may be stored in a tangible, non-transitory storage device such as a non-transitory computer readable storage device storing instructions which, when executed on one or more programmed processors, carry out he above-described method operations and resulting functionality. In this case, the term “non-transitory” is intended to preclude transmitted signals and propagating waves, but not storage devices that are erasable or dependent upon power sources to retain information.
Those skilled in the art will appreciate, upon consideration of the above teachings, that the program operations and processes and associated data used to implement certain of the embodiments described above can be implemented using disc storage as well as other forms of storage devices including, but not limited to non-transitory storage media (where non-transitory is intended only to preclude propagating signals and not signals which are transitory in that they are erased by removal of power or explicit acts of erasure) such as for example Read Only Memory (ROM) devices, Random Access Memory (RAM) devices, network memory devices, optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent volatile and non-volatile storage technologies without departing from certain embodiments. Such alternative storage devices should be considered equivalents.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/022,886, entitled “MAGNETIZABLE CLAMP FOR A CATHETER” filed May 11, 2020, the entirety of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63022886 | May 2020 | US |