Embodiments described herein relate generally to a magnetoresistive element and a method of manufacturing the same.
In recent years, a semiconductor memory utilizing a resistance variable element as a memory element, such as a PRAM (phase-change random access memory) or an MRAM (magnetic random access memory), has been attracting attention and being developed. The MRAM is a device which performs a memory operation by storing “1” or “0” information in a memory cell by using a magnetoresistive effect, and has features of nonvolatility, high-speed operation, high integration and high reliability.
One of magnetoresistive effect elements is a magnetic tunnel junction (MTJ) element including a three-layer multilayer structure of a storage layer having a variable magnetization direction, an insulation film as a tunnel barrier, and a reference layer which maintains a predetermined magnetization direction.
The resistance of the MTJ element varies depending on the magnetization directions of the storage layer and the reference layer, it takes a minimum value when the magnetization directions are parallel, and takes a maximum value when the magnetization directions are antiparallel, and information is stored by associating the parallel state and antiparallel state with binary information “0” and binary information “1”, respectively.
Writing of information into the MTJ element involves a magnetic-field write scheme in which only the magnetization direction in the storage layer is reversed by a current magnetic field that is generated when a current flowing is flowed through a write line, and a write (spin injection write) scheme using spin angular momentum movement in which the magnetization direction in the storage layer is reversed by passing a spin polarization current through the MTJ element itself.
In the former scheme, when the element size is reduced, the coercivity of a magnetic body constituting the storage layer increases and the write current tends to increase, and thus it is difficult to achieve both the miniaturization and low electric current.
On the other hand, in the latter scheme (spin injection write scheme), spin polarized electron to be injected into the MTJ element decreases with the decrease of the volume of the magnetic layer constituting the storage layer, so that it is expected that both the miniaturization and low electric current may be easily achieved.
Embodiments will be hereinafter described with reference to the accompanying drawings. In the following drawings, portions corresponding to drawings already shown will be denoted by the same signs (including a sign having a different subscript), and their detailed explanations will be omitted.
In general, according to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
According to an embodiment, a method of manufacturing a magnetoresistive element is disclosed. The method includes forming a stacked body including a reference layer, a tunnel barrier layer and a storage layer; processing the stacked body by process including RIE (reactive ion etching) process. The method further includes implanting another element being different from element included in the storage layer into a surface of the storage layer exposed by processing the stacked body.
[
A lower electrode 101, a reference layer 102, a tunnel barrier layer 103, a storage layer 104, a cap layer 105 and an upper electrode 106 are successively formed on a base 100 including a substrate not shown. A selection transistor and the like are formed on a surface of the substrate. This selection transistor is an element for selecting an MTJ element. The tunnel barrier layer 103 is, for example, magnesium oxide (MgO). The cap layer 105 comprises a material having conductivity such as Ta and Ru.
[
A hard mask 120 is formed on the upper electrode 106, thereafter the upper electrode 106 is etched by RIE (reactive ion etching) process using the hard mask 120 as a mask to process the upper electrode 106 to be in a predetermined shape.
[
After the upper electrode 106 is processed to be in the predetermined shape, the cap layer 105, the storage layer 104, the tunnel barrier layer 103, the reference layer 102 and the lower electrode 101 are etched by RIE process. As a result, the MTJ element in the predetermined shape is obtained.
Since the lower electrode 101, the reference layer 102, the tunnel barrier layer 103, the storage layer 104, the cap layer 105 and the upper electrode 106 are processed by RIE process, a damage layer 107 is generated on a surface of the stacked body 101 to 106 (MTJ element). One of the reasons why the damage layer 107 is generated is that the etching by RIE process brings about chemical action between etching gas and the stacked body 101 to 106.
The storage layer 104 has magnetic anisotropy. For example, the storage layer 104 has the magnetic anisotropy in a direction vertical to its film surface. The damage layer 107 generated on the surface of the storage layer 104 also has the magnetic anisotropy. However, the damage layer 107 has the magnetic anisotropy in a direction different from the storage layer 104. Since the damage layer 107 having such disordered magnetic anisotropy deteriorates the magnetic anisotropy, spin implantation efficiency and an MR ratio, the property of the MTJ element is degraded.
A plurality of MTJ elements are used for the MRAM. Generally, the same level of influence of the damage layer 107 is not caused in all the MTJ elements. Thus, variations in characteristics of the plurality of MTJ elements used for the MRAM occur. Such variations in characteristics prevent the performance of the MRAM from being improved.
[
In the present embodiment, to suppress the influence of the damage layer, the damage layer is demagnetized by implanting ions 108 into the stacked body 101 to 106. By the implantation of the ions 108, the damage layer is not only magnetically deactivated, but its electric resistance may increase. Reference numeral 109 denotes a region including the damage layer into which ions are implanted (implantation region [second region]).
In the present embodiment, the ions 108 are implanted using an oblique ion implantation method. In the oblique ion implantation method, the implantation of ions are performed with the implantation angle of the ions is inclined from a direction vertical to a substrate surface. As a result, the ions 108 can be implanted in the damage layer generated on a side face of the storage layer 104. As methods of obliquely implanting the ions, (1) a method of implanting the ions a plurality of times by changing the implantation angle, (2) a method of implanting the ions by rotating a wafer, and a method obtained by combining (1) and (2) are available.
The condition of the ion implantation is, for example, as follows. The ion implantation energy is in a range of 1 to 10 keV. The dose amount is 1×1015 to 5×1016/cm2.
The ion implantation may be performed in a state where the MTJ element is cooled. Thus, the ion implantation may be performed, for example, in a state where a substrate in which the MTJ element is formed is cooled. For example, the substrate is cooled by cooling a stage on which the substrate is placed. The cooling temperature of the substrate is, for example, from −100 to −50° C. Implanting the ions at a low temperature allows damage of an object into which the ions are implanted to be reduced.
An element used as the ions 108 (another element) is, for example, at least one of As, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, O, Si, B, C, Zr, Tb, S, Se, P and Ti.
In the case of the present embodiment, the ions 108 are implanted not only into the damage layer generated on the storage layer 104 but into the damage layers generated on the lower electrode 101, the reference layer 102, the tunnel barrier layer 103, the cap layer 105 and the upper electrode 106. As a result, implantation regions 109 are formed also on the surfaces of the lower electrode 101, the reference layer 102, the tunnel barrier layer 103, the cap layer 105 and the upper electrode 106. A member having magnetism other than the storage layer 104 (for example, the reference layer 102) may be demagnetized, or need not be demagnetized.
Elements corresponding to the ions 108 included in a central portion of the storage layer 104 are smaller in amount than elements corresponding to the ions 108 included in the damage layer (a portion outside the central portion of the storage layer 104).
The implantation region 109 may be formed using a plasma doping method instead of the ion implantation method. Doping gas (source gas) is, for example, AsH3, PH3, BF3 and B2H6. The implantation region 109 including at least one of As, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, O, Si, B, C, Zr, Tb, S, Se, P and Ti can be formed by selecting appropriate doping gas. The plasma doping method has high productivity in comparison with the ion implantation method. The plasma doping may be performed in a state where the substrate is cooled, as well as the case of the ion implantation.
[
A well-known MRAM process continues after the implantation region 109 is formed. For example, an insulating film 110 is formed on an entire surface to cover the MTJ element, a surface is planarized by CMP (chemical mechanical polishing) process, an insulating film ill is formed on the planarized surface, a plug 112 electrically connected to the upper electrode 106 is formed in the insulating film 111, and a bit line 113 electrically connected to the plug 112 is formed.
It can be understood from
The MRAM according of the present embodiment can be obtained in accordance with the manufacturing method of the first embodiment, and has an advantage similar to that of the first embodiment.
The present embodiment is different from the second embodiment in that a width of stacked body of the lower electrode 101, the storage layer 104 and the tunnel barrier layer 103 is greater than a width of stacked body of the reference layer 102, the cap layer 105 and the upper electrode 106. Such a structure can be obtained by separating a step of processing the stacked body of the lower electrode 101, the storage layer 104 and the tunnel barrier layer 103 from a step of processing the stacked body of the reference layer 102, the cap layer 105 and the upper electrode 106.
[
The lower electrode 101, the storage layer 104, the tunnel barrier layer 103, the reference layer 102, the cap layer 105 and the upper electrode 106 are successively formed on the base 100 including the substrate not shown.
[
The upper electrode 106, the cap layer 105 and the reference layer 102 are processed to be in a predetermined shape by RIE process. The process conforms to the steps of
[
By implanting ions into the damage layer using the oblique ion implantation method, the implantation region 109 is formed and the damage layer is demagnetized. The implantation region 109 may be formed using the plasma doping method instead of the ion implantation method.
[
An insulating film 110a covering the stacked body of the reference layer 102, the cap layer 105 and the upper electrode 106 is formed by depositing an insulating film and processing the insulating film using a lithography process and an etching process.
[
The stacked body of the lower electrode 101, the storage layer 104 and the tunnel barrier layer 103 is etched by ion beam etching (IBE) process using the insulating film 110a as a mask. An MTJ element in the predetermined shape can be obtained in this manner.
IBE is physical etching mainly using kinetic energy of ions. Thus, the damage layer due to chemical reaction is hardly caused in the IBE process, unlike in the RIE process. In addition, since throughput in the IBE process is higher than that in the RIE process, the manufacturing method according to the present embodiment may be advantageous in productivity.
[
An insulating film 110b is formed on an entire surface to cover the MTJ element, and a surface of the insulating film 110 including the insulating films 110a and 110b is planarized by CMP process.
Thereafter, the insulating film 111 is formed on the planarized surface, the plug 112 electrically connected to the upper electrode 106 is formed in the insulating film 111, and the bit line 113 electrically connected to the plug 112 is formed, as in
The manufacturing method of the present embodiment can be applied to the MTJ element including a shift adjustment layer on the reference layer 102. Although MTJ elements having various types of structure are available, the manufacturing method of the present embodiment can be applied generally to a method of manufacturing an MTJ element including processing the storage layer using the RIE process.
Each of above described MTJ structures can be introduced as MTJ elements of memory cells. Memory cells, memory cell arrays and memory devices are disclosed in U.S. patent application Ser. No. 13/420106, Asao, the entire contents of which are incorporated by reference herein.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
This application claims the benefit of U.S. Provisional Application No. 61/875,577, filed Sep. 9, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6165803 | Chen et al. | Dec 2000 | A |
6297983 | Bhattacharyya | Oct 2001 | B1 |
6365286 | Inomata et al. | Apr 2002 | B1 |
6391430 | Fullerton et al. | May 2002 | B1 |
6479353 | Bhattacharyya | Nov 2002 | B2 |
6483675 | Araki et al. | Nov 2002 | B1 |
6713830 | Nishimura et al. | Mar 2004 | B2 |
6829121 | Ikeda et al. | Dec 2004 | B2 |
6895658 | Shimazawa et al. | May 2005 | B2 |
6965138 | Nakajima et al. | Nov 2005 | B2 |
6987652 | Koganei | Jan 2006 | B2 |
7220601 | Hwang et al. | May 2007 | B2 |
7586781 | Saitoh et al. | Sep 2009 | B2 |
7619431 | De Wilde et al. | Nov 2009 | B2 |
7746603 | Gill | Jun 2010 | B2 |
7768824 | Yoshikawa et al. | Aug 2010 | B2 |
7916430 | Kagami et al. | Mar 2011 | B2 |
7957184 | Yoshikawa et al. | Jun 2011 | B2 |
8119018 | Ikemoto et al. | Feb 2012 | B2 |
8130474 | Childress et al. | Mar 2012 | B2 |
8139405 | Yoshikawa et al. | Mar 2012 | B2 |
8154915 | Yoshikawa et al. | Apr 2012 | B2 |
8218355 | Kitagawa et al. | Jul 2012 | B2 |
8223533 | Ozeki et al. | Jul 2012 | B2 |
8268713 | Yamagishi et al. | Sep 2012 | B2 |
8270125 | Gill | Sep 2012 | B2 |
8339841 | Iwayama | Dec 2012 | B2 |
8475672 | Iori et al. | Jul 2013 | B2 |
8710605 | Takahashi et al. | Apr 2014 | B2 |
8716034 | Ohsawa et al. | May 2014 | B2 |
8928055 | Saida et al. | Jan 2015 | B2 |
8963264 | Dimitrov et al. | Feb 2015 | B2 |
20010022742 | Bhattacharyya | Sep 2001 | A1 |
20010024347 | Shimazawa et al. | Sep 2001 | A1 |
20020070361 | Mack et al. | Jun 2002 | A1 |
20020146851 | Okazawa et al. | Oct 2002 | A1 |
20020167059 | Nishimura et al. | Nov 2002 | A1 |
20020182442 | Ikeda et al. | Dec 2002 | A1 |
20030067800 | Koganei | Apr 2003 | A1 |
20040080876 | Sugita et al. | Apr 2004 | A1 |
20040188732 | Fukuzumi | Sep 2004 | A1 |
20050020076 | Lee et al. | Jan 2005 | A1 |
20050048675 | Ikeda | Mar 2005 | A1 |
20050174876 | Katoh | Aug 2005 | A1 |
20050254289 | Nakajima et al. | Nov 2005 | A1 |
20050274997 | Gaidis et al. | Dec 2005 | A1 |
20060043317 | Ono et al. | Mar 2006 | A1 |
20060105570 | Hautala et al. | May 2006 | A1 |
20070164338 | Hwang et al. | Jul 2007 | A1 |
20080122005 | Horsky et al. | May 2008 | A1 |
20090080238 | Yoshikawa et al. | Mar 2009 | A1 |
20090191696 | Shao et al. | Jul 2009 | A1 |
20090243008 | Kitagawa et al. | Oct 2009 | A1 |
20090285013 | Saitoh et al. | Nov 2009 | A1 |
20100097846 | Sugiura et al. | Apr 2010 | A1 |
20100135068 | Ikarashi et al. | Jun 2010 | A1 |
20100183902 | Kim et al. | Jul 2010 | A1 |
20100230770 | Yoshikawa et al. | Sep 2010 | A1 |
20110037108 | Sugiura et al. | Feb 2011 | A1 |
20110059557 | Yamagishi et al. | Mar 2011 | A1 |
20110174770 | Hautala | Jul 2011 | A1 |
20110211389 | Yoshikawa et al. | Sep 2011 | A1 |
20110222335 | Yoshikawa et al. | Sep 2011 | A1 |
20110233697 | Kajiyama | Sep 2011 | A1 |
20120032288 | Tomioka | Feb 2012 | A1 |
20120056253 | Iwayama et al. | Mar 2012 | A1 |
20120074511 | Takahashi et al. | Mar 2012 | A1 |
20120135543 | Shin et al. | May 2012 | A1 |
20120139019 | Iba | Jun 2012 | A1 |
20120244639 | Ohsawa et al. | Sep 2012 | A1 |
20120244640 | Ohsawa et al. | Sep 2012 | A1 |
20130017626 | Tomioka | Jan 2013 | A1 |
20130069186 | Toko et al. | Mar 2013 | A1 |
20130099338 | Nakayama et al. | Apr 2013 | A1 |
20130181305 | Nakayama et al. | Jul 2013 | A1 |
20140327096 | Guo | Nov 2014 | A1 |
20140356979 | Annunziata et al. | Dec 2014 | A1 |
20150069542 | Nagamine et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
04241481 | Aug 1992 | JP |
09041138 | Feb 1997 | JP |
2000156531 | Jun 2000 | JP |
2001052316 | Feb 2001 | JP |
2001308292 | Nov 2001 | JP |
2002176211 | Jun 2002 | JP |
2002280640 | Sep 2002 | JP |
2002299726 | Oct 2002 | JP |
2002299727 | Oct 2002 | JP |
2002305290 | Oct 2002 | JP |
2003110162 | Apr 2003 | JP |
2003536199 | Dec 2003 | JP |
2004006589 | Jan 2004 | JP |
2004500483 | Jan 2004 | JP |
2005209951 | Aug 2005 | JP |
2006005342 | Jan 2006 | JP |
2006510196 | Mar 2006 | JP |
2006-165031 | Jun 2006 | JP |
2007053315 | Mar 2007 | JP |
2007234897 | Sep 2007 | JP |
2007305610 | Nov 2007 | JP |
2008066612 | Mar 2008 | JP |
2008522429 | Jun 2008 | JP |
2008153527 | Jul 2008 | JP |
2008171882 | Jul 2008 | JP |
2008193103 | Aug 2008 | JP |
2008282940 | Nov 2008 | JP |
2009-054715 | Mar 2009 | JP |
2009081216 | Apr 2009 | JP |
2009239120 | Oct 2009 | JP |
2010003342 | Jan 2010 | JP |
2010113782 | May 2010 | JP |
2011040580 | Feb 2011 | JP |
2011054873 | Mar 2011 | JP |
2012244051 | Dec 2012 | JP |
2013153232 | Aug 2013 | JP |
2005088745 | Sep 2005 | WO |
Entry |
---|
Related U.S. Appl. No. 13/226,868; First Named Inventor: Yuichi Ohsawa; Title: “Method of Manufacturing Magnetic Memory”; filed Sep. 7, 2011. |
Related U.S. Appl. No. 13/226,960; First Named Inventor: Yuichi Ohsawa; Title: “Method of Manufacturing Multilayer Film”; filed Sep. 7, 2011. |
Related U.S. Appl. No. 13/231,894; First Named Inventor: Shigeki Takahashi; Title: “Magnetic Memory and Method of Manufacturing the Same”; filed Sep. 13, 2011. |
Related U.S. Appl. No. 13/604,537; First Named Inventor: Masahiko Nakayama; Title: “Magnetic Memory Element and Magnetic Memory”; filed Sep. 5, 2012. |
U.S. Appl. No. 14/200,670; First Named Inventor: Kuniaki Sugiura; Title: “Magnetoresistive Element and Method of Manufacturing the Same”; filed Mar. 7, 2014. |
Related U.S. Appl. No. 14/200,742; First Named Inventor: Masaru Toko; Title: “Magnetoresistive Element and Method for Manufacturing the Same”; filed Mar. 7, 2014. |
Related U.S. Appl. No. 14/203,249; First Named Inventor: Masahiko Nakayama; Title: “Magnetic Memory and Method of Manufacturing the Same”; filed Mar. 10, 2014. |
Albert, et al., “Spin-polarized current switching of a Co thin film nanomagnet”, Applied Physics Letters, vol. 77, No. 23, Oct. 7, 2000, 3809-3811. |
Otani, et al., “Microfabrication of Magnetic Tunnel Junctions Using CH3OH Etching”, IEEE Transactions on Magnetics, vol. 43, No. 6, Jun. 6, 2007, 2776-2778. |
International Search Report including Written Opinion dated Sep. 22, 2014, issued in parent International Application No. PCT/JP2014/072663. |
Number | Date | Country | |
---|---|---|---|
20150069557 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61875577 | Sep 2013 | US |