This application relates to apparatus for depositing material on substrate in a vacuum environment.
Physical vapor deposition (PVD) is a process of sputtering materials off a target and depositing the sputtered materials on a substrate. The sputtering target and the substrate are positioned inside a vacuum envelope that can be filled with low-pressure gas such as Argon, Nitrogen, or Oxygen. Magnetrons are used in physical vapor deposition (PVD) to reduce the operating vacuum pressure and bias voltage by trapping energetic electrons in the magnetic field and hence increasing the path length of the electrons. The lengthened electron path increases the probability of ionizing gas atoms in the vacuum chamber and hence increases the plasma density. Magnetrons are typically placed behind the sputtering target.
A magnetron can include one or more pieces of magnets each consisting of two opposite magnetic poles. Inside the vacuum chamber, electrons can be trapped by the magnetic fields between the opposite magnetic poles of a magnet and form a plasma gas near the target surface. The attractive forces on the electrons are proportional to the tangential component of the magnetic field that is parallel to the target surface. The tangential component of the magnetic field reaches its maximum near the mid point between the two poles of a magnet. As a result, more electrons are trapped and form a higher density plasma near the mid regions between the opposite poles of a magnet. More target materials are thus sputter removed in the mid regions between the opposite poles of the magnets, resulting in uneven removal of target materials from the sputtering target.
The uneven erosion can cause a target unusable even when there is still substantial target material left in a target. The shortened target life results in material waste and higher maintenance costs. In order to address the uneven erosion problem, some magnetron designs utilize the shape of the magnetic track to optimize the erosion profile. The improvement by these designs is limited because they still tend to leave large areas without magnetic track on the target surface. There is therefore a need to further reduce the erosion unevenness in the sputtering target in PVD systems.
Implementations of the system may include one or more of the following. In one aspect, the present invention relates to a magnetron source for producing a magnetic field near a sputtering target in a vacuum deposition system including a first group of sequentially positioned individual magnets of a first magnetic polarity, and a second group of sequentially positioned individual magnets of a second magnetic polarity opposite to the first magnetic polarity. The first group of magnets and the second group of magnets are so configured that electrons can be trapped near the sputtering surface of the sputtering target in the regions between the first group of magnets and the second group of magnets.
In another aspect, the present invention relates to a method for producing a magnetic field near the sputtering surface of a sputtering target in a vacuum deposition system, including positioning a first group of sequentially positioned individual magnets of a first magnetic polarity near a surface of the sputtering target opposite to the sputtering surface of the sputtering target, positioning a second group of sequentially positioned individual magnets of a second magnetic polarity opposite to the first magnetic polarity near the surface of the sputtering target opposite to the sputtering surface of the sputtering target, trapping electrons near the sputtering surface of the sputtering target in the regions between the first group of magnets and the second group of magnets, and sputtering target material off the sputtering target.
Embodiments may include one or more of the following advantages. The disclosed magnetron source improves the utilization of target materials, especially for a static magnetron. The disclosed magnetron source can lengthen the usage lifetime of the sputtering targets by increasing the uniformity of the erosion pattern, which reduces the cost for the target materials. The usage lifetime increase is especially prominent for magnetron sources that are stationary to the sputtering target during depositions.
In another aspect, the disclosed magnetron source provides the flexibilities of rearranging the electron path of sputtering source or for different targets. The magnetron designs can be optimized by placing individual magnets over entire target surface, so that the erosion on any point of the target surface can be adjusted by changing corresponding individual magnets. The redistribution of individual magnets can even out the material removal from the target and can also optimize the sputtering pattern in accordance with different materials. Sputtering uniformity and efficiency are improved. Equipment cost is also reduced where different targets are required in prior art systems.
In yet another aspect, the disclosed magnetron increases the ionization efficiency and increases the plasma density. This will reduce the operating pressure and lower the operating voltage, resulting in better plasma stability, higher deposition efficiency, and less chance of arcing inside the plasma.
The details of one or more embodiments are set forth in the accompanying drawings and in the description below. Other features, objects, and advantages of the invention will become apparent from the description and drawings, and from the claims.
The magnets 210A, 210B are typically sequentially positioned with closer distances to each other with the group than from the magnets 220A, 220B, 220C. Similarly, the magnets 220A, 220B, 220C are typically closer positioned to each other with the group than from the magnets 210. In the example shown in
The magnets 210A, 210B and the magnets 220A, 220B, 220C are positioned close enough with each group to form a continuous path along which the tangential component of the magnetic field reaches its maximum. As such, more electrons are trapped in the areas between the two groups of individual magnets.
An advantage of the invented magnetron source 200 is that the number of the individual magnets, the spacing between the individual magnets, the number of rings in the distribution of the individual magnets, the size of the individual magnets, and the spacing between the two polarity groups of magnets can all easily be optimized to maximize target utilization, improve deposition uniformity, and improve plasma stability. As shown in
Furthermore, various above described parameters can also be optimized in the magnetron source 200 specific to different the types of target materials to accommodate the difference in sputtering yield, scattering of sputtered materials with the gas atoms before reaching substrate, and angular sputtering distribution. For example, when the sputtering target material is changed, the individual magnets can be re-positioned using the same magnetron source 200, which can significantly reduce equipment development cost.
To optimize the erosion depth and maximize target utilization, the individual magnets 210A, 210B and 220A, 220B, 220C can be distributed to form a long electron path 250 and cover as much target surface as possible. More rings can be included in the distribution of the magnets 210A, 210B and 220A, 220B, 220C. A larger target surface area can be more evenly sputtered, which is highly desirable especially for the stationary magnetrons. In addition, the operating vacuum pressure and the bias voltage can also be lowered. Furthermore, the width of the magnetic field track can slightly vary along the electron path 250, which can further even out the erosion pattern and fill all available space above target surface.
In another embodiment, a ferromagnetic material can be attached to a group of magnets of the same polarity to reduce the magnetic field variation.
In another embodiment, the magnetron sources 200 and 300 can be held stationary relative to the sputtering target or mounted on a rotation plate that can rotate relative to the sputtering target during the vacuum deposition. The distribution of the individual magnets can be optimized relative the rotation parameters to further reduce the uneven erosion in the target.
The invented magnetron source can be formed in other than circular shapes such as rectangles, polygons, or irregular shapes.
In another embodiment, the distribution of individual magnets can be moved between different configurations during the lifetime of a target to further even out the residual uneven erosion in the target. For example, a magnetic track can be moved in a new configuration over the area where the magnets used to be positioned in the previous configuration. Material sputtering can thus catch up in the under-sputtered area on the target.
This application is related to commonly assigned U.S. patent application Ser. No. 11/185,241, titled “Single-process-chamber deposition system” by Guo, filed Jul. 20, 2005 and U.S. patent application Ser. No. 11/212,142, titled “Vacuum processing and transfer system” by Guo et al, filed Aug. 26, 2005, the contents of which are incorporated herein by reference.