The present invention relates to a magnetron sputtering gun device, and particularly to a magnetron sputtering gun device capable of increasing a compound ability between a thin film and an interaction gas and increasing a film coating speed and an uniformity of a target and a thin film thickness.
A magnetron sputtering technology may form a thin film having a good fineness and adhesiveness owing to the high film forming energy. This feature has lent itself to be used in the application of coating of various thin films. However, the magnetron sputtering technology requires an expensive high frequency power source or an interactive sputtering technology, when forming a dielectric film.
The former has a slow film coating speed and involves a target expensive and fragile, while the latter has disadvantages of a poor compound ability between the thin film and the interaction gas and absorption resulted from an incomplete interaction owing to the use of the interactive sputtering. In addition, the magnetron sputtering used target has a low usage rate, resulting in a waste of the target.
A US patent, U.S. Pat. No. 4,162,954, shown in
Another US patent, U.S. Pat. No. 5,262,028, disclosed such a technology where its magnets are arranged shown in
U.S. Pat. No. 5,282,947 disclosed three magnets including side magnets 96, ring magnets 97, and central magnets 98, arranged as in
It is, therefore, an object of the present invention to provide a magnetron sputtering gun device capable of increasing a compound ability between a thin film and an interaction gas and increasing a film coating speed and an uniformity of a target and a thin film thickness.
To achieve the above object, the magnetron sputtering gun device according to the present invention comprises a magnet copper seat, having a central magnet area, a periphery magnet area, and a hollow groove disposed between the periphery magnet area and the central magnet area; a magnetic element, detachably disposed between the periphery magnet area and the central magnet area; a conductive element, detachably disposed in the hollow; a sputtering target, disposed above the magnet copper seat; a target fixing assembly, covering the magnet copper seat and fixing the sputtering target; and a cylinder-shape protecting mask, covering the target fixing assembly.
In an embodiment, the magnetron sputtering gun device as claimed in claim 1, wherein a cooling water inlet hole is disposed rear to the magnet copper seat.
In an embodiment, the magnet element at the periphery magnet area has a magnet intensity of 5,400 to 6,000 Gauss ±20%.
In an embodiment, a sputtering inclination assembly disposed at a bottom of the target fixing assembly for providing an inclination.
In an embodiment, the magnet element is a plurality of magnets disposed co-axially between the periphery magnet area and the central magnet area.
In an embodiment, the peripheral magnet area and the central magnet area comprises a plurality of through-holes arranged peripherally.
1 In an embodiment, the conductive element comprises a thermo-conductive material, an electro-conductive material, and a magnetic conductivity material.
In an embodiment, the conductive element comprises a ferrimagnetic material, a ferromagnetic material, and a combination thereof.
In an embodiment, the ferromagnetic material is selected from a group consisting of iron (F), cobalt (Co), nickel (Ni), and a combination thereof.
In an embodiment, the ferromagnetic material is selected from a group consisting of aluminum (Al), copper (Cu), silver (Ag), zinc (Zn), gold (Au), carbon (C), lead (Pb), magnesium (Mg), platinum (Pt), chrome (Cr), manganess (Mn), tin (Sn), vanadium (V), tungsten (W), and a combination thereof.
The present invention will be better understood from the following detailed descriptions of the preferred embodiments according to the present invention, taken in conjunction with the accompanying drawings, in which:
Referring to
As shown in the figures, the magnetron sputtering gun device used in a vacuum for sputtering to form a thin film.
The magnetron sputtering gun device comprises a magnet copper seat 1, a magnetic element 2, a conductive element 3, a sputtering target 4, a target fixation assembly 5, a cylinder-shape protection mask 6, and a sputtering inclination assembly 7.
The mentioned magnet copper seat 1 has a peripheral magnet area 11, a central magnet area 12, and a hollow groove 13 disposed between the peripheral magnet area 11 and the central magnet area 12.
The peripheral magnet area 11 and the central magnetic area 12 each comprise a plurality of through-holes 111, 121 arranged in a ring shape. Rear to the magnetic copper seat 1, a cooling water inlet hole 14 is additionally disposed.
The magnetic element 2 is detachably disposed at the peripheral magnet area 11 and the central magnet area 12, and is a plurality of magnets co-axially within the through-holes 111, 121 between the periphery magnet area 11 and the central magnet area 12. The magnetic element 2 located at the peripheral magnet area 11 has a magnetic intensity of 5,400 to 6,000 Gauss±20%.
The conductive element 3 is detachably disposed within the hollow groove 13 and may be replaced with a thermo-conductive, an electro-conductive or a magnet-conductive material, to increase a use rate of the sputtering target 4. In an embodiment, the conductive element 3 may be a ferromagnetic material, a ferromagnetic material or a combination thereof. The ferromagnetic material may be selected from a group consisting of iron (F), cobalt (Co), nickel (Ni), and a combination thereof. The ferromagnetic material may be selected from a group consisting of aluminum (Al), copper (Cu), silver (Ag), zinc (Zn), gold (Au), carbon (C), lead (Pb), magnesium (Mg), platinum (Pt), chrome (Cr), manganess (Mn), tin (Sn), vanadium (V), tungsten (W), and a combination thereof.
The sputtering target 4 is disposed above the magnet copper seat 1. The target fixation assembly 5 covers the magnet copper seat 1 and fixes the sputtering target 4, and is then covered by the cylinder-shape protection mask 6. The sputtering inclination assembly 7 is disposed at a bottom side of the target fixation assembly 5 to provide an inclination. As such, a novel magnetron sputtering gun device is constituted by the above described structure.
Referring to
In this embodiment, a sputtering of silicon nitride (coating of a non-metal) is exemplified, as shown in
Referring to
As shown in
In addition, to promote the film thickness uniformity, the present invention may be further provided with a sputtering inclination assembly 7, as is shown in
As such, the present invention enhances the magnet copper seat so that the magnetron sputtering gun device has an increased film coating speed and an increased compound ability between the thin film and reaction gas. A ferromagnetic material may be coated. The magnet copper seat may be designed so that the sputtering target and strong magnets therewithin may be conveniently detached. In this structure, a cooling water tubing and the strong magnets are separated, lengthening a lifetime of the strong magnets and protecting the strong magnets from demagnetization. The sputtering inclination assembly may further increase the uniformity of the thin film thickness.
In view of the above, the magnetron sputtering gun device may effectively improve the disadvantages has an increased film coating speed and an increased compound ability between the thin film and reaction gas. A ferromagnetic material may be coated. The magnet copper seat may be designed so that the sputtering target and strong magnets therewithin may be conveniently detached. In this structure, the cooling water tubing and the strong magnets are separated, lengthening a lifetime of the strong magnets and protecting the strong magnets from demagnetization. The sputtering inclination assembly may further increase a uniformity of the thin film thickness.
From all these views, the present invention may be deemed as being more effective, practical, useful for the consumer's demand, and thus may meet with the requirements for a patent.
The above described is merely examples and preferred embodiments of the present invention, and not exemplified to intend to limit the present invention. Any modifications and changes without departing from the scope of the spirit of the present invention are deemed as within the scope of the present invention. The scope of the present invention is to be interpreted with the scope as defined in the claims.