Management of pharmacy kits

Information

  • Patent Grant
  • 11139075
  • Patent Number
    11,139,075
  • Date Filed
    Wednesday, October 18, 2017
    6 years ago
  • Date Issued
    Tuesday, October 5, 2021
    2 years ago
Abstract
A system for managing pharmacy kits comprises a reading station configured to read tag information from a plurality of radio frequency identification (RFID) tags associated with a pharmacy kit, and an information processing system operatively connected to the reading station and configured to receive the tag information from the reading station and determine a status of the pharmacy kit based on the tag information, a plurality of stored templates defining contents to be included in each of a plurality of pharmacy kits, and a plurality of kit records indicating the current contents of a plurality of pharmacy kits.
Description
BACKGROUND

Hospital pharmacies often manage groups of medical items in the form of pharmacy kits. A pharmacy kit can be used, for instance, to provide a group of items for a specific medical procedure, a particular physician, or a designated location of a hospital. As an example, a pharmacy kit can be used to aggregate and transport a collection of medicines for treating a patient with a specific type of stroke, heart condition, or other ailment.


A pharmacy kit (or “kit”) typically comprises a group of items specified by a template. For example, the template may specify that the kit requires three vials of adenosine, two containers of albuterol solution, two vials of amiodarone, and so on. The template may also specify ways in which individual items may be satisfied. For example, it may specify that the vials of adenosine may be satisfied by certain product brands. Pharmacy kits are usually stocked by a hospital pharmacy, but they may be stocked by another entity, such as an outsourced kit stocking company.


Local board-of-pharmacy regulations (e.g., state regulations) typically allow a hospital or other facility to define the contents of its kits. In other words, they allow the hospital to create its own templates. These regulations, however, also require that the hospital adhere to a template once defined. This typically requires specific procedures to ensure accuracy of kit contents. Such procedures can include, for instance, regulated kit creation and inventory procedures, and prescribed monitoring and/or update procedures. The following are examples of such procedures as used in certain conventional contexts.


A kit is typically created by receiving specified items in a pharmacy, manually recording (e.g., on paper and/or electronic records) their product identifiers (e.g., National Drug Code (NDC) or Universal Product Code (UPC)), lot numbers, and expiration dates, and then loading the items into a container, such as a box, tray, or canister. During the kit's lifetime, it may be updated periodically to replace expired or consumed items. These updates are typically performed by manually inspecting the kit, comparing it to a corresponding template, modifying kit contents as required, and then manually recording any changes.


Unfortunately, the above procedures tend to suffer from significant shortcomings. For instance, the manual recording of item information is generally time consuming and error prone, which drives up the cost of creating and updating the kits. Moreover, these procedures are usually performed by highly trained pharmacy staff, which may be an inefficient use of their time. Manual inspections for missing, expired, or soon-to-be expired items can also be time consuming and error prone, particularly because item expiration dates tend to vary between different products within the same kit.


Due to the above and other shortcomings, there is a general need for improved techniques and technologies for managing pharmacy kits.


SUMMARY

According to one embodiment of the inventive concept, a system for managing pharmacy kits comprises a reading station configured to read tag information from a plurality of radio frequency identification (RFID) tags associated with a pharmacy kit, and an information processing system operatively connected to the reading station and configured to receive the tag information from the reading station and determine a status of the pharmacy kit based on the tag information, a plurality of stored templates defining contents to be included in each of a plurality of pharmacy kits, and a plurality of kit records indicating the current contents of a plurality of pharmacy kits.


According to another embodiment of the inventive concept, a method of managing pharmacy kits comprises operating an RFID reader to read tag information from a plurality of RFID tags associated with a pharmacy kit, identifying a plurality of items present in the pharmacy kit based on the tag information, and comparing the plurality of items with an electronic template to determine a status of the pharmacy kit.


According to another embodiment of the inventive concept, a method comprises building a pharmacy kit comprising a plurality of pharmaceutical items labeled with RFID tags, verifying contents of the pharmacy kit by operating an RFID reader to read tag information from the RFID tags and comparing the tag information with an electronic template, deploying the pharmacy kit within a facility following the verification, and re-verifying the contents of the pharmacy kit following the deployment by operating an RFID reader to read tag information from the RFID tags and comparing the tag information with the electronic template.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate selected embodiments of the inventive concept. In the drawings, like reference numbers indicate like features.



FIG. 1 is a block diagram of a system for managing pharmacy kits according to an embodiment of the inventive concept.



FIGS. 2A through 2C are diagrams illustrating a pharmacy kit according to an embodiment of the inventive concept.



FIGS. 3A and 3B are diagrams of a read station in the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 4 is a diagram of an information processing system in the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 5 is a flowchart illustrating a method of managing pharmacy kits according to an embodiment of the inventive concept.



FIG. 6 is a flowchart illustrating a method of receiving and processing items for a pharmacy kit according to an embodiment of the inventive concept.



FIG. 7 is a flowchart illustrating a method of building a pharmacy kit according to an embodiment of the inventive concept.



FIGS. 8A and 8B are flowcharts illustrating methods of operating the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 9 shows an interface that can be used to control the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 10 shows a report generated for a pharmacy kit using the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 11 shows another report generated for a pharmacy kit using the system of FIG. 1 according to an embodiment of the inventive concept.



FIG. 12 shows an interface for checking out a kit to a user or location according to an embodiment of the inventive concept.



FIGS. 13A and 13B show interfaces used to generate and view reports regarding pharmacy kits according to an embodiment of the inventive concept.



FIGS. 14A through 14D are diagrams of a label that can be used to attach an RFID tag to various items of a pharmacy kit according to an embodiment of the inventive concept.





DETAILED DESCRIPTION

Embodiments of the inventive concept are described below with reference to the accompanying drawings. These embodiments are presented as teaching examples and should not be construed to limit the scope of the inventive concept.


The described embodiments relate generally to management of pharmacy kits (hereafter, “kits”) such as those commonly used in hospital environments or other medical facilities. Such kits can be distinguished generally from other types of kits used by hospitals, such as surgical instrumentation kits, electronic equipment kits, and so on, due to the unique nature of pharmaceutical products. For example, pharmaceutical products may be regulated very different from the items in surgical kits due to the need to constantly monitor expiration dates, and also due to the substitutability of some pharmaceutical products for others.


In certain embodiments, a kit management system uses RFID technology to label and track the contents of a kit. The use of RFID technology can allow a pharmacy to accurately and efficiently determine whether items in the kit are consumed, missing, expired, or near expiration. These determinations can be used thereafter to verify and update the kit contents, track item usage patterns, generate patient billing information based on item consumption, and so on.


In certain embodiments, a hospital pharmacy begins by tagging items upon bulk receipt in the hospital, or when a kit is stocked. Alternatively, items may arrive at a hospital pre-tagged. One way to tag the items is by scanning bar codes present on most items used in a kit, printing RFID tags based on the scanned bar codes, and then applying the RFID tags to the items. The scanned bar codes typically provide item information such as product identifiers (e.g., NDC or UPC), lot numbers, and expiration dates. This information can be associated with the RFID tags in a computer database to allow subsequent identification and processing by RFID technology. In some embodiments, the RFID tags can be generated automatically when scanning the bar codes, e.g., through the use of an RFID tag printer operatively connected to a bar code scanning machine. Alternatively, the RFID tags may be non-printed tags.


A kit is typically built by placing tagged items in a container such as a box, tray, or canister, and optionally labeling the kit with an RFID tag having information such as a kit identifier, kit type, intended user, or location, for example. These steps are generally performed by a pharmacist or other competent medical professional.


Once a kit is built, its contents are verified by placing it in an RFID reading station, which reads all RFID tags within its sensing range to identify the kit type and any items present. In some embodiments, the RFID reading station includes an enclosure such as a metal box to allow scanning of the kit exclusive of other RFID devices that may be in the surrounding environment. Alternatively, the RFID reading station may omit such an enclosure, for instance, by performing reading in an open area such as table, or using a handheld RFID reader. If the kit has an RFID tag, the kit type can be determined from the tag. Otherwise, it may be inferred from the items present. Items are typically identified by recognizing their RFID tags and then accessing stored information that maps the RFID tags to specific item information.


The stored information may reside on electronic equipment located at the RFID reader station or a remote location such as a remote server, a personal computer (PC), a mobile device, etc. In addition to basic kit and item information, the electronic equipment may also store metadata related to kit processes, such as who built or rebuilt a kit, what items were replaced if the kit was restocked, when the items were inserted in the kit, when verification and update procedures were last performed or will next be performed, and so on.


After the kit and item information are determined by the kit management system, they are analyzed automatically with reference to one or more templates. For instance, a kit template may be located based on the kit type, and then the identified items may be compared with the kit template to determine whether any items are missing or require replacement based on use or expiration. Additionally, the information processing system may analyze item information to determine whether any items are expired or will soon expire. The kit can then be updated based on these analyses.


Kit templates are typically stored in a database within or associated with the information processing system. However, they can alternatively be stored within a memory associated within the RFID reading station or RFID reader, or they can be stored in a separate system accessible by the information processing system.


In general, expiration of an item may occur based on a fixed or variable timeframe. For example, some items may expire at a fixed date indicated by the manufacturer, while other items may expire after a certain amount of time out of the refrigerator, e.g., time of removal+X days. Whether the timeframe is fixed or variable can be indicated in the template at a master level for a particular item, or at a segment level for a segment including the item.


The automatic processing provided by RFID technology and associated electronic equipment allows kit management to be performed with greater efficiency and accuracy compared with conventional approaches. For instance, in some embodiments, kit contents and expiration dates can be validated in 15 seconds or less. Moreover, kit deficiencies can be reported to a pharmacist automatically, allowing them to be addressed in an efficient manner. This reporting can be accomplished, for instance, by an automatically generated charge sheet showing kit contents and expirations.


Once a kit is built and verified, it is ready to be sealed and deployed for use in the hospital. When a kit is used, the seal is broken and items may be removed or consumed. Accordingly, the kit may be subsequently returned to the RFID reading station for additional verification, monitoring, and updates. These additional procedures can be used, for example, to determine whether any items in the kit are missing (e.g., due to use), and whether any items are erroneously present in the kit. This information can then be used to generate a report indicating the status and any necessary updates for the kit, or for other purposes such as patient billing or supply ordering. Once the relevant information is collected, the kit can be rebuilt using the automatically generated report, and then redeployed for another use.


Stored item and kit information can also be used to perform various forms of monitoring and/or reporting related to inventory management. For instance, stored kit information can be analyzed to identify patterns of item consumption. Moreover, the stored information can be inspected to determine the location of kits containing expired items. These and other forms of monitoring and/or reporting can be performed either automatically or in response to user input. For instance, they can be performed according to a predetermined schedule or in response to certain event triggers. Alternatively, a user may simply request monitoring or a report as needed. For example, a pharmacy manager may log in to view consumption logs, usage logs, and current inventory to make more informed decisions on which inventory to keep and which kits may require special attention.


The kit management system typically further comprises a user interface and one or more software applications allowing a user to access information regarding the status of kits. As an example, a software application may be used to generate and print a kit charge sheet or charge sheet with the contents and expiration dates of the items and a kit. As other examples, a software application may be used to generate inventory reports showing where kits are dispatched within a hospital, an expiration report indicating dispatched items that are expired or near expiration, consumption, and usage reports with traceability to departments, code types, or patients. The kit management system can also comprise or be integrated with a real-time tracking system to maintain current information regarding kit locations. The real-time tracking system typically comprises electronic components associated with the kits and configured to transmit information from the kits to the information processing system to identify the kits' respective locations. Such tracking systems can also be combined with kit management software in order to update the information used to generate inventory reports.


As indicated by the foregoing, a kit management system according to certain embodiments can provide many potential benefits compared with conventional technologies. For example, the kit management system can provide more efficient verification and recording of kit contents, and more accurate monitoring of kits, items, and expiration dates. In certain embodiments, the kit management system may also provide data analysis capabilities for purposes such as patient billing, inventory tracking, and so on.



FIG. 1 is a block diagram of a system 100 for managing pharmacy kits according to an embodiment of the inventive concept.


Referring to FIG. 1, system 100 comprises an information processing system 115 and an RFID reading station 110. System 100 is configured to automatically read and process information from a pharmacy kit 105. This allows relatively efficient monitoring and updating of the kit's contents.


RFID reading station 110 comprises an RFID reader configured to read RFID tags located on kit 105. During a typical read operation, the RFID reader interrogates RFID tags associated with respective items in kit 105, and it also interrogates any RFID tag associated with kit 105. As a consequence of the interrogation, the RFID reader receives information identifying each tag, and it conveys the information to information processing system 115. Based on the tag information, information processing system 115 identifies kit 105 and the items present. This can be accomplished, for instance, by relating the tag information to item or kit information stored in a computer database.


Once the kit and items are identified, information processing system 115 may process corresponding information in various ways, for example, by displaying it to a user, generating reports indicating missing or expired items, performing patient billing procedures based on any consumed items, or merely storing it for subsequent analysis. In certain embodiments, the kit and item information is managed as a list. For example, it can be stored and accessed in the form of a list in a computer database or other storage medium.


System 100 may occasionally aggregate last known status information for each kit that has been read, and it may then determine whether any action is required to resolve expiration issues, missing item issues, or extra item issues in all of the kits in a hospital or other facility. These actions can be performed, for example, on a periodic basis, in response to particular events, or in response to a user request.


In addition to storing the current or most recent information regarding the kits, system 100 may also store a virtual history for each kit. Such a virtual history may include, for example, a record of each transaction involving the kit since the time it was tagged. Such transactions may include, for example, scans, database queries, updates such as restocking or removal of items, and so on. The virtual history may be maintained by information processing system 115, for example, and it may be output in the form of a report in response to a user request. In addition, the virtual history may be used to gather data or statistics that may be useful for planning future tasks such as kit updates, item restocking, and so on.


Kit 105 can be associated to a location or responsible person, such as a physician. This association can then be stored in system 100, and it can be used to quickly determine the location of kit 105 after deployment. The location of kit 105 can also be determined and/or updated by associating its RFID tag with a real time location system. In addition, kit 105 may be associated with a patient identifier or billing identifier and any missing items may be marked as being consumed by that billing or patient identifier. Such billing information may be stored either in system 100, in a separate system or in both system 100 and a separate system. System 100 may retrieve or update some or all of the billing information when a kit is read and items may or may not be consumed.


Where kit 105 contains prescription pharmaceuticals, the facility may be required to comply with requirements set by a state board of pharmacy. The precise regulations may vary from state to state, but can include requirements such as a mandatory visual inspection of kit 105 prior to deployment, or an item-by-item determination of each item type, lot number and expiration date. Other board of pharmacy requirements may include documentation to be included in kit 105 to verify completeness and accuracy of expiration data or a label on the outside of kit 105 to indicate the last check of the kit and the next expiring item in the kit.


In some embodiments, system 100 is configured to store relevant board of pharmacy requirements and verify that each step has been completed. System 100 can also be configured to compute steps automatically where allowed by regulations. Such steps may include, for example, printing documentation or labels, reading tags and verifying items, or requesting confirmation that a manual step has been completed. As these steps are completed, system 100 may record the name of the person who performed the steps. It may also confirm whether the person is authorized to perform the steps. In general, information regarding these and other steps can be recorded in system 100 using a log, database, or other storage format.


Although FIG. 1 shows RFID reading station 110 and information processing system 115 as separate features, they are not required to be physically or functionally separate. For instance, information processing features could be integrated with parts of RFID reading station 110, such as an RFID reader. In general, the physical and functional implementation of system 100 can be partitioned arbitrarily between various forms of hardware, software, firmware, etc., as will be recognized by those skilled in the art.


In addition, the physical and functional implementation of system 100 can be distributed arbitrarily across multiple devices, systems, or network components. For example, in some embodiments, information processing system 115 may include or be integrated with wireless mobile devices in order to convey information remotely. One potential use of such a configuration would be to transmit kit notifications to remote users via push email or SMS text messaging, or subscription based data feeds. Such notifications could be used, for instance, to alert users that an updated kit is available, that a kit should be returned to the pharmacy, that a checked-out kit requires updates due to item expiration, and so on. Another potential reason to integrate information processing system 115 with remote components is to receive updates of kit templates and item master data. For example, some or all of a kit template or item master data may be received from an external system. The received item master data could indicate, for example, that an item has been recalled or changed in some material respect.



FIGS. 2A through 2C are diagrams illustrating a pharmacy kit according to an embodiment of the inventive concept. In particular, FIG. 2A shows an example of a kit tray comprising multiple items having RFID tags, FIG. 2B shows an example of a partial template associated with the kit, and FIG. 2C shows an example of a partial kit record for the kit. The kit of FIGS. 2A through 2C represents one example of pharmacy kit 105 shown in FIG. 1.


Referring to FIG. 2A, kit 105 comprises a container 205 and items 210. Container 205 is shown as a tray in FIG. 2A, but this is merely one example of a container that can be used to carry items 210. Alternative examples include boxes, canisters, bags, coolers, and various others. Although not shown in FIG. 2A, kit 105 could further comprise a cover, such as a lid, that can be used to enclose items 210 prior to deployment. Additionally, the cover can be sealed onto container 205 to prevent tampering between deployment and use of kit 105. In general, where kit 105 is susceptible to opening or closing (e.g., where it has a lid or other covering), it can be read in an open configuration or a closed configuration.


Items 210 typically include medicines or other medical supplies that may be stocked by a pharmacy. As shown in FIG. 2A, items 210 can have various different forms of packaging. For example, they can be packaged in vials, bags, boxes, bottles, and other forms. These different forms of packaging may also comprise different materials, such as glass, plastic, paper, cardboard, foam, or metal.


Due to the different types of packaging and materials, items 210 may be tagged with RFID tags having different shapes or types. As one example, RFID tags placed on metal bags may be subject to electromagnetic interference (EMI) from the metal. Accordingly, to prevent EMI, RFID tags connected to metal bags may have a foam backing or other form of insulation to create separation from the bags. Such tags may be referred to as metal-mount tags. As another example, RFID tags attached to small vials or bottles may potentially occlude label information on the vials. Accordingly, to prevent occlusion, RFID tags having a transparent adhesive portion may be attached to vials, bottles, or other types of packages. Such tags may be referred to as transparent tags.


Kit 105 is typically built by manually placing items 205 in container 210. This is typically accomplished by a pharmacist or other competent medical professional after items 205 have been labeled with RFID tags and stocked in the pharmacy. For example, a pharmacist may visit pharmacy shelves to collect items 205 and place them in container 210.


Referring to FIG. 2B, an example template defines items to be placed in kit 105. More specifically, the template defines a plurality of item segments (or “segments”) to be included in kit 105, where each item segment corresponds to a class or type of items and/or additional segments to be included in specific quantities. For instance, an item segment may define a specific class of medications, such as ibuprofen, acetaminophen, adenosine, or albuterol. Where a segment includes one or more additional segments, the template is considered to have multiple segment “levels”. In general, a template can have an arbitrary number of segment levels. An example of a template having multiple segment levels would be one containing a segment “analgesic”, with the item “morphine” and a sub-segment “ibuprofen” containing items “Advil” and “Generic”.


For simplicity, FIG. 2B shows example segments in generic form, i.e., “medicine bottle 1”, “medicine vial 2”, etc. The segment “medicine bottle 1”, for example, indicates that kit 105 is to include one or more bottles of a first type of medicine (e.g., a bottle of ibuprofen). Similarly, the segment “medicine vial 2” indicates that kit 105 is to include one or more vials of a second type of medicine (e.g., a vial of adenosine), and so on. Although each segment in FIG. 2B is associated with a particular type of packaging, such as a bottle, vial, or bag, segments are not necessarily limited by package type. For instance, a segment could be defined more broadly based on medicine type alone.


The template further defines a set of permissible items that can be used to satisfy each segment. The permissible items may correspond to different brands or other forms of each item corresponding to the segment. These items are generally identifiable by distinct NDC or UPC identifiers. As an example, a segment defined as a “bottle of ibuprofen” may be satisfied by a either a bottle of Advil or a bottle of generic ibuprofen. For simplicity, FIG. 2B shows the items associated with each segment in generic form, i.e., “product A”, “product B”, etc. Accordingly, the segment “medicine bottle 1” may be satisfied by two different products “A” and “B”, the segment “medicine vial 2” may be satisfied by three different products “C”, “D”, and “E”, and so on.


The template still further defines a quantity of items to be included in kit 105 for each segment. For example, based on the template of FIG. 2B, kit 105 is to include one item corresponding to “medicine bottle 1” (e.g., one bottle of ibuprofen), three items corresponding to “medicine vial 2”, two items corresponding to “medicine bag 3”, and so on. As a more concrete example, a segment “Pain Medication” could have permissible items “Tylenol” or “Advil”, with a quantity of two, which could be satisfied by two bottles of Tylenol, two bottles of Advil, or one of each, for instance.


In general, the quantity can be zero or more. Where the quantity is greater than one, each item of a particular segment can be satisfied by any combination of the permissible items for that segment. For example, if there are three permissible items and the required quantity is three, the requirement may be satisfied by three of the same permissible item, one of each, etc. For instance, some kits may allow the stock of adenosine vials to be satisfied by different product brands. Alternatively, the template may require that multiple instances of the same item be selected, or that only certain combinations of items are permitted. Moreover, the template may include restrictions on the items that can be included in combination from among different segments.


Although the template determines the contents to be included in the kit under most circumstances, there are occasions where deviation from the template will be permitted. One of these occasions is a national shortage of one or more items to be included in the kit. When there is a national shortage of a particular item, certain substitutions or omissions of the item may be allowed. For example, if sodium bicarbonate is on national shortage, a kit may be permitted to include a suitable substitute for sodium bicarbonate, or it may be permitted to be deployed without sodium bicarbonate or any substitute.


The procedure for managing items under shortage may be defined in a variety of ways. For example, allowable substitutes for national shortage conditions may be embedded in the template itself and then triggered by information processing system 115 when a shortage arises. As an alternative example, information processing system 115 may simply ignore certain restrictions in a template when a shortage arises.


Referring to FIG. 2C, a kit record comprises information regarding the contents of a kit that has been built in a pharmacy and verified through the use of RFID reading station 110. In the example of FIG. 2C, the information comprises the name of each segment in the kit, and specific details of each item in each segment. The specific item details include a brand name, an item name, an NDC identifier, a lot number, medicine strength or concentration, and an expiration date. The item details may further include information indicating whether an item has a fixed expiration date or one that varies based on time away from a refrigerator. Where the item has a variable expiration date, the item details may indicate whether the item has been removed from the refrigerator, and if so, at what time or date.


The kit record is typically generated by RFID reading station 110 or information processing system 115 upon verifying or re-verifying the kit. It can then be compared to a corresponding template to determine whether the kit has missing or expired items, or it can be stored in information processing system 115 for subsequent comparisons, updates, or analyses.



FIGS. 3A and 3B are diagrams of RFID reading station 110 of FIG. 1 according to an embodiment of the inventive concept. In particular, FIG. 3A is a block diagram illustrating electronic equipment associated with RFID reading station 110 according to an example embodiment, and FIG. 3B is a schematic diagram of a container configured to receive kit 105 during a read operation of RFID reading station 110.


Referring to FIG. 3A, RFID reading station 110 comprises an RFID reader 305 and an antenna 310. Antenna 310 is located within a container 315 designed to receive kit 105 during a read operation. RFID reader 305 controls antenna 310 to communicate with RFID tags associated with items of kit 105, as well as any RFID tag associated with the kit itself. In addition, RFID reader 305 receives and processes communications received by antenna 310 from kit 105. Although RFID reader 305 is shown outside of container 315, it could alternatively be included within container 315. Moreover, although RFID reader 305 and antenna 310 are shown as two separate components, they could alternatively be integrated into a single component or divided into additional components.


In a typical read operation, RFID reader 305 controls antenna 310 to interrogate any RFID tags within container 315. In response to the interrogation, the RFID tags communicate information to RFID reader 305 via antenna 310. The communicated information is typically associated with corresponding information stored in a database, such as NDC identifiers, lot numbers, and expiration dates for individual items, and a kit identifier for the kit as a whole. RFID reader 305 communicates the received information to information processing system 115 for storage and/or comparison with a template.


Referring to FIG. 3B, container 315 comprises an enclosed space for receiving kit 105. The left side of FIG. 3B shows container 315 with doors opened to receive kit 105, and the right side of FIG. 3B shows container 315 with doors closed to perform a read operation. The use of an enclosed space to allows RFID tags to be read without interference from objects in the surrounding environment, such as false positives from RFID tags on items not belonging to kit 105. Accordingly, container 315 may be formed of a material designed to provide electromagnetic shielding, such as a metal box.


In some embodiments, RFID reading station 110 is restricted to receiving only one kit at a time. This restriction may be imposed in a variety of ways, for instance, by configuring an enclosure to accommodate only one kit container or interrogating kit tags prior to scanning to ensure that no more than one kit tag is present. In certain alternative embodiments, RFID reading station 110 may be specifically configured to allow concurrent scanning of multiple kits. For example, two kits could be placed in RFID reading station 110, scanned concurrently, and then assigned to a common location or person, such as a particular cart, room, physician, etc. Moreover, such a common assignment may be recorded in information processing system 115 to allow joint analysis or tracking of more than one kit.



FIG. 4 is a diagram of information processing system 115 according to an embodiment of the inventive concept. In the embodiment of FIG. 4, various features of information processing system 115 are connected in a networked configuration. However, in alternative embodiments these components could be in alternative configurations, e.g., with components directly connected, physically integrated, or functionally partitioned in other ways.


Referring to FIG. 4, information processing system 115 comprises a computer 405 and a server 420. Computer 405 and server 420 are connected to each other via the internet 415, and computer 405 is connected to an RFID reader, a bar code reader, and an RFID printer through a local area network (LAN) 435.


Computer 405 comprises a browser 410 that receives kit information from the RFID reader via LAN 435 and communicates with server 420 through the internet 415. Server 420 stores templates 425, which typically include kit master templates and item master templates. Server 420 also stores records 430, which include information regarding individual kits and items.


Although server 420 is shown as a single unit in FIG. 4, it may comprise more than one device, such as multiple local and/or central computers. In addition, although server 420 is shown to be connected with a single computer, it may be connected to additional or alternative devices, such as other local computers, mobile devices, and so on. Moreover, although server 420 is shown to receive information from a single RFID reader, it could also receive information from other RFID readers. For example, information processing system could be connected to multiple RFID reading stations through the internet 415.


The RFID printer can be used to print RFID tags automatically when a kit is being built or updated. For example, an RFID tag can be printed for a new item by scanning the item's bar code using a bar code scanner connected to computer 405, accessing server 420 to associate a particular RFID tag with the item, and then printing the RFID tag.



FIG. 5 is a flowchart illustrating a method of managing pharmacy kits according to an embodiment of the inventive concept. The method of FIG. 5 is typically performed by a pharmacist or other medical professional associated with a hospital pharmacy. For explanation purposes, it will be assumed that the method of FIG. 5 is performed using system 100 of FIG. 1. However, the method is not limited to a particular system. In the description that follows, example method steps will be indicated by parentheses (XXX) to distinguish them from device or system components.


Referring to FIG. 5, the method begins with a pharmacy receiving and processing kit items (505). The items typically arrive in bulk at the pharmacy and are processed by tagging them with RFID tags and recording them in an inventory system. Next, a kit is built from tagged items in the pharmacy inventory (510), and the kit is scanned using RFID reading station 110 (515). The scan detects RFID tags of kit items and the kit itself and transmits corresponding information to information processing system 115.


Information processing system 115 updates stored records to reflect the scanning (520). In the update, a database in information processing system 115 is updated to reflect the scanned kit contents. For example, the database may be updated to reflect the presence of any new or replaced items, along with their expiration dates. The database may also be updated with other information, such as the name of the person who last modified the kit contents, a location to which the kit is to be deployed, a patient to be billed for consumption of kit items, and so on.


Based on the updated records, information processing system 115 performs a status check to verify the contents of the kit (525). The status check typically involves forming a list of items based on the transmitted information or updated records and comparing the list against a kit template. It may also involve comparing the updated kit information against information obtained in prior scans, or evaluating the kit information in light of certain business rules, such as billing protocols.


If the status check indicates a deficiency in the kit (525=“Deficiency”), such as missing or expired items, the kit contents are updated (530), and the method returns to step 515 where the kit is re-scanned. The update can be performed, for example, by replacing any expired items or inserting missing items. Otherwise, if the status check indicates no deficiency in the kit (525=“No Deficiency”), the kit is deployed for use in the hospital or other facility served by the pharmacy (535).


The updating of records and status check are typically performed any time the kit is scanned, as indicated by the flow of FIG. 5. This can take place under a variety of circumstances, such as when a kit is first built and verified, when the kit is checked-in to the pharmacy for storage, or when the kit is checked-out of the pharmacy for use.


Deployment of the kit may involve, for example, transporting it to a specific location of the hospital, checking it out to a particular individual, or merely storing it within the pharmacy. Following deployment, steps 515 through 535 may be repeated any number of times as needed. For example, the kit may be re-scanned and updated following each use or it may be periodically updated at specified times, such as daily, weekly, or whenever an expired item is noted in information processing system 115.



FIG. 6 is a flowchart illustrating a method of receiving and processing items for a pharmacy kit according to an embodiment of the inventive concept. The method of FIG. 6 is an example of step 505 of FIG. 5.


Referring to FIG. 6, items arrive at a facility (e.g., a hospital) from a third party manufacturer, distributor, or supplier (605). In some circumstances, the items may have RFID tags when they arrive at the facility. Accordingly, system 100 may scan the items and look up item information from the third party or an additional third party. Such information may include, for example, item master data, item lot data, and item expiration dates. If the items are not already tagged, item information may be entered into system 100 using a bar code scanner as described above, or by manual user input (610).


Based on the item information, system 100 determines whether each item requires a first type of tag (illustrated as type “A”) or a second type of tag (illustrated as item type “B”) (615). This determination is typically performed based on the type of the item or its packaging. For example, items having metal packaging such as metal bag, etc., may require an RFID tag having a thicker insulation layer (e.g., foam) to prevent it from experiencing EMI from the metal. Other types of items, such as glass or plastic packages, may not require such an RFID tag. Although the method of FIG. 6 shows an example using two different tag types, the described method is not limited to two tag types, and could be performed with additional tag types. Following the determination of the tag type, system 100 creates the first type of tag (620) or the second type of tag (625).


In creating the tags, system 100 may optionally perform automatic detection of whether it is attached to an RFID printer. If such an attachment is detected, it may control the RFID printer to print an RFID tag having a unique identifier for each item in the kit. Otherwise, a user may manually enter a unique tag identifier for each item into system 100. The manually entered identifiers can be determined, for example, based on the labeling of already printed RFID tags.


Next, system 100 associates the unique identifiers with the stored item information (630), allowing the item information to be retrieved subsequently when the RFID tags are scanned. Finally, the RFID tags are attached to corresponding items (635).



FIG. 7 is a flowchart illustrating a method of building a pharmacy kit according to an embodiment of the inventive concept. The method of FIG. 7 is an example of step 510 of FIG. 5.


Referring to FIG. 7, the method comprises inserting tagged items into a container (705), generating an RFID tag for the kit (710), and applying the RFID tag to the kit (715). The method may further comprise sealing the kit; however, the sealing is typically performed after the kit has been scanned. Where system 100 is connected to an RFID printer, the kit's RFID tag can be generated using the printer, similar to the method of FIG. 6. Otherwise, a preprinted RFID tag can be used, and the tag's number can be manually entered into system 100 as in the method of FIG. 6. The sealing can be performed, for example, using a shrink wrap material, an adhesive, a sticker, or various other known techniques. In general, the term seal or sealing, as used herein, should not be construed in an overly formal sense—for example, it does not require an airtight seal—but rather it merely refers to a mechanism for ensuring that the contents of the kit are not tampered with as long as a seal remains in place or unbroken. Moreover, some seals used in conjunction with RFID technology may allow RFID based detection of whether a seal is broken.



FIGS. 8A and 8B are flowcharts illustrating methods of operating kit management system 100 according to an embodiment of the inventive concept. In particular, FIG. 8A shows a method that can be used to implement step 515 of FIG. 5, and FIG. 8B shows a method that can be used to implement parts of the method of FIG. 8A.


Referring to FIG. 8A, a user or sensor initiates an RFID read operation (805). This can be accomplished, for instance, by merely placing kit 105 in RFID reading station 115, or by actuating specific controls on a user interface. In the read operation, RFID reader 305 powers antennas of RFID tags in kit 105, and it reads item tags and a kit tag, if present (810). The read operation may be used to perform an initial inventory of kit 105 following its assembly, or it can used for a re-inventory following use. Next, tag data is sent to a server in information processing system 115 or elsewhere (815). Finally, the server reports information to a user via an interface such as a computer display or a computer-generated printout (820).


Referring to FIG. 8B, steps 805 and 815 can be performed through the use of a web interface such as a web browser. For example, in some embodiments, a user directs a computer to request a web page from a server (825). This is typically accomplished through a web browser and it can be done in an encrypted or non-encrypted manner. For instance, the computer can communicate with the server using an encrypted protocol such as the secure sockets layer (SSL) protocol.


Next, the server returns instructions on how to scan which could take the form of a link allowing control of the RFID reader (830). In the example using a link, the user clicks on the link to start a read operation, and the RFID reader then captures tag information from kit 105 and transmits it to the computer (835). Finally, the computer relays the tag information to the server for validation, storage, and/or other forms of processing (840).


The server typically stores kit-related information such as master templates, item master templates, and information regarding individual kits and items, as in the example of FIG. 4. This information can be compared with the tag information relayed to the server in step 840, and then based on the comparison the server may generate a report on the status of the kit, such as whether any items are absent or whether any items have been erroneously included in the kit. The report may also include information relating to the expiration status of the items in kit 105, such as whether the items are expired or near expiration, or a summary of the expiration status of a set of items or the kit as a whole. The report may also include a charge sheet including the status of each item, such as its expiration date, which items have expired, which items are about to expire, and which item is going to expire next. In general, the information included in the report may be data that was read from a kit, item, or other source, or it may be data that was calculated based on rules, inputs, or other criteria.



FIG. 9 shows an interface 900 that can be used to control system 100 according to an embodiment of the inventive concept. For example, interface 900 can be used to control various aspects of the methods illustrated in FIGS. 5 through 8. Interface 900 is typically accessed through a display connected to a computer or server such as those illustrated in FIG. 4.


Referring to FIG. 9, interface 900 comprises interactive graphical user interface (GUI) components including a menu bar 905 and buttons 910 through 925. These features allow a user to initiate various kit-related procedures, such as scanning a kit that has been placed in an RFID reading station, generating reports based on kit information, printing RFID tags for a kit, and performing administrative tasks. For example, a user may press button 910 (or alternatively, a scan button in menu bar 905) to initiate a read operation of RFID reading station 110 after kit 105 has been placed in a designated reading location such as a metal box. The user may press button 915 to generate a report comprising information similar to that illustrated in FIG. 2C. The user may press button 920 to initiate a procedure for capturing item information and printing RFID tags. Finally, the user may press button 925 to access various administrative controls for system 100 or interface 900.



FIG. 10 shows a report 1000 generated for a pharmacy kit using system 100 according to an embodiment of the inventive concept. Report 1000 corresponds to a pediatric emergency drug tray, which is a type of kit comprising items used for common pediatric emergencies. Such a kit can be deployed to a hospital emergency room, for example.


Referring to FIG. 10, report 1000 comprises a portion 1005 indicating the type of kit for which the report was generated, as well as the total number of items in the kit. In this example, the kit comprises 51 total items. Report 1000 further comprises a portion 1010 indicating the number of extra and missing items in the kit, as well as the number of expired or soon to expire items. In this example, one item is missing and two items are near expiration. The soon-to-expire items are listed as two containers of Procainamide Hydrochloride, which expire on Oct. 1, 2012. The date range of soon-to-expire items can be set arbitrarily, for example, using administrative tools accessible through button 925 in interface 900. Nevertheless, the date range is typically established in consideration of factors such as the anticipated delay between deployment of the kit and its use, as well as any regulatory considerations, such as rules from the board-of-pharmacy requirements or the joint commission (TJC).


Report 1000 also includes a portion 1015 indicating the date of a most recent scan, a portion 1020 showing additional details for the soon-to-expire items, and a portion 1025 showing additional details for missing items.



FIG. 11 shows another report 1100 generated for a pharmacy kit using system 100 according to an embodiment of the inventive concept. Report 1100 corresponds to a demonstration kit, which is a type of kit comprising items used for common pediatric emergencies. Such a kit can be deployed to a hospital emergency room, for example.


Report 1100 comprises a portion 1105 indicating the type of the kit and the total number of items in the kit. In this example, the kit comprises 26 total items. Report 1100 further comprises a portion 1010 indicating the number of extra and missing items in the kit, an entity to be billed for used items, and the number of expired or soon to expire items. In this example, there are two extra items, one expired item, and one soon-to-expire item. The entity to be billed is listed as KRE1981. The expired item is a box of Protopic, which is listed as having expired on Sep. 28, 2012.


Report 1100 further comprises a portion 1115 indicating the date of a most recent scan, a portion 1120 showing additional details for the expired items, a portion 1125 showing additional details for the soon-to-expire items, and a portion 1130 showing additional details for the extra items. Report 1100 still further comprises a portion 1135 indicating a current location of the kit and providing a “check out” button for assigning the kit to a specific location or person. In this example, the kit is currently assigned to the location “Central Pharmacy”.



FIG. 12 shows an interface 1200 for checking out a kit to a user or location according to an embodiment of the inventive concept. Interface 1200 can be invoked, for instance, using the check out button in area 1135 of FIG. 11. In response to a user pressing the check out button, a dialog box 1205 appears within interface 1200. Dialog box 1205 allows a user to select a person or place to whom the kit may be assigned. This selection can be made, for example, as the kit is placed in possession of the selected person or an authorized delivery agent. Information regarding the selected person and location can then be stored in system 100 to facilitate subsequent recovery or further monitoring of the kit.



FIGS. 13A and 13B show interfaces 1300A and 1300B used to generate and view reports for pharmacy kits according to an embodiment of the inventive concept. In particular, FIG. 13A shows an example of an interface where a user has selected to view a report of kits that need re-working, and FIG. 13B shows an example of an interface where a user has selected to view a report of kits containing a specific lot number.


Referring to FIG. 13A, interface 1300A comprises a first area 1305A where a user selects a type of report to be generated. In this example, the user has selected from a drop down menu to generate a report of kits that need re-working. Once the selection is made the drop down menu, first area 1305A is further populated with options of details to include in the report. In this example, the options allow the user to select whether the report should include surplus items, shortages, expired items, expiring items, or all segments of the kit.


Interface 1300A further comprises a second area 1310A for displaying the report. According to the report in area 1310A, system 100 has information on two kits satisfying the specified options. In particular, a demo kit has a shortage of nasal spray, and it has a soon-to-expire container of Gentamicin Sulfate. A bandage kit has shortages of small, medium, and large bandages.


Referring to FIG. 13B, interface 1300B comprises a first area 1305B where a user selects the type of report to be generated. In this example, the user has selected from the drop down menu to generate a report of kits containing a specific item or lot number. Based on this selection, first area 1305B is populated with a form allowing the user to enter all or part of a lot number or other information for identifying the item. In the example of FIG. 13B, the user has entered a lot number.


Interface 1300B further comprises a second area 1310B for displaying the report. According to the report in area 1310B, a demo kit includes an item with the lot number specified in second area 1310A. Notably, in the example of FIG. 13B, only a partial lot number is entered first area 1310B, so second area 1310B displays information related to items that begin with the partial lot number. However, system 100 could be modified to use the exact lot number only. It could also be modified to use multiple lot numbers.


In addition to generating reports such as those illustrated in FIGS. 10 through 13, system 100 may also generate reports on kit locations. Such locations can be determined, for example, through automatic kit tracking or some other mechanism. Moreover, system 100 may also provide mechanisms for automatically tracking inventory in the kits and the usage of items based on usage data. For example, by analyzing usage data of different items, system 100 could determine the level inventory to meet minimum requirements of all kits in a facility or a target level of inventory to be maintained. For example, if a type of kit requires a bottle of ibuprofen and the facility has 20 kits of that type, the facility has a minimum requirement of 20 bottles of ibuprofen. If the facility uses 10 bottles of ibuprofen during a specified time (e.g., a month), system 100 could then estimate or predict when the facility will run out of the current stock of ibuprofen. Accordingly, system 100 can be used to predict where inventory shortages may occur and then alert relevant personnel of potential existing or upcoming inventory shortages.


System 100 may also automatically inventory items in pharmacy kits to determine where anything is missing, extra, expired, or near expired. This can reduce the chance of manual kit stocking errors or related medical errors in a hospital or other facility. System 100 may also automatically find items for recall in the hospital or emergency medical field kits.



FIGS. 14A through 14D are diagrams of a label 1400 that can be used to attach an RFID tag to various items of a pharmacy kit according to an embodiment of the inventive concept. In particular, FIG. 14A shows label 1400 in a configuration prior to use, and FIG. 14B shows label 1400 in a configuration for attachment to a pharmaceutical item. FIG. 14C shows an example of label 1400 with example dimensions and an embedded RFID device 1435, and FIG. 14D shows label 1400 in the context of a printable roll.


Label 1400 is designed such that it can be securely attached to different types of items in a pharmacy kit without occluding labeling information. For example, label 1400 can be used in such a way that it hangs off the side of a vial, ampule, or other product where it may be inappropriate to place the main portion of the label directly on the product or product packaging. Alternatively, label 1400 can be attached to an item such that it does not hang off the side. A configuration where a portion of label 1400 hangs off the side of an item will be referred to as a “flagged” configuration.


Referring to FIG. 14A, label 1400 comprises a first portion 1405 having a printed portion 1410 and a flap portion 1415 separated by a perforation indicated by a dotted line. Label 1400 further comprises a second portion 1420 having a tail 1425 attached to first portion 1405, and a backing 1430 designed to be removed when tail 1425 is adhered to an item.


First and second portions 1405 and 1420 both have an adhesive backing. Accordingly, where label 1400 is used in the flagged configuration, adhesive backing portions of printed portion 1410 and flap portion 1415 may be folded together along the perforation to prevent them from sticking to other objects. Where label 1400 is not used in the flagged configuration (e.g., when it is attached to a boxed item), first and second portions 1405 and 1420 may both be adhered to an item. Moreover, where label 1400 is not used in the flagged configuration, flap portion 1415 may be removed by detaching it from printed portion 1410 along the perforation.


Printed portion 1410 and flap portion 1415 are typically formed with a substrate material comprising a common labeling material such as paper or plastic. Printed portion 1410 further comprises an embedded RFID device attached to the substrate. An example of such an RFID device is shown by RFID device 1435 in FIG. 14C. The substrate material can be printed with identifying information for an item. Among the printed information, there may be a bar code for backward compatibility, or human-readable information related to the item or label 1400. The RFID device can be encoded with identifying information through RFID printing.


The adhesive side of tail 1425 can be used to attach label 1400 to a kit item. Prior to use, the adhesive side is attached to backing 1430. Tail 1425 is typically formed of a transparent material to avoid obscuring information on the items in a kit. In general, when labeling medical items such as pharmaceuticals, it is important not to obscure labels, warnings, and other information on the packaging. The use of a transparent tail 1425 avoids this problem by allowing the user to see through any portion of the tail that may be attached to an item. Moreover, the shape of tail 1425 and allows an RFID tag to be attached to and/or hang off items having various different types of packaging. As examples, tail 1425 can be wrapped around a vial or ampule while allowing first portion 1405 to hang off. Similarly, it can be attached to a face of a box or a panel of a bag.


As alternatives to the example of FIG. 14A, the size of the tail may vary, and the perforated portion may be omitted. The tail size, for example, may be at least as large as the printable labeling portion.


Referring to FIG. 14B, label 1400 is shown in a configuration used to attach it to an item, which is illustrated conceptually by a dotted rectangle. When label 1400 is attached to the item, flap portion 1415 is adhered over printed portion 1410, and tail 1425 is adhered to the item while first portion 1405 hangs off of it.


Referring to FIG. 14C, label 1400 may have example dimensions as shown. However, these dimensions may vary in alternative embodiments. In addition, label 1400 may comprise RFID 1435 as shown, although other devices or device configurations can be used in alternative embodiments.


Referring to FIG. 14D, label 1400 is shown in the context of a roll comprising successive printable labels that can be fed into an RFID printer. In particular, label 1400 is shown as a second label among three successive labels “label 1”, “label 2”, and “label 3”. These labels are separated from each other by a small gap having a vertical sense mark used for alignment with an RFID printer.


The foregoing is illustrative of embodiments and is not to be construed as limiting thereof. Although a few embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the embodiments without materially departing from the novel teachings and advantages of the inventive concept. Accordingly, all such modifications are intended to be included within the scope of the inventive concept as defined in the claims.

Claims
  • 1. A system for managing pharmacy items, the system comprising one or more processors configured to: receive a request for a location of one or more pharmacy kits comprising at least one of a pharmacy item that is expired or a pharmacy item that is subject to a recall,wherein each of the one or more pharmacy kits is a transportable container having a collection of pharmacy items for a common purpose that can be deployed for a specific medical procedure, for a specific physician, or to a designated location,wherein each of the one or more pharmacy kits comprises a plurality of pharmacy item containers configured to store the collection of pharmacy items, wherein an RFID tag is coupled to each of the plurality of pharmacy item containers;search pharmacy item data stored in a non-transitory computer-readable medium, wherein the pharmacy item data indicates an association between the plurality of pharmacy item containers and the plurality of RFID tags, and wherein the pharmacy item data comprises: at least one of a pharmacy item container identifier or a pharmacy item identifier for each of the plurality of pharmacy item containers,a location identifier for each the plurality of pharmacy item containers, anda unique identifier for each of the plurality of RFID tags;identify, based at least in part on the search, one or more locations of the one or more pharmacy kits based at least in part on a location of each of the one or more pharmacy item containers of the plurality of pharmacy item containers that store the at least one of the pharmacy item that is expired or the pharmacy item that is subject to a recall; andgenerate a report indicating the one or more locations of the one or more pharmacy kits.
  • 2. The system of claim 1, wherein the one or more processors are further configured to: based at least in part on receipt of the request, cause a plurality of RFID reading stations to scan a different set of RFID tags of the plurality of RFID tags, wherein each RFID reading station of the plurality of RFID reading stations comprises an RFID reader and an antenna, wherein the antenna is configured to interrogate RFID tags to receive tag data;receive location data corresponding to at least one of a location of a particular RFID reading station or a location of an interrogated RFID tag;receive the tag data, wherein the tag data comprises data indicative of the unique identifier for each of the interrogated RFID tags; andupdate at least some of the pharmacy item data stored on the non-transitory computer-readable medium based on at least one of the location data or the tag data.
  • 3. The system of claim 1, wherein the pharmacy item data further comprises an expiration identifier associated with each pharmacy item container, wherein the expiration identifier is indicative of an expiration date of the pharmacy item stored in a particular pharmacy item container.
  • 4. The system of claim 1, wherein to identify the one or more locations, the one or more processors are further configured to determine that a date associated with each expiration identifier is later than a particular date.
  • 5. The system of claim 1, wherein the one or more processors are further configured to identify a set of recalled pharmacy items.
  • 6. A method for managing pharmacy items, the method comprising: receiving a request for a location of one or more pharmacy items that are expired or subject to recall;identifying, from pharmacy item data stored in a non-transitory computer-readable medium, a group of pharmacy item containers that include at least one of a pharmacy item that is expired or a pharmacy item that is subject to recall, wherein the group of pharmacy item containers is part of a collection of pharmacy item containers, wherein the collection of pharmacy item containers comprises a plurality of pharmacy items, wherein an RFID tag is coupled to each pharmacy item container of the collection of pharmacy item containers, wherein the pharmacy item data associates the collection of pharmacy item containers with the plurality of RFID tags;identifying, from the pharmacy item data, a location of one or more pharmacy kits that include one or more pharmacy item containers of the group of pharmacy item containers, wherein the one or more pharmacy kits are part of a collection of pharmacy kits, wherein each pharmacy kit of the collection of pharmacy kits is a transportable container having a collection of pharmacy items for a common purpose that can be deployed for a specific medical procedure, for a specific physician, or to a designated location, wherein the pharmacy item data associates the collection of pharmacy kits with the collection of pharmacy item containers, and wherein the pharmacy item data indicates locations of the collection of pharmacy kits; andgenerating a report indicating the location of each of the one or more pharmacy kits.
  • 7. The method of claim 6, further comprising: based at least in part on receipt of the request, causing two or more RFID reading stations to scan a different set of RFID tags of the plurality of RFID tags, wherein each RFID reading station of the two or more RFID reading stations comprises an RFID reader and an antenna, wherein the antenna is configured to interrogate RFID tags to receive tag data;receiving location data corresponding to at least one of a location of a particular RFID reading station or a location of an interrogated RFID tag;receiving the tag data, wherein the tag data comprises data indicative of a unique identifier for each of the interrogated RFID tags; andupdating at least some of the pharmacy item data stored on the non-transitory computer-readable medium based on the location data or the tag data.
  • 8. The method of claim 6, wherein the pharmacy item data further comprises expiration identifiers associated with each pharmacy item container, wherein a particular expiration identifier corresponding to a particular pharmacy item container is indicative of an expiration date of a pharmacy item stored in the particular pharmacy item container.
  • 9. The method of claim 6, further comprising identifying a set of recalled pharmacy items.
  • 10. The method of claim 6, wherein said receiving the request for the location of one or more pharmacy items that are expired or subject to recall comprises receiving a request for a location of a pharmacy item that is expired.
  • 11. The method of claim 6, said receiving the request for the location of one or more pharmacy items that are expired or subject to recall comprises receiving a request for a location of a pharmacy item that is subject to the recall.
  • 12. The method of claim 6, wherein the pharmacy item data further comprises at least one of a brand name, an item name, an NDC identifier, a lot number, medicine strength, medicine concentration, or an expiration date corresponding to each pharmacy item stored in the plurality of pharmacy item containers.
  • 13. The system of claim 1, wherein the pharmacy item data further comprises at least one of a brand name, an item name, an NDC identifier, a lot number, medicine strength, medicine concentration, or an expiration date corresponding to each pharmacy item stored in the plurality of pharmacy item containers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/701,958, filed on May 1, 2015, which is a continuation of U.S. patent application Ser. No. 14/603,730, filed on Jan. 23, 2015, now U.S. Pat. No. 9,058,412, issued on Jun. 16, 2015, which is a continuation of U.S. patent application Ser. No. 13/554,342, filed on Jul. 20, 2012, now U.S. Pat. No. 8,990,099, issued on Mar. 24, 2015, which claims priority to U.S. Provisional Application No. 61/514,231, filed on Aug. 2, 2011, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (397)
Number Name Date Kind
4884827 Kelley Dec 1989 A
5713485 Liff et al. Feb 1998 A
5930145 Yuyama et al. Jul 1999 A
5963134 Bowers et al. Oct 1999 A
5986662 Argiro et al. Nov 1999 A
6112502 Frederick et al. Sep 2000 A
6249299 Tainer Jun 2001 B1
6275157 Mays et al. Aug 2001 B1
6294999 Yarin et al. Sep 2001 B1
6330351 Yasunaga Dec 2001 B1
6574166 Niemiec Jun 2003 B2
6632619 Harrison et al. Oct 2003 B1
6771369 Rzasa et al. Aug 2004 B2
6825864 Botten et al. Nov 2004 B2
6847861 Lunak et al. Jan 2005 B2
6851615 Jones Feb 2005 B2
6861954 Levin Mar 2005 B2
6877658 Raistrick et al. Apr 2005 B2
6879876 O'Dougherty et al. Apr 2005 B2
6900021 Harrison et al. May 2005 B1
6933849 Sawyer Aug 2005 B2
6935560 Andreasson et al. Aug 2005 B2
6952681 McQuade et al. Oct 2005 B2
6985870 Martucci et al. Jan 2006 B2
6992574 Aupperle et al. Jan 2006 B2
6994249 Peterka et al. Feb 2006 B2
7036729 Chung May 2006 B2
7061831 De La Huerga Jun 2006 B2
7111780 Broussard et al. Sep 2006 B2
7116343 Botten et al. Oct 2006 B2
7118029 Nycz et al. Oct 2006 B2
7140542 Andreasson et al. Nov 2006 B2
7146247 Kirsch et al. Dec 2006 B2
7151456 Godfrey Dec 2006 B2
7158030 Chung Jan 2007 B2
7165077 Kalies Jan 2007 B2
7175081 Andreasson et al. Feb 2007 B2
7177721 Kirsch et al. Feb 2007 B2
7178729 Shaffer et al. Feb 2007 B2
7182256 Andreasson et al. Feb 2007 B2
7212100 Terenna May 2007 B2
7212127 Jacober et al. May 2007 B2
7227469 Varner et al. Jun 2007 B2
7232066 Andreasson et al. Jun 2007 B2
7253736 Tethrake et al. Aug 2007 B2
7256699 Tethrake et al. Aug 2007 B2
7263501 Tirinato et al. Aug 2007 B2
7264323 Tainer et al. Sep 2007 B2
7268684 Tethrake et al. Sep 2007 B2
7275645 Mallett et al. Oct 2007 B2
7299981 Hickle et al. Nov 2007 B2
7316231 Hickle Jan 2008 B2
7317393 Maloney Jan 2008 B2
7318529 Mallett et al. Jan 2008 B2
7339550 Hayama et al. Mar 2008 B2
7341147 Mallett et al. Mar 2008 B2
7348884 Higham Mar 2008 B2
7354884 Hada et al. Apr 2008 B2
7362228 Nycz et al. Apr 2008 B2
7375737 Botten et al. May 2008 B2
7394383 Hager et al. Jul 2008 B2
7440818 Handfield et al. Oct 2008 B2
7446747 Youngblood et al. Nov 2008 B2
7454880 Austin et al. Nov 2008 B1
7486188 Van Alstyne Feb 2009 B2
7492257 Tethrake et al. Feb 2009 B2
7492261 Cambre et al. Feb 2009 B2
7504954 Spaeder Mar 2009 B2
7518502 Austin et al. Apr 2009 B2
7518516 Azevedo et al. Apr 2009 B2
7551089 Sawyer Jun 2009 B2
7559483 Hickle et al. Jul 2009 B2
7564364 Zweig Jul 2009 B2
7630791 Nguyen et al. Dec 2009 B2
7639136 Wass Dec 2009 B1
7644016 Nycz et al. Jan 2010 B2
7672872 Shanton Mar 2010 B2
7706915 Mohapatra et al. Apr 2010 B2
7706916 Hilton Apr 2010 B2
7712670 Sauerwein, Jr. et al. May 2010 B2
7715277 De La Huerga May 2010 B2
7729597 Wright et al. Jun 2010 B2
7734157 Wright et al. Jun 2010 B2
7737858 Matityaho Jun 2010 B2
7747477 Louie et al. Jun 2010 B1
7752085 Monroe Jul 2010 B2
7772964 Tethrake et al. Aug 2010 B2
7775056 Lowenstein Aug 2010 B2
7783163 Wright et al. Aug 2010 B2
7783174 Wright et al. Aug 2010 B2
7801422 Wright et al. Sep 2010 B2
7815117 Tuschel et al. Oct 2010 B2
7834765 Sawyer Nov 2010 B2
7834766 Sawyer Nov 2010 B2
7837093 Leu et al. Nov 2010 B1
7837107 Leu et al. Nov 2010 B1
7858841 Krautkramer et al. Dec 2010 B2
7860730 Goodall et al. Dec 2010 B1
7868754 Salvat, Jr. Jan 2011 B2
7893876 Brown et al. Feb 2011 B2
7908030 Handfield et al. Mar 2011 B2
7918830 Langan et al. Apr 2011 B2
7928844 Mackenzie Apr 2011 B2
7933033 Ohishi et al. Apr 2011 B2
7976508 Hoag Jul 2011 B2
7985711 Tohmatsu et al. Jul 2011 B2
7990272 Wass et al. Aug 2011 B2
7996286 Kreiner et al. Aug 2011 B2
8002174 Coyne, III et al. Aug 2011 B2
8006903 Braun et al. Aug 2011 B2
8009913 Greyshock Aug 2011 B2
8031347 Edwards et al. Oct 2011 B2
8042738 Cloix Oct 2011 B2
8049627 Addante Nov 2011 B1
8063925 Tainer et al. Nov 2011 B2
8065858 Leu et al. Nov 2011 B2
8072635 Roberts et al. Dec 2011 B2
8077041 Stern et al. Dec 2011 B2
8082192 Nycz et al. Dec 2011 B2
8099339 Pinsonneault et al. Jan 2012 B1
8108068 Boucher et al. Jan 2012 B1
8111159 Andreasson et al. Feb 2012 B2
8112175 Handfield et al. Feb 2012 B2
8131397 Vahlberg et al. Mar 2012 B2
8154390 Heath et al. Apr 2012 B2
8174392 Sagbhini et al. May 2012 B1
8186587 Zmood et al. May 2012 B2
8212677 Ferguson Jul 2012 B2
8219413 Martinez et al. Jul 2012 B2
8224483 Ansari et al. Jul 2012 B1
8231749 Dent et al. Jul 2012 B2
8258961 Phillips et al. Sep 2012 B2
8261939 Knoth Sep 2012 B2
8271128 Schultz Sep 2012 B1
8279069 Sawyer Oct 2012 B2
8283287 Aihara et al. Oct 2012 B2
8284059 Ross Oct 2012 B2
8285083 Canessa et al. Oct 2012 B2
8285607 Danilewitz Oct 2012 B2
8286222 Silverbrook et al. Oct 2012 B2
8292173 Yturralde et al. Oct 2012 B2
8292186 Deloche et al. Oct 2012 B2
8296950 Colbrunn et al. Oct 2012 B2
8313024 Marino Nov 2012 B2
8319607 Grimlund et al. Nov 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8339649 Ohishi et al. Dec 2012 B2
8341041 Hull Dec 2012 B2
8346632 Saghbini Jan 2013 B2
8355753 Bochenko et al. Jan 2013 B2
8355962 Delaney et al. Jan 2013 B2
8359338 Butterfield et al. Jan 2013 B2
8371448 Reaux Feb 2013 B1
8376228 DeVet et al. Feb 2013 B2
8384545 Hussain et al. Feb 2013 B2
8385972 Bochenko et al. Feb 2013 B2
8386070 Eliuk et al. Feb 2013 B2
8394053 Bochenko et al. Mar 2013 B2
8403212 van Esch Mar 2013 B2
8403224 Fedorko et al. Mar 2013 B2
8405508 Burke Mar 2013 B2
8438067 Omura et al. May 2013 B2
8461076 Okada et al. Jun 2013 B2
8483550 Wright et al. Jul 2013 B2
8509604 Wright et al. Aug 2013 B2
8515251 Wright et al. Aug 2013 B2
8519849 Ross-Messemer Aug 2013 B2
8530379 Shimizu et al. Sep 2013 B2
8564416 Steven et al. Oct 2013 B2
8565552 Sommer et al. Oct 2013 B2
8582171 Srnka et al. Nov 2013 B2
8593278 Churbock et al. Nov 2013 B2
8593678 Ohishi et al. Nov 2013 B2
D694817 Adam et al. Dec 2013 S
8606596 Bochenko et al. Dec 2013 B1
8636202 Keefe et al. Jan 2014 B2
8639525 Levine et al. Jan 2014 B2
8686859 Hussain et al. Apr 2014 B2
8699054 Edwards et al. Apr 2014 B2
8702674 Bochenko Apr 2014 B2
8723674 Conley et al. May 2014 B2
8749356 Hussain et al. Jun 2014 B2
8755056 Edwards et al. Jun 2014 B2
8825680 Burke et al. Sep 2014 B2
8893970 Keefe et al. Nov 2014 B2
8922435 Fontecchio et al. Dec 2014 B2
8935280 Bauman et al. Jan 2015 B2
8945066 Bochenko et al. Feb 2015 B2
8948478 Keefe et al. Feb 2015 B2
8985388 Ratnakar Mar 2015 B2
8990099 MacDonald et al. Mar 2015 B2
9037479 MacDonald et al. May 2015 B1
9058412 MacDonald et al. Jun 2015 B2
9058413 MacDonald et al. Jun 2015 B2
9058435 Keefe et al. Jun 2015 B2
9171280 Gitchell et al. Oct 2015 B2
9189769 Caputo et al. Nov 2015 B2
9367665 MacDonald et al. Jun 2016 B2
9449296 MacDonald et al. Sep 2016 B2
9539374 Halpern Jan 2017 B2
9582644 Gitchell et al. Feb 2017 B2
9734294 MacDonald et al. Aug 2017 B2
9805169 MacDonald et al. Oct 2017 B2
10609845 Elizondo, II Mar 2020 B2
10621394 Hussain et al. Apr 2020 B2
10643743 Caputo et al. May 2020 B2
10658077 Hussain et al. May 2020 B2
10658078 Caputo et al. May 2020 B2
10664740 Elizondo, II May 2020 B2
10930393 Gitchell et al. Feb 2021 B2
20020026330 Klein Feb 2002 A1
20020049650 Reff Apr 2002 A1
20020087360 Pettit Jul 2002 A1
20020087362 Cobb et al. Jul 2002 A1
20020087554 Seelinger Jul 2002 A1
20030055685 Cobb et al. Mar 2003 A1
20030074223 Hickle et al. Apr 2003 A1
20030102970 Creel et al. Jun 2003 A1
20030160698 Andreasson et al. Aug 2003 A1
20030216974 Browne Nov 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040032330 Hoffman Feb 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040057609 Weinberg Mar 2004 A1
20040081669 Greeven et al. Apr 2004 A1
20040158507 Meek et al. Aug 2004 A1
20040178071 Harrison et al. Sep 2004 A1
20040215486 Braverman Oct 2004 A1
20040225528 Brock Nov 2004 A1
20050014849 Pettit et al. Jan 2005 A1
20050060171 Molnar Mar 2005 A1
20050062603 Fuerst et al. Mar 2005 A1
20050108044 Koster May 2005 A1
20050125097 Chudy et al. Jun 2005 A1
20050127176 Dickinson Jun 2005 A1
20050149378 Cyr et al. Jul 2005 A1
20050149414 Schrodt et al. Jul 2005 A1
20050184151 DiMaggio et al. Aug 2005 A1
20050283259 Wolpow Dec 2005 A1
20050285732 Sengupta et al. Dec 2005 A1
20050285746 Sengupta et al. Dec 2005 A1
20060006999 Walczyk et al. Jan 2006 A1
20060043177 Nycz et al. Mar 2006 A1
20060043179 Nycz et al. Mar 2006 A1
20060065726 Andreasson et al. Mar 2006 A1
20060109105 Varner et al. May 2006 A1
20060132311 Kruest et al. Jun 2006 A1
20060145871 Donati et al. Jul 2006 A1
20060152338 Hsu Jul 2006 A1
20060152364 Walton Jul 2006 A1
20060152367 Narayanaswamy Jul 2006 A1
20060208886 Beamer Sep 2006 A1
20060267731 Chen Nov 2006 A1
20070001809 Kodukula et al. Jan 2007 A1
20070008399 Botten et al. Jan 2007 A1
20070023512 Miller et al. Feb 2007 A1
20070023513 Andreasson et al. Feb 2007 A1
20070074722 Giroux et al. Apr 2007 A1
20070114279 Lessing et al. May 2007 A1
20070150382 Danilewitz Jun 2007 A1
20070187475 MacLeod Aug 2007 A1
20070188306 Tethrake et al. Aug 2007 A1
20070200702 Chung Aug 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070213684 Hickle et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070272746 Ortiz et al. Nov 2007 A1
20080004908 Oh et al. Jan 2008 A1
20080012687 Rubinstein Jan 2008 A1
20080045930 Makin et al. Feb 2008 A1
20080046295 Albrecht Feb 2008 A1
20080094214 Azevedo et al. Apr 2008 A1
20080122878 Keefe et al. May 2008 A1
20080128482 Chen et al. Jun 2008 A1
20080129496 Koblasz Jun 2008 A1
20080150722 Jackson Jun 2008 A1
20080157967 Jones et al. Jul 2008 A1
20080172253 Chung et al. Jul 2008 A1
20080184719 Lowenstein Aug 2008 A1
20080191013 Liberatore Aug 2008 A1
20080218307 Schoettle Sep 2008 A1
20080228160 Harrison Sep 2008 A1
20080231456 Matityaho Sep 2008 A1
20080243088 Evans Oct 2008 A1
20080270178 McRae et al. Oct 2008 A1
20080296373 Smood et al. Dec 2008 A1
20080297356 Oberle Dec 2008 A1
20080306772 Shahrokh Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002173 Bergsten et al. Jan 2009 A1
20090020442 Dietrich et al. Jan 2009 A1
20090058653 Geissler et al. Mar 2009 A1
20090144087 Kelsch et al. Jun 2009 A1
20090153290 Bierach Jun 2009 A1
20090164042 Handfield et al. Jun 2009 A1
20090194987 Christie et al. Aug 2009 A1
20090224891 Vishik et al. Sep 2009 A1
20090231138 Cheung et al. Sep 2009 A1
20090267740 Pizzuto et al. Oct 2009 A1
20090267772 Dehnadi Oct 2009 A1
20090277815 Kohl Nov 2009 A1
20090294521 De La Huerga Dec 2009 A1
20100022953 Bochenko et al. Jan 2010 A1
20100022987 Bochenko Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100036678 Bray Feb 2010 A1
20100036755 Saghbini Feb 2010 A1
20100042439 Martinez et al. Feb 2010 A1
20100079337 Hsu et al. Apr 2010 A1
20100098425 Kewitsch Apr 2010 A1
20100108761 Nycz et al. May 2010 A1
20100114951 Bauman et al. May 2010 A1
20100185458 Calderwood et al. Jul 2010 A1
20100204659 Bochenko Aug 2010 A1
20100217621 Schoenberg et al. Aug 2010 A1
20100219097 Ramasubramanian et al. Sep 2010 A1
20100238039 Tethrake et al. Sep 2010 A1
20100268548 Garrett et al. Oct 2010 A1
20100275625 Lowenstein Nov 2010 A1
20100299158 Siegel Nov 2010 A1
20100328474 Hsieh Dec 2010 A1
20100332246 Fedorko et al. Dec 2010 A1
20110006879 Bartos Jan 2011 A1
20110063091 Kang Mar 2011 A1
20110068922 Ross Mar 2011 A1
20110112682 Matsukawa et al. May 2011 A1
20110115612 Kulinets et al. May 2011 A1
20110125315 Handfield et al. May 2011 A1
20110131056 Chudy et al. Jun 2011 A1
20110139871 Yturralde et al. Jun 2011 A1
20110161112 Keefe et al. Jun 2011 A1
20110163871 Einav et al. Jul 2011 A1
20110166878 Louie et al. Jul 2011 A1
20110184751 Holmes Jul 2011 A1
20110187549 Balasing Aug 2011 A1
20110225100 Sangal et al. Sep 2011 A1
20110227722 Salvat, Jr. Sep 2011 A1
20110240729 Schuck Oct 2011 A1
20110257991 Shukla Oct 2011 A1
20110270441 Handfield et al. Nov 2011 A1
20110291809 Niemiec et al. Dec 2011 A1
20110301446 Kamen Dec 2011 A1
20110313395 Krulevitch et al. Dec 2011 A1
20120037266 Bochenko Feb 2012 A1
20120041778 Kraft Feb 2012 A1
20120044054 Hussain et al. Feb 2012 A1
20120061463 Burke Mar 2012 A1
20120089411 Srnka et al. Apr 2012 A1
20120089418 Kamath et al. Apr 2012 A1
20120116798 Heath et al. May 2012 A1
20120125994 Heath et al. May 2012 A1
20120130534 Wurm May 2012 A1
20120173440 Becker et al. Jul 2012 A1
20120177256 Keefe et al. Jul 2012 A1
20120179132 Valk et al. Jul 2012 A1
20120185951 Bauman et al. Jul 2012 A1
20120209619 Knotts et al. Aug 2012 A1
20120240067 Bauman et al. Sep 2012 A1
20120273087 Einy et al. Nov 2012 A1
20120278096 Holness Nov 2012 A1
20120278228 Rubinstein Nov 2012 A1
20120323208 Bochenko et al. Dec 2012 A1
20120325330 Prince et al. Dec 2012 A1
20130018356 Prince et al. Jan 2013 A1
20130038452 Sawyer Feb 2013 A1
20130041784 Danilewitz Feb 2013 A1
20130092727 Edwards et al. Apr 2013 A1
20130105568 Jablonski et al. May 2013 A1
20130151005 Gerold et al. Jun 2013 A1
20130191149 Kolberg et al. Jul 2013 A1
20130221082 Botten Aug 2013 A1
20130221087 Keefe et al. Aug 2013 A1
20130225945 Prince et al. Aug 2013 A1
20130327822 Keefe et al. Dec 2013 A1
20140060729 Srnka et al. Mar 2014 A1
20140066880 Prince et al. Mar 2014 A1
20140117081 Jablonski et al. May 2014 A1
20140136229 Levine et al. May 2014 A1
20140142975 Keefe et al. May 2014 A1
20140184390 Elizondo, II Jul 2014 A1
20140184391 Elizondo, II Jul 2014 A1
20140197954 Caputo et al. Jul 2014 A1
20140210596 Hussain et al. Jul 2014 A1
20140262919 Hussain et al. Sep 2014 A1
20140263614 Keefe et al. Sep 2014 A1
20140276213 Bochenko Sep 2014 A1
20140282197 Keefe et al. Sep 2014 A1
20140291397 Caputo et al. Oct 2014 A1
20140367080 Hussain et al. Dec 2014 A1
20150058182 Kress-Spatz et al. Feb 2015 A1
20170132734 MacDonald et al. May 2017 A1
20170212993 Gitchell et al. Jul 2017 A1
20190088354 Yanowitz et al. Mar 2019 A1
20190272396 Clouser et al. Sep 2019 A1
20200013494 Caputo et al. Jan 2020 A1
20200167534 Elizondo, II May 2020 A1
20210043291 James et al. Feb 2021 A1
Foreign Referenced Citations (15)
Number Date Country
2 722 328 Oct 2009 CA
2 790 220 Jun 2013 CA
102791310 Dec 2014 CN
201204914 Oct 2013 IN
WO 02095675 Nov 2002 WO
WO 2006026246 Mar 2006 WO
WO 2006135830 Dec 2006 WO
WO 2010074781 Jul 2010 WO
WO 2011115676 Sep 2011 WO
WO 2011150013 Dec 2011 WO
WO 2013082423 Jun 2013 WO
WO 2013116873 Aug 2013 WO
WO 2013134256 Sep 2013 WO
WO 2014159928 Oct 2014 WO
WO 2014189834 Nov 2014 WO
Non-Patent Literature Citations (188)
Entry
“AmerisourceBergen Specialty Group Reconfigures Cubixx Medical Cabinet”, Jan. 9, 2011, pp. 2, https://web.archive.org/web/20180620192642/http://pharmaceuticalcommerce.com/supply-chain-logistics/amerisourcebergen-specialty-group-reconfigures-cubixx-medical-cabinet/.
Bacheldor, Beth, “ASD Healthcare Deploys RFID Refrigerated Drug Cabinets”, RFID Journal, Sep. 24, 2007, p. 1. http://www.rfidjournal.com/articles/view?3632.
Bacheldor, Beth, “Cardinal Health Readies Item-Level Pilot”, RFID Journal, May 31, 2006, p. 1. http://www.rfidjournal.com/articles/view?2380.
Bacheldor, Beth, “UCSD Medical Center Expands Its RFID Deployment”, RFID Journal, Oct. 29, 2008, pp. 2. http://www.rfidjournal.com/articles/view?4423.
Bacheldor, Beth, “UMass Med Center Finds Big Savings Through Tagging”, RFID Journal, Nov. 21, 2007, pp. 2. http://www.rfidjournal.com/articles/view?3763/2.
Becker et al., “SmartDrawer: RFID-Based Smart Medicine Drawer for Assistive Environments”, Conference: Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, PETRA 2009, Corfu, Greece, Jun. 9-13, 2009, pp. 8.
Bendavid et al., “Using RFID to Improve Hospital Supply Chain Management for High Value and Consignment Items”, Procedia Computer Science, vol. 5, 2011, pp. 849-856.
Bendavid et al., “Redesigning the Replenishment Process of Medical Supplies in Hospitals with RFID”, Business Process Management Journal, 2010, vol. 16, No. 6, pp. 991-1013.
Cangialosi et al., “Leveraging RFID in Hospitals: Patient Life Cycle and Mobility Perspectives”, IEEE Applications & Practice, Sep. 2007, pp. 18-23.
Chao et al., “Determining Technology Trends and Forecasts of RFID by a Historical Review and Bibliometric Analysis from 1991 to 2005”, Technovation, vol. 27, 2007, pp. 268-279.
“Data Gathering Developments”, Manufacturing Chemist, Feb. 1, 2005, p. 24. https://www.manufacturingchemist.com/news/article_page/Data_gathering_developments/35805.
Dutta et al., “RFID and Operations Management: Technology, Value, and Incentives”, Production and Operations Management (POMS), vol. 16, No. 5, Sep.-Oct. 2007, pp. 646-655.
Edwards, John, “RFID Smart Shelves and Cabinets”, RFID Journal, Aug. 24, 2009, pp. 4. http://www.rfidjournal.com/articles/view?5140/4.
Erdem et al., “Investigation of RFID Tag Readability for Pharmaceutical Products at Item Level”, Drug Development and Industrial Pharmacy, 2009, vol. 35, No. 11, pp. 1312-1324.
Fahrni, Jerry, “More RFID Refrigerator Stuff—Cubixx and myCubixx”, Sep. 3, 2012, pp. 4. http://jerryfahrni.com/2012/09/more-rfid-refrigerator-stuff-cubixx-and-mycubixx/.
“Faraday Cage”, Wikipedia, last edited Apr. 12, 2018, pp. 5. https://en.wikipedia.org/wiki/Faraday_cage.
Floerkemeier et al., “The Smart Box Concept for Ubiquitous Computing Environments”, The Smart Box Concept for Ubiquitous Computing Environments, 2004, pp. 4.
Green, Kathryn, “Doing the Wave: Inventory Management with RFID”, Diagnostic & Interventional Services, UMass Memorial Medical Center, Worcester, MA, vol. 15, No. 9, Sep. 2007, pp. 7. https://www.cathlabdigest.com/articles/Doing-Wave-Inventory-Management-RFID.
Ho et al., “A Prototype on RFID and Sensor Networks for Elder Healthcare: Progress Report”, SIGCOMM '05 Workshops, Aug. 22-26, 2005, Philadelphia, PA, pp. 70-75.
Howard, JD, “Implementation of RFID in the Pharmaceutical Industry”, Advisor: Dr. Jay Singh, California Polytechnic State University, San Luis Obispo, CA, Feb. 2009, pp. 11.
Humble, RN, Carol, “How RFID Freed Nurses From the Pain of Inventory Duties”, Cath Lab Digest, Dec. 2009, vol. 17, No. 12. https://www.cathlabdigest.com/articles/How-RFID-Freed-Nurses-From-Pain-Inventory-Duties.
“Intel & Siemens Launch RFID Blood Bank in Malaysia”, RFID Journal, Aug. 16, 2007, p. 1. https://www.rfidjournal.com/articles/view?6801.
Jones et al., “The Benefits, Challenges and Impacts of Radio Frequency Identification Technology (RFID) for Retailers in the UK”, Marketing Intelligence & Planning, 2005, vol. 23, No. 4, pp. 395-402.
Juels, Ari, “RFID Security and Privacy: A Research Survey”, IEEE Journal on Selected Areas in Communications, vol. 24, No. 2, Feb. 2006, pp. 381-394.
Lahtela et al., “RFID and NFC in Healthcare: Safety of Hospitals Medication Care”, 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, Tampere, Finland, Jan. 30-Feb. 1, 2008, pp. 4.
Lewis, Mark O., “RFID-Enabled Capabilities and their Impact on Healthcare Process Performance”, 31st International Conference on Information Systems, St. Louis, 2010, pp. 1-20.
Mehrjerdi, Yahia Zare, “RFID-Enabled Healthcare Systems: Risk-Benefit Analysis”, International Journal of Pharmaceutical and Healthcare Marketing, 2010, vol. 4, No. 3, pp. 282-300.
Meiller et al., “Adaptive Knowledge-Based System for Health Care Applications with RFID-Generated Information”, Decision Support Systems, vol. 51, 2011, pp. 198-207.
Mowry, Mike, “A Survey of RFID in the Medical Industry: With Emphasis on Applications to Surgery and Surgical Devices”, MAE188, Introduction to RFID, Dr. Rajit Gadh, UCLA, Jun. 9, 2008, pp. 22.
“New RFID Medical Cabinets Deployed at 50 Hospitals”, RFID Journal, Sep. 17, 2007, pp. 2. https://www.rfidjournal.com/articles/view?6823.
O'Connor, Mary Catherine, “Drug Distributor Uses RFID to Vend Meds”, RFID Journal, May 23, 2006, pp. 2. https://www.rfidjournal.com/articles/view?2363/2.
O'Connor, Mary Catherine, “GlaxoSmithKline Tests RFID on HIV Drug”, RFID Journal, Mar. 24, 2006, pp. 2. https://www.rfidjournal.com/articles/view?2219/.
O'Connor, Mary Catherine, “Interrogators Start to Evolve”, RFID Journal, Jun. 1, 2006, pp. 3. http://www.rfidjournal.com/purchase-access?type=Article&id=2398&r=%2Farticles%2Fview%3F2398.
O'Connor, Mary Catherine, “McKesson Starts RFID Pilot for Viagra”, RFID Journal, Feb. 17, 2005, pp. 2. http://www.rfidjournal.com/articles/view?2157.
O'Connor, Mary Catherine, “Pfizer Using RFID to Fight Fake Viagra”, RFID Journal, Jun. 6, 2006, pp. 2. http://www.rfidjournal.com/articles/pdf?2075.
Parida et al., “Application of RFID Technology for In-House Drug Management System”, 15th International Conference on Network-Based Information Systems, 2012, pp. 577-581.
“RFID Medical Cabinets Evaluated in New Benchmark”, RFID Journal, Sep. 12, 2007, pp. 2. http://www.rfidjournal.com/articles/view?6819.
Roberti, Mark, “RFID Basics for Health Care”, RFID in Health Care, Produced by RFID Journal, Sep. 17, 2009, The Westin Waltham-Boston, Waltham, MA, pp. 33.
Saygin, C., “Adaptive Inventory Management Using RFID Data”, The International Journal of Advanced Manufacturing Technology, 2007, vol. 32, pp. 1045-1051.
Singh et al., “Versatility of Radio Frequency Identification (RFID) Tags in the Pharmaceutical Industry”, Instrumentation Science and Technology, vol. 36, pp. 656-663, 2008.
Swedberg, Claire, “Tennessee Hospital Tracks High-Value Items”, RFID Journal, Aug. 5, 2009, pp. 2. http://www.rfidjournal.com/articles/view?5106.
Wang et al., “RFID Applications in Hospitals: A Case Study on a Demonstration RFID Project in a Taiwan Hospital”, Proceedings of the 39th Hawaii International Conference on System Sciences, 2006, pp. 1-10.
Wasserman, Elizabeth, “Purdue Pharma to Run Pedigree Pilot”, RFID Journal, May 31, 2005, pp. 2. http://www.rfidjournal.com/articles/view?1626.
Complaint, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Dec. 1, 2017, 45 pages.
Defendant's Answer, Affirmative Defenses and Counterclaims to Plaintiff's Complaint, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 2, 2018, 43 pages.
Defendant's First Amended Answer, Affirmative Defenses and Counterclaims to Plaintiff's Complaint, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 9, 2018, 43 pages.
Defendant Health Care Logistics, Inc's Invalidity Contentions Pursuant to Local Patent Rule 103.4, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 25 pages.
Exhibit 1; Initial Invalidity Claim Chart for U.S. Pat. No. 8,990,099, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 51 pages.
Exhibit 2; Initial Invalidity Claim Chart for U.S. Pat. No. 9,058,413, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 94 pages.
Exhibit 3; Initial Invalidity Claim Chart for U.S. Pat. No. 9,058,412, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 83 pages.
Exhibit 4; Initial Invalidity Claim Chart for U.S. Pat. No. 9,734,294, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 58 pages.
Exhibit 5; Initial Invalidity Claim Chart for U.S. Pat. No. 9,805,169, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 251 pages.
Exhibit 6; Initial Invalidity Claim Chart for U.S. Pat. No. 9,037,479, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 43 pages.
Exhibit 7; Initial Invalidity Claim Chart for U.S. Pat. No. 9,367,665, Kit Check, Inc. v. Health Care Logistics, Inc., Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 18, 2018, 109 pages.
Exhibit L; Fagron Academy, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Dec. 1, 2017, 2 pages.
Plaintiff's Answer to Defendant's Counterclaims, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 19, 2018, 14 pages.
Baum, “How did RFID help University of MD Medical Center cut medication error rate?” Med City News, https://medcitynews.com/2013/12/rfid-help-university-md-medical-center-cut-medication-error-rate/?rf=1, Dec. 4, 2013, 2 Pages.
Brown, Dennis E., “RFID Implementation”, McGraw-Hill Communications, 2007, Ch. 3 & 7 (portions), pp. 62-65, 81, 92-96, 106-113, 188-193 & 429.
Bryant, Blake, “Hacking SIEMs to Catch Hackers: Decreasing the Mean Time to Respond to Network Security Events with a Novel Threat Ontology in SIEM Software”, Master's Thesis, University of Kansas, 2016, pp. 257.
Garza, Anyssa, “The Future of Pharmacy Medication Kit Storage”, Pharmacy Times, https://www.pharmacytimes.com/contributor/anyssa-garza/2014/12/the-future-of-pharmacy-medication-kit-storage, Dec. 12, 2014, 2 Pages.
Glover et al., “RFID Essentials”, O'Reilly Media, 2006, pp. 2, 14, 24, 31, 33, 107-110, 113-114, 117, 137-143, 162-169, 178-179.
Hawkins-Simons, “RFID Streamlines Refilling of Drug Trays”, Pharmacy Technology Report, https://www.pharmacypracticenews.com/Pharmacy-Technology-Report/Article/03-14/RFID-Streamlines-Refilling-of-Drug-Trays/26159, Mar. 21, 2014, 9 Pages.
Kinsella, Bret, “Premier, Inc. Identifies Kit Check as ‘Technology Breakthrough Product’—Awards exclusive agreement for pharmacy kit medication tracking solution”, Press Release, https://kitcheck.com/2014/04/premier-inc-identifies-kit-check-technology-breakthrough-product-awards-exclusive-agreement-pharmacy-kit-medication-tracking-solution/, Apr. 2, 2014, 5 Pages.
KitCheck,“PharMEDium Prefilled Syringes with Kit Check: ASHP Symposium Summary”, Jun. 2016, https://kitcheck.com/wp-content/uploads/2016/06/pharmedium-prefilled-syringes-with-kit-check-download.pdf in 9 pages.
KitCheck,“St. Rita's Medical Center: 75% First-year ROI, Less Frustration”, Case Study, 2016, https://kitcheck.com/learn-more/case-study/st-ritas-medical-center/ in 2 pages.
“Medication Tray Management” Pharmacy Purchasing & Products, Feb. 2018, pp. 18 & 20.
“Medication Tray Management” Pharmacy Purchasing & Products, Presentation, Nov. 2018, pp. 76 & 78.
“Medication Tray Management” Pharmacy Purchasing & Products, State of Pharmacy Automation, Aug. 2016, pp. 42 & 45.
“Medication Tray Management” Pharmacy Purchasing & Products, State of Pharmacy Automation, Aug. 2019, pp. 34-35.
“ODIN Innovation Lab: EasyTunnel RFID”, as posted Jul. 13, 2009, archived via archive.org https://web.archive.org/web/20200316173502/https://www.youtube.com/watch?v=0rQhT4sIQnw, 1 page.
“ODIN RFID HQ Tour 2009”, as posted Mar. 19, 2009, archived via archive.org https://web.archive.org/web/20200316180429/https://www.youtube.com/watch?v=4Y4XIlD0B_Y, 1 page.
Summerfield, et al. “Evaluation of Medication Kit Processing Time Using Radio Frequency Identification (RFID) Technology”, Innovations in Pharmacy, 2015, vol. 6, No. 2, Article 199, 7 Pages.
Swedberg, Claire, “North Carolina Hospital Identifies Recalled Drugs via RFID”, RFID Journal, http://www.rfidjournal.com/articles/view?10913, Aug. 14, 2013, 4 Pages.
Swedberg, Claire, “Zimmer Ohio to Use RFID to Manage Orthopedic Products”, RFID Journal, May 12, 2010, pp. 3. https://www.rfidjournal.com/articles/pdf?7588.
“UPM Raflatac UHF EPC Gen2 RFID in ODIN Solution at Johnson-Johnson DePuyIn-Q-Tel”, as posted Jun. 10, 2009, archived via archive.org https://web.archive.org/web/20200316174347/https://www.youtube.com/watch?v=JWGyR8BgfI8 , 1 page.
“Vizient, Inc. Awards Kit Check Contract for Pharmacy Kit Medication Inventory Tracking and Replenishment”, Press Release, http://www.prweb.com/releases/2016/09/prweb13691526.htm, Sep. 19, 2016, 3 Pages.
Plaintiff Kit Check, Inc.'s Motion to Strike Insufficient Defenses, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 19, 2018, 8 pages.
Defendant's Memorandum in Opposition to Plaintiff Kit Check, Inc.'s Motion to Strike Insufficient Defenses, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 9, 2018, 6 pages.
Plaintiff's Answer to Defendant's First Amended Counterclaims, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 21, 2018, 14 pages.
Plaintiff Kit Check, Inc.'s Reply in Support of its Motion to Strike Insufficient Defenses, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 21, 2018, 6 pages.
Defendant Health Care Logistics, Inc.'s Motion for Judgment on the Pleadings Pursuant to Fed. R. Civ. P. 12(C), Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), May 25, 2018, 31 pages.
Exhibit A; U.S. Pat. No. 8,990,099, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), May 25, 2018, 12 pages.
Opinion & Order, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 13, 2018, 9 pages.
Plaintiff Kit Check, Inc.'s Memorandum in Opposition to Defendant Health Care Logistics, Inc.'s Motion for Judgment on the Pleadings, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jun. 29, 2018, 35 pages.
Exhibit 1; Non-Final Office Action for U.S. Pat. No. 8,990,099, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), dated Jun. 29, 2018, 11 pages.
Exhibit 2; Notice of Allowance for U.S. Pat. No. 8,990,099, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), dated Jun. 29, 2018, 15 pages.
Exhibit 3; Non-Final Office Action for U.S. Pat. No. 9,367,665, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), dated Jun. 29, 2018, 12 pages.
Exhibit 4; Response to Non-Final Office Action for U.S. Pat. No. 9,367,665, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), dated Jun. 29, 2018, 18 pages.
Defendant Health Care Logistics, Inc.'s Reply in Support of Motion for Judgment on the Pleadings Pursuant to Fed. R. Civ. P. 12(C), Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 20, 2018, 22 pages.
Exhibit A, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 20, 2018, 43 pages.
Exhibit B; Plaintiff Kit Check, Inc.'s Disclosure of Asserted Claims and Infringement Contentions under Local Patent Rule 103.2, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 20, 2018, 11 pages.
Plaintiff Kit Check, Inc.'s Motion to Strike Portions of Defendants' Reply or, in the Alternative, Motion for Leave to File a Sur-Reply, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Aug. 10, 2018, 6 pages.
Exhibit A; Plaintiff Kit Check, Inc.'s Sur-Reply in Opposition to Defendant's Motion for Judgment on the Pleadings, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Aug. 10, 2018, 5 pages.
Defendant Health Care Logistics, Inc.'s Memorandum in Opposition to Plaintiff Kit Check, Inc.'s Motion to Strike Portions of Defendant's Reply or, in the Alternative, Motion for Leave to File a Sur-Reply, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Aug. 31, 2018, 6 pages.
Plaintiff Kit Check, Inc.'s Reply in Support of its Motion to Strike Portions of Defendant's Reply or, in the Alternative, Motion for Leave to File a Sur-Reply, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Sep. 14, 2018, 7 pages.
Joint Claim Construction and Prehearing Statement, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Sep. 20, 2018, 21 pages.
Plaintiff Kit Check, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Nov. 16, 2018, 50 pages.
Exhibit 1; Disputed Claim Terms Chart, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Nov. 16, 2018, 4 pages.
Declaration of Jeffrey Fischer, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Nov. 16, 2018, 24 pages.
Defendant Health Care Logistics, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Nov. 16, 2018, 32 pages.
Exhibit 1002; File History of U.S. Pat. No. 9,367,665, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. PGR2019-00022, Nov. 30, 2018, 256 pages.
Exhibit 1003; Expert Declaration, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. PGR2019-00022, Nov. 30, 2018, 9 pages.
Exhibit 1013; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. PGR2019-00022, Nov. 30, 2018, 32pages.
Exhibit 1014; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. PGR2019-00022, Nov. 30, 2018, 50 pages.
Petition for Inter Partes Review of U.S. Pat. No. 8,990,099, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, Nov. 30, 2018, 42 pages.
Exhibit 1002; File History of U.S. Pat. No. 8,990,099, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, Nov. 30, 2018, 557 pages.
Exhibit 1003; Expert Declaration, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, Nov. 30, 2018, 9 pages.
Exhibit 1010; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, Nov. 30, 2018, 32 pages.
Exhibit 1011; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, Nov. 30, 2018, 50 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,058,412, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, Nov. 30, 2018, 75 pages.
Exhibit 1002; File History of U.S. Pat. No. 9,058,412, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, Nov. 30, 2018, 75 pages.
Exhibit 1003; Expert Declaration, Health Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, Nov. 30, 2018, 9 pages.
Exhibit 1013; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, Nov. 30, 2018, 32 pages.
Exhibit 1014; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, Nov. 30, 2018, 50 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,058,413, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 73 pages.
Exhibit 1002; File History of U.S. Pat. No. 9,058,413, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 549 pages.
Exhibit 1003; Expert Declaration, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 9 pages.
Exhibit 1009; Children's Hospital Boston Joins Others Using RFID to Track Implantables, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 3 pages.
Exhibit 1012; The “Orange Book”, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 1103 pages.
Exhibit 1013; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 32 pages.
Exhibit 1014; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, Dec. 1, 2018, 50 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,805,169, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, Dec. 1, 2018, 76 pages.
Exhibit 1002; File History of U.S. Pat. No. 9,805,169, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, Dec. 1, 2018, 286 pages.
Exhibit 1003; Expert Declaration, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, Dec. 1, 2018, 9 pages.
Exhibit 1009; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, Dec. 1, 2018, 32 pages.
Exhibit 1010; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, Dec. 1, 2018, 50 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,367,665, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, Dec. 3, 2018, 69 pages.
Exhibit 1002; File History of U.S. Pat. No. 9,367,665, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, Dec. 3, 2018, 256 pages.
Exhibit 1003; Expert Declaration, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, Dec. 3, 2018, 9 pages.
Exhibit 1013; Claim Construction Brief (Defendant), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, Dec. 3, 2018, 32 pages.
Exhibit 1014; Claim Construction Brief (Plaintiff), Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, Dec. 3, 2018, 50 pages.
Plaintiff Kit Check, Inc.'s Notice of Filing Deposition Transcript of Jeffrey Fischer, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 3 pages.
Exhibit A; Deposition of Jeffrey Fischer, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 86 pages.
Plaintiff Kit Check, Inc.'s Responsive Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 23 pages.
Exhibit A, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 43 pages.
Exhibit B; Deposition of Jeffrey Fischer, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 22 pages.
Defendant Health Care Logistics, Inc.'s Response to Plaintiff Kit Check, Inc.'s Opening Claim Construction Brief, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jan. 3, 2019, 22 pages.
Plaintiff Kit Check, Inc.'s Memorandum in Opposition to Defendant Health Care Logistics, Inc.'s Motion for Stay, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 11, 2019, 21 pages.
Exhibit 1; Defendant Health Care Logistics, Inc.'s Invalidity Contentions Pursuant to Local Patent Rule 103.4, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 11, 2019, 26 pages.
Defendant Health Care Logistics, Inc.'s Reply in Support of Motion for Stay, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Feb. 25, 2019, 10 pages.
Patent Owner's Preliminary Response, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, U.S. Pat. No. 8,990,099, Mar. 8, 2019, 26 pages.
Patent Owner's Preliminary Response, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, U.S. Pat. No. 9,058,412 B2, Mar. 8, 2019, 28 pages.
Patent Owner's Preliminary Response, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, U.S. Pat. No. 9,058,413 B2, Mar. 13, 2019, 28 pages.
Patent Owner's Preliminary Response, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00388, U.S. Pat. No. 9,805,169 B2, Mar. 13, 2019, 25 pages.
Patent Owner's Preliminary Response, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, U.S. Pat. No. 9,367,668 B2, Mar. 13, 2019, 28 pages.
Opinion & Order, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Mar. 14, 2019, 17 pages.
Joint Stipulation of Partial Dismissal Without Prejudice, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-Alm-Cmv (S.D. Ohio), Apr. 16, 2019, 2 pages.
Transcript of Markman Hearing Proceedings, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), May 6, 2019, 74 pages.
Decision Denying Institution of Inter Partes Review 35 U.S.C. §314, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, U.S. Pat. No. 9,058,412 B2, Jun. 3, 2019, 28 pages.
Decision Denying Institution of Inter Partes Review 35 U.S.C. §314, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00385, U.S. Pat. No. 9,805,169 B2, Jun. 3, 2019, 20 pages.
Decision Denying Institution of Inter Partes Review 35 U.S.C. §314, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00376, U.S. Pat. No. 8,990,099 B2, Jun. 4, 2019, 18 pages.
Decision Denying Institution of Inter Partes Review 35 U.S.C. §314, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00387, U.S. Pat. No. 9,058,413 B2, Jun. 7, 2019, 26 pages.
Decision Denying Institution of Inter Partes Review 35 U.S.C. §314, Health Care Logistics, Inc. v. Kit Check, Inc., Case No. IPR2019-00394, U.S. Pat. No. 9,367,665 B2, Jun. 11, 2019, 25 pages.
Stipulation and [Proposed] Order Granting Leave to Amend Plaintiff's Infringement Contentions and Defendant's Invalidity Contentions, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 3, 2019, 3 pages.
Defendant Health Care Logistics, Inc.'s Motion for Leave to File Second Amended Answer, Affirmative Defenses, and Counterclaims, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 17, 2019, 5 pages.
Exhibit A; Defendant's Second Amended Answer, Affirmative Defenses, and Counterclaims to Plaintiff's Complaint, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Jul. 17, 2019, 49 pages.
Request for ExParteReexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.510, U.S. Pat. No. 8,990,099 B2, U.S. Appl. No. 13/554,342, filed Jul. 25, 2019 in 80 pages.
Request for ExParteReexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.510, U.S. Pat. No. 9,058,412 B2, U.S. Appl. No. 14/603,730, filed Jul. 26, 2019 in 118 pages.
Request for ExParteReexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.510, U.S. Pat. No. 9,058,413 B2, U.S. Appl. No. 14/603,828, filed Jul. 25, 2019 in 151 pages.
Request for ExParteReexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.510, U.S. Pat. No. 9,805,169 B2, U.S. Appl. No. 14/701,958, filed Jul. 26, 2019 in 220 pages.
Request for ExParteReexamination Under 35 U.S.C. 302-307 and 37 C.F.R. 1.510, U.S. Pat. No. 9,367,665 B2, U.S. Appl. No. 14/818,113, filed Jul. 26, 2019 in 164 pages.
Opinion & Order, Kit Check, Inc. v. Health Care Logistics, Inc. (involving U.S. Pat. No. 8,990,099, U.S. Pat. No. 9,037,479, U.S. Pat. No. 9,058,412, U.S. Pat. No. 9,058,413, U.S. Pat. No. 9,367,665, U.S. Pat. No. 9,734,294, and U.S. Pat. No. 9,805,169), Case No. 2:17-cv-01041-ALM-CMV (S.D. Ohio), Aug. 30, 2019, 26 pages.
Barlas, Stephen, “Pharmacy Product Tracing Likely to Go National—Costs to Pharmacies Worrisome,” Pharmacy & Therapeutics, Jan. 2009, vol. 34 No. 1, p. 14.
Belson, D., “Storage, Distribution, and Dispensing of Medical Supplies,” Create Interim Report Under FEMA Grant EMW-2004-GR-0112, Apr. 21, 2005, pp. 1-36.
Çakici et al., “Using RFID for the Management of Pharmaceutical Inventory-System Optimization and Shrinkage Control,” Decision Support Systems, 2011, pp. 842-852.
Collins, “RFID Cabinet Manages Medicine”, RFID Journal, Aug. 12, 2004, p. 1. http://www.rfidjournal.com/articles/pdf?1081.
CPG Sec. 400.210, Radiofrequency Identification Feasibility Studies and Pilot Programs for Drugs Nov. 2004 Compliance Policy Guide available at: http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074357.htm.
“Crash Cart Inventory Checklist”, Outpatient Surgery Magazine, Oct. 2004, p. 1. http://www.outpatientsurgery.net/resources/forms/2004/pdf/OutpatientSurgeryMagazine_0410_crashCart.pdf.
Curtin et al., “Making the ‘Most’ out of RFID: a research agenda for the study of the adoption, usage and impact of RFID,” Information Technology Management, Apr. 2007, pp. 87-110.
Gonzalez, Stephanie, “Health Maintenance System (HMS) Hardware Research, Design, and Collaboration,” NASA USRP—Internship Final Report, 2010, pp. 1-20.
Harrop et al., “RFID for Healthcare and Pharmaceuticals, 2008-2018,” Securing Pharma, May 2008, pp. 1-12.
Houliston, Bryan, “Integrating RFID Technology into a Drug Administration System,” Bulletin of Applied Computing and Information Technology, vol. 3, No. 1, May 2005, pp. 8. Retrieved Sep. 26, 2013 from http://citrenz.ac.nz/bacit/0301/2005Houliston_RFID.htm.
Jorgensen et al., “Executable Use Cases: Requirements for a Pervasive Health Care System,” IEEE Software, Mar./Apr. 2004, pp. 34-41.
Lai et al., “Enhancing Medication Safety and Reduce Adverse Drug Events on Inpatient Medication Administration using RFID,” WSEAS Transactions on Communications, Oct. 2008, vol. 7, No. 10, pp. 1045-1054.
Lampe et al., “The Smart Box Application Model,” Advances in Pervasive Computing, 2004, pp. 1-6.
Liu et al., “Point-of-Care Support for Error-Free Medication Process” (Jun. 25, 2007), retrieved Aug. 21, 2017, 12 pages, available at http://ieeexplore.ieee.org/document/4438162/.
McCall et al., “RMAIS: RFID-based Medication Adherence Intelligence System” (Aug. 31, 2010), retrieved Aug. 21, 2017, 4 pages, available at http://ieeexplore.ieee.org/document/5627529/.
“McKesson's Announces New Touch-Screen Driven Medication Dispensing Solution”, Business Wire, Jun. 15, 2009, pp. 2, Available at: http://www.businesswire.com/news/home/20090615005349/en/McKesson-Announces-Touch-Screen-Drven-Medication-Dispensing-Solution#.VR7guPnF_10.
“Medical Packaging Inc. Announces Clear Stem Flag Label System for Ampoules, Vials, and Syringes” Feb. 1, 2006 available at: http://www.medpak.com/v1/news/20060201_CSFLAG.pdf, in 1 page.
O'Connor, Mary Catherine, “Johnson & Johnson Finds Value in Multiple RFID Apps”, RFID Journal, Apr. 23, 2008, pp. 2. http://www.rfidjournal.com/articles/pdf?4046.
O'Connor, Mary Catherine, “To Keep Drugs from Expiring, Hospital Tests Intelliguard System”, RFID Journal, Jan. 12, 2011, pp. 3. http://www.rfidjournal.com/articles/view?8123.
O'Driscoll et al, “RFID: An Ideal Technology for Ubiquitous Computing?” Dublin Institute of Technology School of Electronic and Communications Conference Papers, Jan. 1, 2008, pp. 1-17.
Pappu, Ph.D. et al., “RFiD in Hospitals: Issues and Solutions” Consortium for the Accelerated Deployment of RFID in Distribution, Sep. 2004, pp. 1-12.
Tsai et al., “iMAT: Intelligent Medication Administration Tools” (Jul. 1, 2010), retrieved Aug. 21, 2017, 8 pages, available at http://ieeexplore.ieee.org/document/5556551/.
Tsai et al., “Smart Medication Dispenser: Design, Architecture and Implementation” (Sep. 27, 2010), retrieved Aug. 21, 2017, 12 pages, available at http://ieeexplore.ieee.org/document/5585838/.
Tzeng et al., “Evaluating the Business Value of RFID: Evidence from Five Case Studies,” International Journal of Production Economics, 2008, vol. 112, pp. 601-613.
Wang et al., “Applying RFID Technology to Develop a Distant Medical Care Service Platform,” International Journal of Electronic Business Management, 2010, vol. 8, No. 2, pp. 161-170.
Pace et al., “Distributed Ambulatory Research in Therapeutics Network (DARTNet): Summary Report”, Effective Health Care Research Reports, No. 14, Agency for Healthcare Research and Quality, Jul. 2009, pp. 41.
Related Publications (1)
Number Date Country
20180039758 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
61514231 Aug 2011 US
Continuations (3)
Number Date Country
Parent 14701958 May 2015 US
Child 15787204 US
Parent 14603730 Jan 2015 US
Child 14701958 US
Parent 13554342 Jul 2012 US
Child 14603730 US