The present invention relates to managing cable connections and air flow in a data center, and more particularly, to electronic devices having mechanisms for managing cable connections and air flow in a flexible manner.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
There often arises a need to control the direction of the air flow across components of air-cooled electronics, such as information handling systems. It is quite common when an air-cooled device is installed in an equipment rack (or, shortly, rack) with other air-cooled electronics in a computer room or data center.
When arranging the racks and electronic devices in a computer room, a network engineer needs to consider both cabling and cooling of the electronic devices since the cabling may affect the cooling efficiency.
Typically, the network technician or administrator install/arrange the racks in a direction that will allow for most efficient cooling, that is, to pull cold air from the cold aisle 150 and push the hot (used) air to the hot aisle (152, 154) to be returned to the AC system for cooling. In properly choosing efficient airflow over cable management, it often leaves dozens of cables coming out of both the front and back of the rack 106a.
While cooling is more efficient this way, cabling becomes a larger issue. As depicted in
Unnecessarily long cables also block views of equipment and ports, making it more difficult to find equipment, ports, and other cables. A simple yet prime example of poor cabling design can be seen by mounting an entire row of two types (first and second types) of switches on a rack, where more than 90% of cables connected to these switches are networking cables and more than 95% of the networking cables are on the back of the first type of switch but on the front of the second type of switch. Unfortunately, the air flows from front to rear on both the first and second types of switches. In such a case, the network engineer may decide whether he wants (1) efficient cabling (not running cables from front to back of the rack, over the top of the rack, around corners, or through the rack, which wastes valuable racking spaces and costs more for cooling) or (2) efficient air flow (not cycling warm air through many systems, causing high AC cost and higher likelihood of thermal issues on the equipment.)
Typically, the interstitial space between two neighboring network switches is not large enough to accommodate the network cables therein. Thus, to reduce the lengths of the cables 140-146, the engineer may leave openings between the network switches (i.e., increase the interstitial space between the network switches) and passes cables 140-146 through the openings. However, this approach wastes rack space and creates insufficient air flow between front and back of the rack 106a (i.e., the cold aisle 150 and the hot aisle (152, 154). As such, there is a need for an approach for efficient cabling without compromising air flow efficiency.
References will be made to embodiments of the present disclosure, examples of which may be illustrated in the accompanying figures. These figures are intended to be illustrative, not limiting. Although the disclosure is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the disclosure to these particular embodiments. Items in the figures may not be to scale.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the disclosure. It will be apparent, however, to one skilled in the art that the disclosure can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present disclosure, described below, may be implemented in a variety of ways, such as a process, an apparatus, a system, a device, or a method on a tangible computer-readable medium.
Elements/components shown in diagrams are illustrative of exemplary embodiments of the disclosure and are meant to avoid obscuring the disclosure. It shall also be understood that throughout this discussion that components may be described as separate functional units, which may comprise sub-units, but those skilled in the art will recognize that various components, or portions thereof, may be divided into separate components or may be integrated together, including integrated within a single system or component. It should be noted that functions or operations discussed herein may be implemented as components/elements. Components/elements may be implemented in software, hardware, or a combination thereof.
Furthermore, connections between components or systems within the figures are not intended to be limited to direct connections. Rather, data between these components may be modified, re-formatted, or otherwise changed by intermediary components. Also, additional or fewer connections may be used. It shall also be noted that the terms “coupled” “connected” or “communicatively coupled” shall be understood to include direct connections, indirect connections through one or more intermediary devices, and wireless connections.
Furthermore, one skilled in the art shall recognize that: (1) certain steps may optionally be performed; (2) steps may not be limited to the specific order set forth herein; and (3) certain steps may be performed in different orders; and (4) certain steps may be done concurrently.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the disclosure and may be in more than one embodiment. The appearances of the phrases “in one embodiment,” “in an embodiment,” or “in embodiments” in various places in the specification are not necessarily all referring to the same embodiment or embodiments. The terms “include,” “including,” “comprise,” and “comprising” shall be understood to be open terms and any lists that follow are examples and not meant to be limited to the listed items. Any headings used herein are for organizational purposes only and shall not be used to limit the scope of the description or the claims.
Furthermore, the use of certain terms in various places in the specification is for illustration and should not be construed as limiting. A service, function, or resource is not limited to a single service, function, or resource; usage of these terms may refer to a grouping of related services, functions, or resources, which may be distributed or aggregated.
In embodiments, each of the network switches 202a-202d may have multiple ports 204 for receiving plugs of network cables 240 to enable communication between different networked devices. Each of the network switches may have a control panel 206 that allows the network engineer to control the switch. It is noted that each of the network switches may have different heights, such as 1-rack unit (RU), 2-RU, or multiple RUs.
In embodiments, each of the network switches 202a-202d has one or more notches (or, openings or slots) through which the cables 240 can pass from front to rear or from rear to front of the switches without sacrificing the rack space. For instance, each of the switches 202a and 202b have a notch 270 in the top side, while the switch 202c has a notch 272 in the bottom side. In another example, the switch 202d has three notches 272 and 274 in the top and sides. It should be apparent to those of ordinary skill in the art that each of the switches may have one or more of the notches 270-274 and that the notches 270-274 may have various shapes, sizes and locations.
In embodiments, the cable routing volumetric space 252, which is defined by the top surface of the housing 254 and the side wall 253, provides a channel through which the cables can pass. In embodiments, the network switch 202a may not have the side wall 253 that extends above the top surface of the housing. The interior compartment defined by the housing 254 and the cable routing volumetric space 252 define a combined dimensional space that is a standardized rack unit (RU) size when installed on a rack.
The longer cables that are used in the conventional network switches 106a1-106a4 to go around the rack are very costly and can be hazardous when the cables 140-146 are in walking space on the floor, display a poor appearance and block the view of the switches. The notches 270-274 may relieve/eliminate these problems that the longer cables in the conventional systems may cause.
It is noted that the network devices in
In embodiments, the network switches 202a-202d may be placed between a cold aisle (such as 150) and a hot aisle (such as 152 or 154), where the cold air pulled from the cold aisle may flow through the network switches to extract the heat energy generated by the network switches and the warm/heated air may be discharged to the hot aisle. In embodiments, one or more of the network switches 202a-202d may have mechanisms, such as fans, to generate the air flow. In such embodiments, the notches 270-274 themselves may be like open doors and allow any air to pass through. In order to keep the cold air in the cold aisle (until ready to use) and the hot (used) air in the hot aisle (and not escaping back to the cold aisle), it is recommended that there be a sort of barrier in the notches 270-274. This is regardless of whether fans from each device, or surrounding pressure is used.
To illustrate the beneficial effects of the notches, only network switches are shown in
For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, calculate, determine, classify, process, transmit, receive, retrieve, originate, switch, store, display, communicate, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer (e.g., desktop or laptop), tablet computer, mobile device (e.g., personal digital assistant (PDA) or smart phone), server (e.g., blade server or rack server), a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, touchscreen and/or a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
An exemplary information handling system 800, which may include one or more notches, will now be described with reference to
A number of controllers and peripheral devices may also be provided, as shown in
In the illustrated system, all major system components may connect to a bus 816, which may represent more than one physical bus. However, various system components may or may not be in physical proximity to one another. For example, input data and/or output data may be remotely transmitted from one physical location to another. In addition, programs that implement various aspects of this disclosure may be accessed from a remote location (e.g., a server) over a network. Such data and/or programs may be conveyed through any of a variety of machine-readable medium including, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store or to store and execute program code, such as application specific integrated circuits (ASICs), programmable logic devices (PLDs), flash memory devices, and ROM and RAM devices.
One skilled in the art will also recognize that a number of the elements described above may be physically and/or functionally separated into sub-modules or combined together.
It will be appreciated to those skilled in the art that the preceding examples and embodiment are exemplary and not limiting to the scope of the present disclosure. It is intended that all permutations, enhancements, equivalents, combinations, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
6142590 | Harwell | Nov 2000 | A |
20070258212 | Malone | Nov 2007 | A1 |
20080062644 | Petroski | Mar 2008 | A1 |
20080247132 | Kosacek | Oct 2008 | A1 |
20090109619 | Wise | Apr 2009 | A1 |
20100073872 | Pakravan | Mar 2010 | A1 |
20120127656 | Driggers | May 2012 | A1 |
20120134104 | Driggers | May 2012 | A1 |
20120195004 | Miller | Aug 2012 | A1 |
20120293951 | Jai | Nov 2012 | A1 |
20130188309 | Ross | Jul 2013 | A1 |
20130201618 | Czamara | Aug 2013 | A1 |
20130229768 | Doll | Sep 2013 | A1 |
20130308266 | Sullivan | Nov 2013 | A1 |
20140002988 | Roesner | Jan 2014 | A1 |
20140016266 | Lenart | Jan 2014 | A1 |
20140043758 | Arflack | Feb 2014 | A1 |
20140268549 | Neumann | Sep 2014 | A1 |
20140301037 | Best | Oct 2014 | A1 |
20140313669 | Babish | Oct 2014 | A1 |
20140355185 | Ehlen | Dec 2014 | A1 |
20140355201 | Alshinnawi | Dec 2014 | A1 |
20140376174 | Dean | Dec 2014 | A1 |
20150016059 | Esmaily | Jan 2015 | A1 |
20150036293 | Martini | Feb 2015 | A1 |
20150181747 | Bailey | Jun 2015 | A1 |
20150216069 | Hori | Jul 2015 | A1 |
20150261266 | Dean | Sep 2015 | A1 |
20150305202 | Veino | Oct 2015 | A1 |
20150334873 | Maeda | Nov 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170265333 A1 | Sep 2017 | US |