Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via the communication network. For example, a user at a personal computing device can utilize a software browser application to request a Web page from a server computing device via the Internet. In such embodiments, the user computing device can be referred to as a client computing device and the server computing device can be referred to as a content provider.
Content providers are generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. For larger scale implementations, a content provider may receive content requests from a high volume of client computing devices which can place a strain on the content provider's computing resources. Additionally, the content requested by the client computing devices may have a number of components, which can further place additional strain on the content provider's computing resources.
With reference to an illustrative example, a requested Web page, or original content, may be associated with a number of additional resources, such as images or videos, that are to be displayed with the Web page. In one specific embodiment, the additional resources of the Web page are identified by a number of embedded resource identifiers, such as uniform resource locators (“URLs”). In turn, software on the client computing devices typically processes embedded resource identifiers to generate requests for the content. Often, the resource identifiers associated with the embedded resources reference a computing device associated with the content provider such that the client computing device would transmit the request for the additional resources to the referenced content provider computing device. Accordingly, in order to satisfy a content request, the content provider would provide client computing devices data associated with the Web page as well as the data associated with the embedded resources.
Some content providers attempt to facilitate the delivery of requested content, such as Web pages and/or resources identified in Web pages, through the utilization of a content delivery network (“CDN”) service provider. A CDN server provider typically maintains a number of computing devices in a communication network that can maintain content from various content providers. In turn, content providers can instruct, or otherwise suggest to, client computing devices to request some, or all, of the content provider's content from the CDN service provider's computing devices.
With reference to previous illustrative example, the content provider can leverage a CDN service provider with the modification or substitution of resource identifiers associated with the embedded resources. Specifically, the resource identifiers can reference a computing device associated with the CDN service provider such that the client computing device would transmit the request for the additional resources to the referenced CDN service provider computing device. Typically, the content provider facilitates the utilization of a CDN provider by including CDN-provider specific resources identifiers in requested content (e.g., Web pages). This approach generally corresponds to an “offline” process implemented by the content provider in advance of receipt of a request for the original content from the client computing devices. Accordingly, modifications to resource identifiers, such as to provide alternative resources identifiers for the same CDN service provider, to provide additional information utilized by CDN service providers in processing the request for content and/or to identify alternative CDN service providers, can become inefficient as they typically require implementation of the offline process the content provider.
As with content providers, CDN providers are also generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. Accordingly, CDN service providers often consider factors such as latency of delivery of requested content in order to meet service level agreements or to generally improve the quality of delivery service.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Generally described, the present disclosure is directed to content management techniques for responding to resource requests from a client computing device to a network computing component via a content delivery network (“CDN”). Specifically, aspects of the disclosure will be described with regard to management of resources within a resource cache component hierarchy. The management of the objects can be implemented in a manner such that the most frequently requested content (e.g., most popular resources) is available for delivery by the most accessible portions of the resource cache component hierarchy. Additionally, less frequently requested content can be distributed within the resource cache component hierarchy to less accessible portions of the resource cache component hierarchy. Although various aspects of the disclosure will be described with regard to illustrative examples and embodiments, one skilled in the art will appreciate that the disclosed embodiments and examples should not be construed as limiting.
A service provider, such as a CDN service provider, can maintain a hierarchy of cache server components to provide cached resources. In certain embodiments, a service provider can manage resource expiration data associated with the resources maintained in the resource cache component hierarchy as indicative of the popularity, or relative popularity, of the resource. In the discussion below, embodiments are discussed with respect to expiration data that can be described as a time to live, after which the cache server component deletes the resource, designates the resource as stale or allows the storage location corresponding to the expired resource to be overwritten. Accordingly, the expiration data may be specified in terms of a measured unit of time. However, one skilled in the relevant art will appreciate that the expiration data may be specified in terms of other measurable activities, such as frequency of requests, and the like.
Traditionally, cache server components within a cache server hierarchy associate resource expiration data such that the most recently requested resource is associated with the highest expiration data (e.g., the most recently requested resource is associated with the longest time to live). In this embodiment, however, the cache server components within the resource cache component hierarchy assign expiration data, such as a resident time, to resources based upon the position of the respective cache server component within the resource cache component hierarchy and the relative frequency in which the resource has been requested. Specifically, in one example, resources are assigned shorter expiration data for the cache servers at the lowest levels of the resource cache component hierarchy that are typically the primary cache components fielding resource requests. The lowest level of the resource cache component hierarchy is often referred to as the “edge” of the resource cache component hierarchy. Additionally, resources are assigned longer expiration data in successively higher levels of the resource cache component hierarchy. Additionally, the expiration data for a given resource may be modified by a cache server component when a request for that resource is received by that cache server component such that content will reside within the various cache server components according to the frequency in which the content is requested by client computing devices.
For less popular resources, the resource will migrate through the cache server components of a resource cache component hierarchy as the expiration data expires unless subsequent requests for the resources are received. In one example, a newly obtained resource is cached through several components of a resource cache component hierarchy after the processing of the initial request for the resource. At each level of the resource cache component hierarchy, the resource is associated with shorter expiration data, such that the shortest expiration data with be assigned at the edge of a resource cache component hierarchy. If the requested resource is not requested, the version of the resource stored at each level of the hierarchy will successively expire. Thus, the expiration of the version of the resource has the effect of “pushing” the resource up the resource cache component hierarchy, in which the version of the resource is associated with longer expiration data. Subsequent requests for the resource at the edge servers may then cause the edge servers to request the resource from the cache server components higher in the resource cache component hierarchy. In another example, if the cache server components receive requests for the resource prior to the expiration of the expiration data, the expiration data is reset and the resource is maintained at the cache server component and the expiration data does not need to be modified. Thus, more popular content may be maintained at the edge cache servers, as their expiration data may be frequently reset.
Although not illustrated in
The content delivery environment 100 can also include a content provider 104 in communication with the one or more client computing devices 102 via the communication network 108. The content provider 104 illustrated in
One skilled in the relevant art will appreciate that the content provider 104 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, DNS name servers, and the like. For example, although not illustrated in
With continued reference to
Each CDN POP 116, 122, 128 also includes a resource cache component 120, 126, 132 made up of a number of cache server computing devices for storing resources from content providers and transmitting various requested resources to various client computers. The DNS components 118, 124 and 130 and the resource cache components 120, 126, 132 may further include additional software and/or hardware components that facilitate communications including, but not limited to, load balancing or load sharing software/hardware components.
As discussed in detail with respect to
In an illustrative embodiment, the DNS component 118, 124, 130 and resource cache component 120, 126, 132 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the CDN POPs 116, 122, 128 are illustrated in
With reference now to
With reference to
One skilled in the relevant art will appreciate that upon identification of appropriate origin servers 112, the content provider 104 can begin to direct requests for content from client computing devices 102 to the CDN service provider 106. Specifically, in accordance with DNS routing principles, a client computing device request corresponding to a resource identifier would eventually be directed toward a CDN POP 116, 122, 128 associated with the CDN service provider 106. In the event that the resource cache component 120, 126, 132 of a selected CDN POP does not have a copy of a resource requested by a client computing device 102, owing to the expiration of the resource from the resource cache component 120, 126, 132 of the selected CDN POP in accordance with the expiration data assigned to the resource, the resource cache component 120, 126, 132 will request the resource. Such a resource request may be directed to one or more hierarchically superior resource cache components or, if the resource is also absent from these hierarchically superior resource cache components, the origin server 112 previously registered by the content provider 104.
With continued reference to
The CDN service provider 106 returns an identification of applicable domains for the CDN service provider (unless it has been previously provided) and any additional information to the content provider 104. In turn, the content provider 104 can then process the stored content with content provider specific information. In one example, as illustrated in
Generally, the identification of the resources originally directed to the content provider 104 will be in the form of a resource identifier that can be processed by the client computing device 102, such as through a browser software application. In an illustrative embodiment, the resource identifiers can be in the form of a uniform resource locator (“URL”). Because the resource identifiers are included in the requested content directed to the content provider, the resource identifiers can be referred to generally as the “content provider URL.” For purposes of an illustrative example, the content provider URL can identify a domain of the content provider 104 (e.g., contentprovider.com), generally referred to as a DNS portion of the URL, a name of the resource to be requested (e.g., “resource.jpg”) and a path where the resource will be found (e.g., “path”), the path and resource generally referred to as a path portion of the URL. In this illustrative example, the content provider URL has the form of:
During an illustrative translation process, the content provider URL is modified such that requests for the resources associated with the translated URLs resolve to a CDN POP associated with the CDN service provider 106. In one embodiment, the translated URL identifies the domain of the CDN service provider 106 (e.g., “cdnprovider.com”), the same name of the resource to be requested (e.g., “resource.xxx”) and the same path where the resource will be found (e.g., “path”). One skilled in the relevant art will appreciate that the name information and the path information is not accessible to a DNS name server as a part of DNS query processing. Accordingly, the portion of the URL including the domain and any preceding information is generally referred to as the “DNS portion” of the URL.
Additionally, the translated URL can include additional processing information (e.g., “additional information”) in the DNS portion of the URL. The additional information can correspond to any one of a variety of information utilized by the CDN service provider 106 to process a corresponding DNS query. The translated URL would have the form of:
In another embodiment, the information associated with the CDN service provider 106 is included in a modified URL, such as through prepending or other techniques, such that the translated URL can maintain all of the information associated with the original URL. In this embodiment, the translated URL would have the form of:
With reference now to
Upon receipt of the requested content, the client computing device 102, such as through a browser software application, begins processing any of the markup code included in the content and attempts to acquire the resources identified by the embedded resource identifiers. Accordingly, the first step in acquiring the content corresponds to the issuance, by the client computing device 102 (through its local DNS resolver), of a DNS query for the original URL resource identifier that results in the identification of a DNS server authoritative to the “.” and the “com” portions of the translated URL. After resolving the “.” and “com” portions of the embedded URL, the client computing device 102 then issues a DNS query for the resource URL that results in the identification of a DNS server authoritative to the “.cdnprovider” portion of the embedded URL. The issuance of DNS queries corresponding to the “.” and the “com” portions of a URL are well known and have not been illustrated.
With reference now to
With continued reference to
The CDN service provider 106 can utilize the additional information (e.g., the “additional information”) included in the modified URL to select a more appropriate POP. In one aspect, the CDN service provider 106 can utilize the additional information to select from a set of DNS name servers identified as satisfying routing criteria including, but are not limited to, financial cost to content provider 104, network performance (e.g., “internet weather”) service level criteria, content provider specified, etc.
In one example, the CDN service provider 106 can attempt to direct a DNS query to DNS severs according to geographic criteria. The geographic criteria can correspond to a geographic-based regional service plans contracted between the CDN service-provider 106 and the content provider 104 in which various CDN service provider 106 POPs are grouped into geographic regions. Accordingly, a client computing device 102 DNS query received in a region not corresponding to the content provider's regional plan may be better processed by a DNS name server in region corresponding to the content provider's regional plan. In this example, the DNS component 118 may also obtain geographic information from the client directly (such as information provided by the client computing device or ISP) or indirectly (such as inferred through a client computing device's IP address).
In still a further example, the CDN service provider 106 can attempt to direct a DNS query to DNS servers according to network performance criteria. The network performance criteria can correspond to measurements of network performance for transmitting data from the CDN service provider POPs to the client computing device 102. Examples of network performance metrics can include network data transfer latencies (measured by the client computing device or the CDN service provider 106, network data error rates, and the like.
In an illustrative embodiment, the specific DNS server can utilize a variety of information in selecting a resource cache component. In one illustrative embodiment, the DNS server can use the additional information in the DNS portion of the resource identifier (which is used to resolve the DNS query by the DNS server) to return an IP address of a resource cache component. In another example, the DNS name server component can default to a selection of a resource cache component of the same POP. In another example, the DNS name server components can select a resource cache component based on various load balancing or load sharing algorithms. Still further, the DNS name server components can utilize network performance metrics or measurements to assign specific resource cache components. The IP address selected by a DNS name server component may correspond to a specific caching server in the resource cache. Alternatively, the IP address can correspond to a hardware/software selection component (such as a load balancer).
Even further, the DNS server can also use information obtained directly from a client computing device (such as information provided by the client computing device or ISP) or indirectly (such as inferred through a client computing device's IP address) to select a resource cache component. Such client computing device information can, for example, be geographic information. Still further, the DNS server components can utilize network performance metrics or measurements, as discussed above, to assign specific resource cache components.
With reference now to
With reference to
The resource cache component hierarchy 600 illustrated in
Each resource cache component includes tracking components, which may include hardware and/or software components for management of stored resources according to expiration data. In an embodiment, the tracking components may allow the resource cache component to assign expiration data, such as a time to live, to at least a portion of the resources maintained by the respective resource cache component. The assigned time to live may be varied in accordance with the relative position of the logical level within the resource cache component hierarchy 600 and based, at least in part, on resource request parameters. In one embodiment, resource cache components located at a relatively low position within the resource cache component hierarchy 600, such as cache level N of
The tracking components may enable the resource cache components to monitor a residence time for each of the stored resources, which represents a time duration over which each of the resources has been stored by their respective resource cache component from a selected starting time. In one embodiment, the residence time of a resource may be measured starting from the time at which the resource is stored by the resource cache component or the time at which a request for the resource is received by the resource cache component, whichever is more recent.
The resource cache components may further employ the assigned expiration data and monitored residence time in order to make expiration decisions regarding expiration of their stored resources. For example, when the residence time of a resource exceeds the time to live assigned to the resource, the resource may be deleted from the resource cache component. In this manner, because the time to live assigned by resource cache components increases when moving upwards in the resource cache component hierarchy 600, resource cache components will expire from the bottom up within the resource cache component hierarchy 600.
Similarly, in further reference to
In a further example illustrated in
Upon identification of the requested resource components, the residence time of the requested resource is set at an initial value on the resource cache component in which the requested resource is found. Illustratively, the residence time is set, at least in part, based on the relative location of the resource cache component within the resource cache component hierarchy 600. For example, the top resource cache component 606 can set an initial value for the resident time associated with the requested resource such that the resource will be maintained within the resource cache component hierarchy 600. In one example, the initial value for the resident time associated with the requested resource can be set at a minimum value for each lower level within the resource cache component hierarchy. In this example, resources which are frequently requested may be propagated down to the lower levels of the resource cache component hierarchy. Likewise, resources that are less frequently requested will expire on each of the lower levels of the resource cache component hierarchy 600. Accordingly, upon a subsequent request for the resource (after expiration), the resource can be associated with a longer resident time.
In another example, the initial value for the resident time for the resource maintained at each level in the resource cache component hierarchy 600 can be set to various minimums associated with the specific level of the resource cache component within the hierarchy. In such an embodiment, the resident time can be set in accordance with historical information for that particular resource or for the resource cache component. For example, the resident time may be set at the average resident time for some set of resources stored at the particular resource cache component. In another example, the resident time may be fixed for particular levels of the resource cache component hierarchy 600, such as a minimum resident time for the lowest levels of the resource cache component hierarchy 600, often referred to as the edge of the hierarchy. In such an example, the resident times for resources may or may not be adjusted.
With reference now to
At decision block 704, a test is conducted to determine whether the current resource cache component has stored the requested resource. If the current resource cache component maintains the requested resource in storage, the current resource cache component renews the expiration data, such as resident time, at block 706. If, however, at decision block 704, the current resource cache component does not maintain the requested resource in storage, the current resource cache component selects another resource cache component to which a request for the resource is transmitted in block 710. As discussed above, this other resource cache component may include one or more parent resource cache components in communication with the current resource cache component. The test of decision block 704 and the request forwarding operation of block 710 may be repeated, as necessary, with parent resource cache components higher up the resource cache component hierarchy 600 until a resource cache component that maintains the requested resource in storage is identified. The routine 700 then moves to block 706, where the time to live of the requested resource on the identified parent resource cache component is renewed.
The routine 700 subsequently moves to decision block 712, where a test is performed to determine whether the resource computing device that is identified to maintain the requested resource in storage is the resource cache component that originally received the request from the client computing device 102 or a parent resource cache component. In one embodiment, such a determination may be made by review of the resource request. When the original resource cache component forwards a resource request to a parent resource cache component, a record may be stored in the resource request to this effect, allowing the parent resource cache to identify that it is not the original recipient of the resource request.
If the resource computing device that is identified to maintain the requested resource in storage is the resource cache component that is the current resource cache component (e.g., the resource cache component that originally received the request from the client computing device 102), the routine moves to block 716, where the requested resource is transmitted to the client computing device by the current resource cache component.
If, however, the resource computing device that is identified to maintain the requested resource in storage is a parent resource cache component to the current resource cache component, the routine 700 proceeds to block 714. At block 714, the current resource cache component determines whether to adjust the resident time associated with the requested resource. Illustratively, the adjustment is based on the various resource processing parameters and can include increasing the resident time, decreasing the resident time or not adjusting the resident time. An illustrative sub-routine 750 for determining whether to adjust resident time will be described with regard to
With reference now to
In decision block 756, the resource cache component determines whether the resource resident time parameters satisfy one or more threshold values. If the one or more resource resident time parameter are satisfied, the resource cache component adjusts the resident time for the requested resource at block 756. Alternatively, if the resource resident time parameters are not satisfied, the routine 750 terminates at block 758.
Illustratively, the satisfaction of the one or more threshold values for the resource resident time parameters can correspond to adjustments to increase and decrease the resident time associated with a resource. For example, if the number of requests received within a given time period increases, the resident time of the resource can be increased to indicate a lower popularity resource because the current resident time expires before the subsequent request. Likewise if a threshold amount of time has expired since the last request for the resource, the resource cache component may reset the resident time to a default value or initial value. Still further, in another example, the resource cache component can be limited in the amount of adjustment for the resident time. For example, each level of the resource cache component hierarchy may be associated with a range of resident times that limits the amount of adjustment for the resident times of resource maintained at the specific level in the resource cache server hierarchy.
While illustrative embodiments have been disclosed and discussed, one skilled in the relevant art will appreciate that additional or alternative embodiments may be implemented within the spirit and scope of the present invention. Additionally, although many embodiments have been indicated as illustrative, one skilled in the relevant art will appreciate that the illustrative embodiments do not need to be combined or implemented together. As such, some illustrative embodiments do not need to be utilized or implemented in accordance with scope of variations to the present disclosure.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached FIGURES should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation of U.S. patent application Ser. No. 14/331,067, now U.S. Pat. No. 9,176,894, entitled “MANAGING RESOURCES USING RESOURCE EXPIRATION DATA” and filed on Jul. 14, 2014, which in turn is a continuation of U.S. patent application Ser. No. 12/485,783, now U.S. Pat. No. 8,782,236, entitled “MANAGING RESOURCES USING RESOURCE EXPIRATION DATA” and filed on Jun. 16, 2009, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5905248 | Russell et al. | May 1999 | A |
5974454 | Apfel et al. | Oct 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
5999274 | Lee et al. | Dec 1999 | A |
6018619 | Allard et al. | Jan 2000 | A |
6151631 | Ansell et al. | Nov 2000 | A |
6173316 | De Boor et al. | Jan 2001 | B1 |
6345308 | Abe | Feb 2002 | B1 |
6484161 | Chipalkatti et al. | Nov 2002 | B1 |
6493765 | Cunningham et al. | Dec 2002 | B1 |
6523036 | Hickman et al. | Feb 2003 | B1 |
6654807 | Farber et al. | Nov 2003 | B2 |
6718324 | Edlund et al. | Apr 2004 | B2 |
6868439 | Basu et al. | Mar 2005 | B2 |
6925499 | Chen et al. | Aug 2005 | B1 |
6963850 | Bezos et al. | Nov 2005 | B1 |
7058633 | Gnagy et al. | Jun 2006 | B1 |
7117262 | Bai et al. | Oct 2006 | B2 |
7139808 | Anderson et al. | Nov 2006 | B2 |
7194552 | Schneider | Mar 2007 | B1 |
7240100 | Wein et al. | Jul 2007 | B1 |
7269784 | Kasriel et al. | Sep 2007 | B1 |
7272227 | Beran | Sep 2007 | B1 |
7284056 | Ramig | Oct 2007 | B2 |
7318074 | Iyengar et al. | Jan 2008 | B2 |
7337968 | Wilz, Sr. et al. | Mar 2008 | B2 |
7340505 | Lisiecki et al. | Mar 2008 | B2 |
7372809 | Chen | May 2008 | B2 |
7389354 | Sitaraman et al. | Jun 2008 | B1 |
7409712 | Brooks et al. | Aug 2008 | B1 |
7492720 | Pruthi et al. | Feb 2009 | B2 |
7506034 | Coates et al. | Mar 2009 | B2 |
7593935 | Sullivan | Sep 2009 | B2 |
7657613 | Hanson et al. | Feb 2010 | B1 |
7684394 | Cutbill et al. | Mar 2010 | B1 |
7685109 | Ransil et al. | Mar 2010 | B1 |
7693959 | Leighton et al. | Apr 2010 | B2 |
7783727 | Foley et al. | Aug 2010 | B1 |
7792989 | Toebes et al. | Sep 2010 | B2 |
7853719 | Cao et al. | Dec 2010 | B1 |
7865594 | Baumback et al. | Jan 2011 | B1 |
7865953 | Hsieh et al. | Jan 2011 | B1 |
7933988 | Nasuto et al. | Apr 2011 | B2 |
7996533 | Leighton et al. | Aug 2011 | B2 |
8001187 | Stochosky | Aug 2011 | B2 |
8042054 | White et al. | Oct 2011 | B2 |
8132242 | Wu | Mar 2012 | B1 |
8156199 | Hoche-Mong et al. | Apr 2012 | B1 |
8209695 | Pruyne et al. | Jun 2012 | B1 |
8250135 | Driesen et al. | Aug 2012 | B2 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8271471 | Kamvar et al. | Sep 2012 | B1 |
8281035 | Farber et al. | Oct 2012 | B2 |
8296393 | Alexander et al. | Oct 2012 | B2 |
8301600 | Helmick et al. | Oct 2012 | B1 |
8380831 | Barber | Feb 2013 | B2 |
8380851 | McCarthy et al. | Feb 2013 | B2 |
8423408 | Barnes et al. | Apr 2013 | B1 |
8423662 | Weihl et al. | Apr 2013 | B1 |
8447831 | Sivasubramanian et al. | May 2013 | B1 |
8452745 | Ramakrishna | May 2013 | B2 |
8521876 | Goodman et al. | Aug 2013 | B2 |
8521880 | Richardson et al. | Aug 2013 | B1 |
8527639 | Liskov et al. | Sep 2013 | B1 |
8549646 | Stavrou et al. | Oct 2013 | B2 |
8612565 | Schneider | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8619780 | Brandwine | Dec 2013 | B1 |
8683023 | Brandwine et al. | Mar 2014 | B1 |
8712950 | Smith et al. | Apr 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8812727 | Sorenson, III et al. | Aug 2014 | B1 |
8904009 | Marshall et al. | Dec 2014 | B1 |
8935744 | Osterweil et al. | Jan 2015 | B2 |
8949459 | Scholl | Feb 2015 | B1 |
8972580 | Fleischman et al. | Mar 2015 | B2 |
9003040 | MacCarthaigh et al. | Apr 2015 | B2 |
9037975 | Taylor et al. | May 2015 | B1 |
9075777 | Pope et al. | Jul 2015 | B1 |
9075893 | Jenkins | Jul 2015 | B1 |
9116803 | Agrawal et al. | Aug 2015 | B1 |
9130977 | Zisapel et al. | Sep 2015 | B2 |
9137302 | Makhijani et al. | Sep 2015 | B1 |
9154551 | Watson | Oct 2015 | B1 |
9160703 | Richardson et al. | Oct 2015 | B2 |
9172674 | Patel et al. | Oct 2015 | B1 |
9176894 | Marshall et al. | Nov 2015 | B2 |
9185012 | Richardson et al. | Nov 2015 | B2 |
9191338 | Richardson et al. | Nov 2015 | B2 |
9191458 | Richardson et al. | Nov 2015 | B2 |
9195996 | Walsh et al. | Nov 2015 | B1 |
9237087 | Risbood et al. | Jan 2016 | B1 |
9323577 | Marr et al. | Apr 2016 | B2 |
9332078 | Sivasubramanian et al. | May 2016 | B2 |
9386038 | Martini | Jul 2016 | B2 |
9391949 | Richardson et al. | Jul 2016 | B1 |
9407676 | Archer et al. | Aug 2016 | B2 |
9407681 | Richardson et al. | Aug 2016 | B1 |
9407699 | Sivasubramanian et al. | Aug 2016 | B2 |
9444718 | Khakpour et al. | Sep 2016 | B2 |
9444759 | Richardson et al. | Sep 2016 | B2 |
9479476 | Richardson et al. | Oct 2016 | B2 |
9495338 | Hollis et al. | Nov 2016 | B1 |
9497259 | Richardson et al. | Nov 2016 | B1 |
9515949 | Richardson et al. | Dec 2016 | B2 |
9525659 | Sonkin et al. | Dec 2016 | B1 |
9544394 | Richardson et al. | Jan 2017 | B2 |
9571389 | Richardson et al. | Feb 2017 | B2 |
9584328 | Graham-Cumming | Feb 2017 | B1 |
9590946 | Richardson et al. | Mar 2017 | B2 |
9608957 | Sivasubramanian et al. | Mar 2017 | B2 |
9621660 | Sivasubramanian et al. | Apr 2017 | B2 |
9628509 | Holloway et al. | Apr 2017 | B2 |
9628554 | Marshall et al. | Apr 2017 | B2 |
9705922 | Foxhoven et al. | Jul 2017 | B2 |
9712325 | Richardson et al. | Jul 2017 | B2 |
9712484 | Richardson et al. | Jul 2017 | B1 |
9734472 | Richardson et al. | Aug 2017 | B2 |
9742795 | Radlein et al. | Aug 2017 | B1 |
9774619 | Radlein et al. | Sep 2017 | B1 |
9787599 | Richardson et al. | Oct 2017 | B2 |
9787775 | Richardson et al. | Oct 2017 | B1 |
9794216 | Richardson et al. | Oct 2017 | B2 |
9794281 | Radlein et al. | Oct 2017 | B1 |
9800539 | Richardson et al. | Oct 2017 | B2 |
9819567 | Uppal et al. | Nov 2017 | B1 |
9832141 | Raftery | Nov 2017 | B1 |
9887915 | Richardson et al. | Feb 2018 | B2 |
9887931 | Uppal et al. | Feb 2018 | B1 |
9887932 | Uppal et al. | Feb 2018 | B1 |
9888089 | Sivasubramanian et al. | Feb 2018 | B2 |
9893957 | Ellsworth et al. | Feb 2018 | B2 |
9894168 | Sivasubramanian et al. | Feb 2018 | B2 |
9912740 | Richardson et al. | Mar 2018 | B2 |
9929959 | Mostert | Mar 2018 | B2 |
9930131 | MacCarthaigh et al. | Mar 2018 | B2 |
20010000811 | May et al. | May 2001 | A1 |
20010025305 | Yoshiasa et al. | Sep 2001 | A1 |
20010027479 | Delaney et al. | Oct 2001 | A1 |
20010032133 | Moran | Oct 2001 | A1 |
20010034704 | Farhat et al. | Oct 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010056416 | Garcia-Luna-Aceves | Dec 2001 | A1 |
20010056500 | Farber et al. | Dec 2001 | A1 |
20020002613 | Freeman et al. | Jan 2002 | A1 |
20020004846 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020010783 | Primak et al. | Jan 2002 | A1 |
20020010798 | Ben-Shaul et al. | Jan 2002 | A1 |
20020035624 | Jun-hyeong | Mar 2002 | A1 |
20020048269 | Hong et al. | Apr 2002 | A1 |
20020049608 | Hartsell et al. | Apr 2002 | A1 |
20020049857 | Farber et al. | Apr 2002 | A1 |
20020052942 | Swildens et al. | May 2002 | A1 |
20020062372 | Hong et al. | May 2002 | A1 |
20020065910 | Dutta | May 2002 | A1 |
20020068554 | Dusse | Jun 2002 | A1 |
20020069420 | Russell et al. | Jun 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020082858 | Heddaya et al. | Jun 2002 | A1 |
20020083118 | Sim | Jun 2002 | A1 |
20020083148 | Shaw et al. | Jun 2002 | A1 |
20020083178 | Brothers | Jun 2002 | A1 |
20020083198 | Kim et al. | Jun 2002 | A1 |
20020087374 | Boubez et al. | Jul 2002 | A1 |
20020091786 | Yamaguchi et al. | Jul 2002 | A1 |
20020091801 | Lewin et al. | Jul 2002 | A1 |
20020092026 | Janniello et al. | Jul 2002 | A1 |
20020099616 | Sweldens | Jul 2002 | A1 |
20020099850 | Farber et al. | Jul 2002 | A1 |
20020101836 | Dorenbosch | Aug 2002 | A1 |
20020103820 | Cartmell et al. | Aug 2002 | A1 |
20020107944 | Bai et al. | Aug 2002 | A1 |
20020112049 | Elnozahy et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020116491 | Boyd et al. | Aug 2002 | A1 |
20020116582 | Copeland et al. | Aug 2002 | A1 |
20020120666 | Landsman et al. | Aug 2002 | A1 |
20020120782 | Dillon et al. | Aug 2002 | A1 |
20020124047 | Gartner et al. | Sep 2002 | A1 |
20020124098 | Shaw | Sep 2002 | A1 |
20020129123 | Johnson et al. | Sep 2002 | A1 |
20020131428 | Pecus et al. | Sep 2002 | A1 |
20020133741 | Maeda et al. | Sep 2002 | A1 |
20020135611 | Deosaran et al. | Sep 2002 | A1 |
20020138286 | Engstrom | Sep 2002 | A1 |
20020138437 | Lewin et al. | Sep 2002 | A1 |
20020138443 | Schran et al. | Sep 2002 | A1 |
20020143675 | Orshan | Oct 2002 | A1 |
20020143989 | Huitema et al. | Oct 2002 | A1 |
20020145993 | Chowdhury et al. | Oct 2002 | A1 |
20020147770 | Tang | Oct 2002 | A1 |
20020147774 | Lisiecki et al. | Oct 2002 | A1 |
20020150094 | Cheng et al. | Oct 2002 | A1 |
20020150276 | Chang | Oct 2002 | A1 |
20020152326 | Orshan | Oct 2002 | A1 |
20020154157 | Sherr et al. | Oct 2002 | A1 |
20020156884 | Bertram et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020161745 | Call | Oct 2002 | A1 |
20020161767 | Shapiro et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020165912 | Wenocur et al. | Nov 2002 | A1 |
20020169890 | Beaumont et al. | Nov 2002 | A1 |
20020184368 | Wang | Dec 2002 | A1 |
20020188722 | Banerjee et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20020194382 | Kausik et al. | Dec 2002 | A1 |
20020198953 | O'Rourke et al. | Dec 2002 | A1 |
20030002484 | Freedman | Jan 2003 | A1 |
20030005111 | Allan | Jan 2003 | A1 |
20030007482 | Khello et al. | Jan 2003 | A1 |
20030009488 | Hart, III | Jan 2003 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030026410 | Lumsden | Feb 2003 | A1 |
20030028642 | Agarwal et al. | Feb 2003 | A1 |
20030033283 | Evans et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030037139 | Shteyn | Feb 2003 | A1 |
20030041094 | Lara et al. | Feb 2003 | A1 |
20030046343 | Krishnamurthy et al. | Mar 2003 | A1 |
20030065739 | Shnier | Apr 2003 | A1 |
20030070096 | Pazi et al. | Apr 2003 | A1 |
20030074401 | Connell et al. | Apr 2003 | A1 |
20030074471 | Anderson et al. | Apr 2003 | A1 |
20030074472 | Lucco et al. | Apr 2003 | A1 |
20030079027 | Slocombe et al. | Apr 2003 | A1 |
20030093523 | Cranor et al. | May 2003 | A1 |
20030099202 | Lear et al. | May 2003 | A1 |
20030099237 | Mitra et al. | May 2003 | A1 |
20030101278 | Garcia-Luna-Aceves et al. | May 2003 | A1 |
20030112792 | Cranor et al. | Jun 2003 | A1 |
20030120741 | Wu et al. | Jun 2003 | A1 |
20030126387 | Watanabe | Jul 2003 | A1 |
20030133554 | Nykanen et al. | Jul 2003 | A1 |
20030135467 | Okamoto | Jul 2003 | A1 |
20030135509 | Davis et al. | Jul 2003 | A1 |
20030140087 | Lincoln et al. | Jul 2003 | A1 |
20030145038 | Tariq et al. | Jul 2003 | A1 |
20030145066 | Okada et al. | Jul 2003 | A1 |
20030149581 | Chaudhri et al. | Aug 2003 | A1 |
20030154239 | Davis et al. | Aug 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030163722 | Anderson, IV | Aug 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030172183 | Anderson, IV et al. | Sep 2003 | A1 |
20030172291 | Judge et al. | Sep 2003 | A1 |
20030174648 | Wang et al. | Sep 2003 | A1 |
20030177321 | Watanabe | Sep 2003 | A1 |
20030182305 | Balva et al. | Sep 2003 | A1 |
20030206520 | Wu et al. | Nov 2003 | A1 |
20030236779 | Choi et al. | Dec 2003 | A1 |
20040010562 | Itonaga | Jan 2004 | A1 |
20040010601 | Afergan | Jan 2004 | A1 |
20040054757 | Ueda et al. | Mar 2004 | A1 |
20040068542 | Lalonde et al. | Apr 2004 | A1 |
20040073707 | Dillon | Apr 2004 | A1 |
20040148520 | Talpade et al. | Jul 2004 | A1 |
20040184456 | Binding et al. | Sep 2004 | A1 |
20040246948 | Lee et al. | Dec 2004 | A1 |
20040250119 | Shelest et al. | Dec 2004 | A1 |
20050021862 | Schroeder et al. | Jan 2005 | A1 |
20050108262 | Fawcett | May 2005 | A1 |
20050149529 | Gutmans | Jul 2005 | A1 |
20050172080 | Miyauchi | Aug 2005 | A1 |
20050181769 | Kogawa | Aug 2005 | A1 |
20050198170 | LeMay et al. | Sep 2005 | A1 |
20050198303 | Knauerhase et al. | Sep 2005 | A1 |
20050198453 | Osaki | Sep 2005 | A1 |
20050216483 | Armstrong et al. | Sep 2005 | A1 |
20050223095 | Volz et al. | Oct 2005 | A1 |
20050228856 | Swildens et al. | Oct 2005 | A1 |
20050234864 | Shapiro | Oct 2005 | A1 |
20050240574 | Challenger et al. | Oct 2005 | A1 |
20050256880 | Nam Koong et al. | Nov 2005 | A1 |
20050259645 | Chen et al. | Nov 2005 | A1 |
20050266835 | Agrawal et al. | Dec 2005 | A1 |
20050267937 | Daniels et al. | Dec 2005 | A1 |
20050278259 | Gunaseelan et al. | Dec 2005 | A1 |
20060021001 | Giles et al. | Jan 2006 | A1 |
20060031239 | Koenig | Feb 2006 | A1 |
20060031319 | Nelson et al. | Feb 2006 | A1 |
20060031503 | Gilbert | Feb 2006 | A1 |
20060034494 | Holloran | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060070060 | Tantawi et al. | Mar 2006 | A1 |
20060107036 | Randle et al. | May 2006 | A1 |
20060112176 | Liu et al. | May 2006 | A1 |
20060146820 | Friedman et al. | Jul 2006 | A1 |
20060165051 | Banerjee et al. | Jul 2006 | A1 |
20060173957 | Robinson | Aug 2006 | A1 |
20060224752 | Parekh et al. | Oct 2006 | A1 |
20060230265 | Krishna | Oct 2006 | A1 |
20060265508 | Angel et al. | Nov 2006 | A1 |
20070064610 | Khandani | Mar 2007 | A1 |
20070101061 | Baskaran et al. | May 2007 | A1 |
20070156726 | Levy | Jul 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070168336 | Ransil et al. | Jul 2007 | A1 |
20070243860 | Aiello et al. | Oct 2007 | A1 |
20070245022 | Olliphant et al. | Oct 2007 | A1 |
20070250468 | Pieper | Oct 2007 | A1 |
20070271375 | Hwang | Nov 2007 | A1 |
20070271608 | Shimizu et al. | Nov 2007 | A1 |
20080016233 | Schneider | Jan 2008 | A1 |
20080056207 | Eriksson et al. | Mar 2008 | A1 |
20080086434 | Chesla | Apr 2008 | A1 |
20080086559 | Davis et al. | Apr 2008 | A1 |
20080101358 | Van Ewijk et al. | May 2008 | A1 |
20080109679 | Wright et al. | May 2008 | A1 |
20080147866 | Stolorz et al. | Jun 2008 | A1 |
20080256087 | Piironen et al. | Oct 2008 | A1 |
20080263135 | Olliphant | Oct 2008 | A1 |
20080288722 | Lecoq et al. | Nov 2008 | A1 |
20080312766 | Couckuyt | Dec 2008 | A1 |
20090043900 | Barber | Feb 2009 | A1 |
20090083279 | Hasek | Mar 2009 | A1 |
20090086728 | Gulati et al. | Apr 2009 | A1 |
20090094252 | Wong et al. | Apr 2009 | A1 |
20090106202 | Mizrahi | Apr 2009 | A1 |
20090132640 | Verma et al. | May 2009 | A1 |
20090138533 | Iwasaki et al. | May 2009 | A1 |
20090144411 | Winkler et al. | Jun 2009 | A1 |
20090157504 | Braemer et al. | Jun 2009 | A1 |
20090158163 | Stephens et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090198817 | Sundaram et al. | Aug 2009 | A1 |
20090248697 | Richardson et al. | Oct 2009 | A1 |
20090253435 | Olofsson | Oct 2009 | A1 |
20090259588 | Lindsay | Oct 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090327914 | Adar et al. | Dec 2009 | A1 |
20100020699 | On | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100049862 | Dixon | Feb 2010 | A1 |
20100082320 | Wood et al. | Apr 2010 | A1 |
20100103837 | Jungck et al. | Apr 2010 | A1 |
20100125626 | Lucas et al. | May 2010 | A1 |
20100169392 | Lev Ran et al. | Jul 2010 | A1 |
20100174811 | Musiri et al. | Jul 2010 | A1 |
20100217856 | Falkena | Aug 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100325365 | Colglazier et al. | Dec 2010 | A1 |
20110010244 | Hatridge | Jan 2011 | A1 |
20110051738 | Xu | Mar 2011 | A1 |
20110055386 | Middleton et al. | Mar 2011 | A1 |
20110055921 | Narayanaswamy et al. | Mar 2011 | A1 |
20110072366 | Spencer | Mar 2011 | A1 |
20110078230 | Sepulveda | Mar 2011 | A1 |
20110161461 | Niven-Jenkins | Jun 2011 | A1 |
20110182290 | Perkins | Jul 2011 | A1 |
20110196892 | Xia | Aug 2011 | A1 |
20110258614 | Tamm | Oct 2011 | A1 |
20110270964 | Huang et al. | Nov 2011 | A1 |
20110320522 | Endres et al. | Dec 2011 | A1 |
20120011190 | Driesen et al. | Jan 2012 | A1 |
20120023090 | Holloway et al. | Jan 2012 | A1 |
20120072600 | Richardson et al. | Mar 2012 | A1 |
20120078998 | Son et al. | Mar 2012 | A1 |
20120079096 | Cowan et al. | Mar 2012 | A1 |
20120079115 | Richardson et al. | Mar 2012 | A1 |
20120110515 | Abramoff et al. | May 2012 | A1 |
20120124184 | Sakata et al. | May 2012 | A1 |
20120143688 | Alexander | Jun 2012 | A1 |
20120179796 | Nagaraj et al. | Jul 2012 | A1 |
20120198071 | Black et al. | Aug 2012 | A1 |
20120224516 | Stojanovski et al. | Sep 2012 | A1 |
20120226649 | Kovacs et al. | Sep 2012 | A1 |
20120233329 | Dickinson et al. | Sep 2012 | A1 |
20120239725 | Hartrick et al. | Sep 2012 | A1 |
20120246129 | Rothschild et al. | Sep 2012 | A1 |
20120254961 | Kim et al. | Oct 2012 | A1 |
20120257628 | Bu et al. | Oct 2012 | A1 |
20120259954 | McCarthy et al. | Oct 2012 | A1 |
20120278229 | Vishwanathan et al. | Nov 2012 | A1 |
20120278831 | van Coppenolle et al. | Nov 2012 | A1 |
20130007273 | Baumback et al. | Jan 2013 | A1 |
20130034099 | Hikichi et al. | Feb 2013 | A1 |
20130054675 | Jenkins et al. | Feb 2013 | A1 |
20130055374 | Kustarz et al. | Feb 2013 | A1 |
20130067530 | Spektor et al. | Mar 2013 | A1 |
20130080577 | Taylor et al. | Mar 2013 | A1 |
20130080623 | Thireault | Mar 2013 | A1 |
20130080627 | Kukreja et al. | Mar 2013 | A1 |
20130080636 | Friedman et al. | Mar 2013 | A1 |
20130117282 | Mugali, Jr. et al. | May 2013 | A1 |
20130191499 | Ludin et al. | Jul 2013 | A1 |
20130219020 | McCarthy et al. | Aug 2013 | A1 |
20130254269 | Sivasubramanian et al. | Sep 2013 | A1 |
20130263256 | Dickinson et al. | Oct 2013 | A1 |
20130279335 | Ahmadi | Oct 2013 | A1 |
20130311583 | Humphreys et al. | Nov 2013 | A1 |
20130311989 | Ota et al. | Nov 2013 | A1 |
20130318153 | Sivasubramanian et al. | Nov 2013 | A1 |
20140007239 | Sharpe et al. | Jan 2014 | A1 |
20140019605 | Boberg | Jan 2014 | A1 |
20140022951 | Lemieux | Jan 2014 | A1 |
20140047104 | Rodriguez | Feb 2014 | A1 |
20140059120 | Richardson et al. | Feb 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082614 | Klein et al. | Mar 2014 | A1 |
20140108672 | Ou et al. | Apr 2014 | A1 |
20140122698 | Batrouni et al. | May 2014 | A1 |
20140122725 | Batrouni et al. | May 2014 | A1 |
20140137111 | Dees et al. | May 2014 | A1 |
20140149601 | Carney et al. | May 2014 | A1 |
20140164817 | Bartholomy et al. | Jun 2014 | A1 |
20140215019 | Ahrens | Jul 2014 | A1 |
20140280679 | Dey et al. | Sep 2014 | A1 |
20140337472 | Newton et al. | Nov 2014 | A1 |
20150006615 | Wainner et al. | Jan 2015 | A1 |
20150019686 | Backholm | Jan 2015 | A1 |
20150026407 | Mclellan et al. | Jan 2015 | A1 |
20150067171 | Yum | Mar 2015 | A1 |
20150074228 | Drake | Mar 2015 | A1 |
20150088972 | Brand et al. | Mar 2015 | A1 |
20150089621 | Khalid | Mar 2015 | A1 |
20150154051 | Kruglick | Jun 2015 | A1 |
20150156279 | Vaswani et al. | Jun 2015 | A1 |
20150188734 | Petrov | Jul 2015 | A1 |
20150189042 | Sun et al. | Jul 2015 | A1 |
20150215656 | Pulung et al. | Jul 2015 | A1 |
20150244580 | Saavedra | Aug 2015 | A1 |
20150288647 | Chhabra et al. | Oct 2015 | A1 |
20150319194 | Richardson et al. | Nov 2015 | A1 |
20150319260 | Watson | Nov 2015 | A1 |
20150334082 | Richardson et al. | Nov 2015 | A1 |
20160006672 | Saavedra | Jan 2016 | A1 |
20160021197 | Pogrebinsky et al. | Jan 2016 | A1 |
20160028755 | Vasseur et al. | Jan 2016 | A1 |
20160036857 | Foxhoven et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160132600 | Woodhead et al. | May 2016 | A1 |
20160134492 | Ellsworth et al. | May 2016 | A1 |
20160142367 | Richardson et al. | May 2016 | A1 |
20160182454 | Phonsa et al. | Jun 2016 | A1 |
20160182542 | Staniford | Jun 2016 | A1 |
20160205062 | Mosert | Jul 2016 | A1 |
20160241637 | Marr et al. | Aug 2016 | A1 |
20160241639 | Brookins et al. | Aug 2016 | A1 |
20160241651 | Sivasubramanian et al. | Aug 2016 | A1 |
20160294678 | Khakpour et al. | Oct 2016 | A1 |
20160308959 | Richardson et al. | Oct 2016 | A1 |
20170041428 | Katsev | Feb 2017 | A1 |
20170085495 | Richardson et al. | Mar 2017 | A1 |
20170126557 | Richardson et al. | May 2017 | A1 |
20170126796 | Hollis et al. | May 2017 | A1 |
20170142062 | Richardson et al. | May 2017 | A1 |
20170153980 | Araújo et al. | Jun 2017 | A1 |
20170155678 | Araújo et al. | Jun 2017 | A1 |
20170180217 | Puchala et al. | Jun 2017 | A1 |
20170180267 | Puchala et al. | Jun 2017 | A1 |
20170214755 | Sivasubramanian et al. | Jul 2017 | A1 |
20170250821 | Richardson et al. | Aug 2017 | A1 |
20170257340 | Richardson et al. | Sep 2017 | A1 |
20170353395 | Richardson et al. | Dec 2017 | A1 |
20180063027 | Rafferty | Mar 2018 | A1 |
20180097631 | Uppal et al. | Apr 2018 | A1 |
20180097634 | Uppal et al. | Apr 2018 | A1 |
20180097831 | Uppal et al. | Apr 2018 | A1 |
20180109553 | Radlein et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2741 895 | May 2010 | CA |
1511399 | Jul 2004 | CN |
07-141305 | Jun 1995 | JP |
2002-024192 | Jan 2002 | JP |
2002-323986 | Nov 2002 | JP |
2004-070935 | Mar 2004 | JP |
2004-532471 | Oct 2004 | JP |
2005-537687 | Dec 2005 | JP |
2007-207225 | Aug 2007 | JP |
2008-515106 | May 2008 | JP |
2012-209623 | Oct 2012 | JP |
WO 2014047073 | Mar 2014 | WO |
WO 2017106455 | Jun 2017 | WO |
Entry |
---|
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/Iptables _ Basics.html, 4 pages. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 26, 2015. |
Second Office Action in Chinese Application No. 201180046104.0 dated Sep. 29, 2015. |
Office Action in Canadian Application No. 2816612 dated Nov. 3, 2015. |
“Non-Final Office Action dated Jan. 3, 2012,” U.S. Appl. No. 12/652,541; dated Jan. 3, 2012; 35 pages. |
“Content delivery network”, Wikipedia, the free encyclopedia, Retrieved from the Internet: URL:http://en.wikipedia.org/w/index.php?title=Contentdelivery network&oldid=601009970, XP055153445, Mar. 24, 2008. |
Barbir, A., et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt). |
Joseph, Joshy, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages. |
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006. |
First Office Action in Japanese Application No. 2011-502140 dated Dec. 7, 2012. |
Second Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013. |
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013. |
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013. |
Office Action in Japanese Application No. 2012-052264 dated Dec. 11, 2012 in 26 pages. |
Office Action in Japanese Application No. 2013-123086 dated Apr. 15, 2014 in 3 pages. |
Office Action in Japanese Application No. 2013-123086 dated Dec. 2, 2014 in 2 pages. |
Office Action in Russian Application No. 2015114568 dated May 16, 2016. |
Office Action in Chinese Application No. 201310537815.9 dated Jul. 5, 2016. |
Office Action in Chinese Application No. 201310717573.1 dated Jul. 29, 2016. |
Office Action in Japanese Application No. 2011-502139 dated Aug. 17, 2015. |
Office Action in Japanese Application No. 2011-516466 dated May 30, 2016. |
Third Office Action in Chinese Application No. 201180046104.0 dated Apr. 14, 2016. |
Office Action in Japanese Application No. 2015-533132 dated Apr. 25, 2016. |
Office Action in Canadian Application No. 2884796 dated Apr. 28, 2016. |
Office Action in Japanese Application No. 2015-075644 dated Apr. 5, 2016. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 3, 2016. |
Partial Supplementary Search Report in European Application No. 09826977.2 dated Oct. 4, 2016. |
Decision of Rejection in Chinese Application No. 201180046104.0 dated Oct. 17, 2016. |
Office Action in Canadian Application No. 2816612 dated Oct. 7, 2016. |
International Search Report and Written Opinion in PCT/US/2016/ 066848 dated May 1, 2017. |
Guo, F., Understanding Memory Resource Management in Vmware vSphere 5.0, Vmware, 2011, pp. 1-29. |
Hameed, CC, “Disk Fragmentation and System Performance”, Mar. 14, 2008, 3 pages. |
Liu, “The Ultimate Guide to Preventing DNS-based DDoS Attacks”, Retrieved from http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html, Published Oct. 30, 2013. |
Ragan, “Three Types of DNS Attacks and How to Deal with Them”, Retrieved from http://www.csoonline.com/article/2133916/malware-cybercrime/three-types-of-dns-attacks-and-how-to-deal-with-them.html, Published Aug. 28, 2013. |
Office Action in European Application No. 09839809.2 dated Dec. 8, 2016. |
Office Action in European Application No. 11767118.0 dated Feb. 3, 2017. |
Office Action in Canadian Application No. 2816612 dated Aug. 8, 2017. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Nov. 6, 2004 (Nov. 6, 2004), Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference Pittsburgh, PA, USA Nov. 6-12, 2004, Piscataway, NJ, USA, IEEE, 1730 Massachusetts Ave., NW Washington, DC 20036-1992 USA, 12 pages. |
Zhao et al., “Distributed file system support for virtual machines in grid computing”, Jun. 4, 2004 (Jun. 4, 2004), High Performance Distributed Computing, 2004. Proceedings. 13th IEEE International Symposium on Honolulu, HI, USA Jun. 4-6, 2004, Piscataway, NJ, USA, IEEE, p. 202-211. |
Office Action in Indian Application No. 5937/CHENP/2010 dated Jan. 19, 2018. |
Office Action in Indian Application No. 6210/CHENP/2010 dated Mar. 27, 2018. |
Office Action in Chinese Application No. 201310537815.9 dated Feb. 1, 2018. |
Office Action in European Application No. 07754164.7 dated Jan. 25, 2018. |
International Search Report and Written Opinion in PCT/US2017/055156 dated Dec. 13, 2017. |
Supplementary Examination Report in Singapore Application No. 11201501987U dated May 17, 2017. |
Office Action in Chinese Application No. 201310537815.9 dated Jun. 2, 2017. |
Number | Date | Country | |
---|---|---|---|
20160026568 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14331067 | Jul 2014 | US |
Child | 14871872 | US | |
Parent | 12485783 | Jun 2009 | US |
Child | 14331067 | US |