Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via the communication network. For example, a user at a personal computing device can utilize a software browser application to request a Web page from a server computing device via the Internet. In such embodiments, the user computing device can be referred to as a client computing device and the server computing device can be referred to as a content provider.
Content providers are generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. For larger scale implementations, a content provider may receive content requests from a high volume of client computing devices which can place a strain on the content provider's computing resources. Additionally, the content requested by the client computing devices may have a number of components, which can further place additional strain on the content provider's computing resources.
With reference to an illustrative example, a requested Web page, or original content, may be associated with a number of additional resources, such as images or videos, that are to be displayed with the Web page. In one specific embodiment, the additional resources of the Web page are identified by a number of embedded resource identifiers, such as uniform resource locators (“URLs”). In turn, software on the client computing devices typically processes embedded resource identifiers to generate requests for the content. Often, the resource identifiers associated with the embedded resources reference a computing device associated with the content provider such that the client computing device would transmit the request for the additional resources to the referenced content provider computing device. Accordingly, in order to satisfy a content request, the content provider would provide client computing devices data associated with the Web page as well as the data associated with the embedded resources.
Some content providers attempt to facilitate the delivery of requested content, such as Web pages and/or resources identified in Web pages, through the utilization of a content delivery network (“CDN”) service provider. A CDN server provider typically maintains a number of computing devices in a communication network that can maintain content from various content providers. In turn, content providers can instruct, or otherwise suggest to, client computing devices to request some, or all, of the content provider's content from the CDN service provider's computing devices.
With reference to previous illustrative example, the content provider can leverage a CDN service provider with the modification or substitution of resource identifiers associated with the embedded resources. Specifically, the resource identifiers can reference a computing device associated with the CDN service provider such that the client computing device would transmit the request for the additional resources to the referenced CDN service provider computing device. Typically, the content provider facilitates the utilization of a CDN provider by including CDN-provider specific resources identifiers in requested content (e.g., Web pages). This approach generally corresponds to an “offline” process implemented by the content provider in advance of receipt of a request for the original content from the client computing devices. Accordingly, modifications to resource identifiers, such as to provide alternative resources identifiers for the same CDN service provider, to provide additional information utilized by CDN service providers in processing the request for content and/or to identify alternative CDN service providers, can become inefficient as they typically require implementation of the offline process the content provider.
As with content providers, CDN providers are also generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. Accordingly, CDN service providers often consider factors such as latency of delivery of requested content in order to meet service level agreements or to generally improve the quality of delivery service.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Generally described, the present disclosure is directed to content management techniques for responding to resource requests from a client computing device to a network computing component via a content delivery network (“CDN). Specifically, aspects of the disclosure will be described with regard to management of resources within a resource cache component hierarchy. The management of the objects can be implemented in a manner such that the most frequently requested content (e.g., most popular resources) is available for delivery by the most accessible portions of the resource cache component hierarchy. Additionally, less frequently request content can be distributed within the resource cache component hierarchy to less accessible portions of the resource cache component hierarchy. Although various aspects of the disclosure will be described with regard to illustrative examples and embodiments, one skilled in the art will appreciate that the disclosed embodiments and examples should not be construed as limiting.
A service provider, such as a CDN service provider, can maintain a hierarchy of cache servers to provide cached resources. In certain embodiments, a service provider can manage resource expiration data associated with the resources maintained in the resource cache component hierarchy as indicative of the popularity, or relative popularity, of the resource. In the discussion below, embodiments are discussed with respect to expiration data that can be described as a time to live, after which the cache server component deletes the resource, designates the resource as stale or allows the storage location corresponding to the expired resource to be overwritten. Accordingly, the expiration data may be specified in terms of a measured unit of time. However, one skilled in the relevant art will appreciate that the expiration data may be specified in terms of other measurable activities, such as frequency of requests, and the like.
Traditionally, cache server components within a cache server hierarchy associate resource expiration data such that the most recently requested resource is associated with the highest expiration data (e.g., the most recently requested resource is associated with the longest time to live). In this embodiment, however, the cache server components within the resource cache component hierarchy assign expiration data, such as a resident time, to resources based upon the position of the respective cache server component within the resource cache component hierarchy and the relative frequency in which the resource has been requested. Specifically, in one example, resources are assigned shorter expiration data for the cache servers at the lowest levels of the resource cache component hierarchy that are typically the primary cache components fielding resource requests. The lowest level of the resource cache component hierarchy is often referred to as the “edge” of the resource cache component hierarchy. Additionally, resources are assigned longer expiration data in successively higher levels of the resource cache component hierarchy. Additionally, the expiration data for a given resource may be modified by a cache server component when a request for that resource is received by that cache server component such that content will reside within the various cache server components according to the frequency in which the content is requested by client computing devices.
For less popular resources, the resource will migrate through the cache server components of a resource cache component hierarchy as the expiration data expires unless subsequent requests for the resources are received. In one example, a newly obtained resource is cached through several components of a resource cache component hierarchy after the processing of the initial request for the resource. At each level of the resource cache component hierarchy, the resource is associated with shorter expiration data, such that the shortest expiration data with be assigned at the edge of a resource cache component hierarchy. If the requested resource is not requested, the version of the resource stored at each level of the hierarchy will successively expire. Thus, the expiration of the version of the resource has the effect of “pushing” the resource up the resource cache component hierarchy, in which the version of the resource is associated with longer expiration data. Subsequent requests for the resource at the edge servers may then cause the edge servers to request the resource from the cache server components higher in the resource cache component hierarchy. In another example, if the cache server components receive requests for the resource prior to the expiration of the expiration data, the expiration data is reset and the resource is maintained at the cache server component and the expiration data does not need to be modified. Thus, more popular content may be maintained at the edge cache servers, as their expiration data may be frequently reset.
Although not illustrated in
The content delivery environment 100 can also include a content provider 104 in communication with the one or more client computing devices 102 via the communication network 108. The content provider 104 illustrated in
One skilled in the relevant art will appreciate that the content provider 104 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, DNS name servers, and the like. For example, although not illustrated in
With continued reference to
Each CDN POP 116, 122, 128 also includes a resource cache component 120, 126, 132 made up of a number of cache server computing devices for storing resources from content providers and transmitting various requested resources to various client computers. The DNS components 118, 124 and 130 and the resource cache components 120, 126, 132 may further include additional software and/or hardware components that facilitate communications including, but not limited to, load balancing or load sharing software/hardware components.
As discussed in detail with respect to
In an illustrative embodiment, the DNS component 118, 124, 130 and resource cache component 120, 126, 132 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the CDN POPs 116, 122, 128 are illustrated in
With reference now to
With reference to
One skilled in the relevant art will appreciate that upon identification of appropriate origin servers 112, the content provider 104 can begin to direct requests for content from client computing devices 102 to the CDN service provider 106. Specifically, in accordance with DNS routing principles, a client computing device request corresponding to a resource identifier would eventually be directed toward a CDN POP 116, 122, 128 associated with the CDN service provider 106. In the event that the resource cache component 120, 126, 132 of a selected CDN POP does not have a copy of a resource requested by a client computing device 102, owing to the expiration of the resource from the resource cache component 120, 126, 132 of the selected CDN POP in accordance with the expiration data assigned to the resource, the resource cache component 120, 126, 132 will request the resource. Such a resource request may be directed to one or more hierarchically superior resource cache components or, if the resource is also absent from these hierarchically superior resource cache components, the origin server 112 previously registered by the content provider 104.
With continued reference to
The CDN service provider 106 returns an identification of applicable domains for the CDN service provider (unless it has been previously provided) and any additional information to the content provider 104. In turn, the content provider 104 can then process the stored content with content provider specific information. In one example, as illustrated in
Generally, the identification of the resources originally directed to the content provider 104 will be in the form of a resource identifier that can be processed by the client computing device 102, such as through a browser software application. In an illustrative embodiment, the resource identifiers can be in the form of a uniform resource locator (“URL”). Because the resource identifiers are included in the requested content directed to the content provider, the resource identifiers can be referred to generally as the “content provider URL.” For purposes of an illustrative example, the content provider URL can identify a domain of the content provider 104 (e.g., contentprovider.com), generally referred to as a DNS portion of the URL, a name of the resource to be requested (e.g., “resource.jpg”) and a path where the resource will be found (e.g., “path”), the path and resource generally referred to as a path portion of the URL. In this illustrative example, the content provider URL has the form of:
http://www.contentprovider.com/path/resource.jpg
During an illustrative translation process, the content provider URL is modified such that requests for the resources associated with the translated URLs resolve to a CDN POP associated with the CDN service provider 106. In one embodiment, the translated URL identifies the domain of the CDN service provider 106 (e.g., “cdnprovider.com”), the same name of the resource to be requested (e.g., “resource.xxx”) and the same path where the resource will be found (e.g., “path”). One skilled in the relevant art will appreciate that the name information and the path information is not accessible to a DNS nameserver as a part of DNS query processing. Accordingly, the portion of the URL including the domain and any preceding information is generally referred to as the “DNS portion” of the URL.
Additionally, the translated URL can include additional processing information (e.g., “additional information”) in the DNS portion of the URL. The additional information can correspond to any one of a variety of information utilized by the CDN service provider 106 to process a corresponding DNS query. The translated URL would have the form of:
http://additional_information.cdnprovider.com/path/resource.xxx
In another embodiment, the information associated with the CDN service provider 106 is included in a modified URL, such as through prepending or other techniques, such that the translated URL can maintain all of the information associated with the original URL. In this embodiment, the translated URL would have the form of:
http://additional_information.cdnprovider.com/www.contentprovider.com/path/resource.xxx
With reference now to
Upon receipt of the requested content, the client computing device 102, such as through a browser software application, begins processing any of the markup code included in the content and attempts to acquire the resources identified by the embedded resource identifiers. Accordingly, the first step in acquiring the content corresponds to the issuance, by the client computing device 102 (through its local DNS resolver), of a DNS query for the original URL resource identifier that results in the identification of a DNS server authoritative to the “.” and the “com” portions of the translated URL. After resolving the “.” and “com” portions of the embedded URL, the client computing device 102 then issues a DNS query for the resource URL that results in the identification of a DNS server authoritative to the “.cdnprovider” portion of the embedded URL. The issuance of DNS queries corresponding to the “.” and the “com” portions of a URL are well known and have not been illustrated.
With reference now to
With continued reference to
The CDN service provider 106 can utilize the additional information (e.g., the “additional information”) included in the modified URL to select a more appropriate POP. In one aspect, the CDN service provider 106 can utilize the additional information to select from a set of DNS nameservers identified as satisfying routing criteria including, but are not limited to, financial cost to content provider 104, network performance (e.g., “internet weather”) service level criteria, content provider specified, etc.
In one example, the CDN service provider 106 can attempt to direct a DNS query to DNS severs according to geographic criteria. The geographic criteria can correspond to a geographic-based regional service plans contracted between the CDN service-provider 106 and the content provider 104 in which various CDN service provider 106 POPs are grouped into geographic regions. Accordingly, a client computing device 102 DNS query received in a region not corresponding to the content provider's regional plan may be better processed by a DNS nameserver in region corresponding to the content provider's regional plan. In this example, the DNS nameserver component 118 may also obtain geographic information from the client directly (such as information provided by the client computing device or ISP) or indirectly (such as inferred through a client computing device's IP address).
In still a further example, the CDN service provider 106 can attempt to direct a DNS query to DNS servers according to network performance criteria. The network performance criteria can correspond to measurements of network performance for transmitting data from the CDN service provider POPs to the client computing device 102. Examples of network performance metrics can include network data transfer latencies (measured by the client computing device or the CDN service provider 106, network data error rates, and the like.
In an illustrative embodiment, the specific DNS server can utilize a variety of information in selecting a resource cache component. In one illustrative embodiment, the DNS server can use the additional information in the DNS portion of the resource identifier (which is used to resolve the DNS query by the DNS server) to return an IP address of a resource cache component. In another example, the DNS nameserver component can default to a selection of a resource cache component of the same POP. In another example, the DNS nameserver components can select a resource cache component based on various load balancing or load sharing algorithms. Still further, the DNS nameserver components can utilize network performance metrics or measurements to assign specific resource cache components. The IP address selected by a DNS nameserver component may correspond to a specific caching server in the resource cache. Alternatively, the IP address can correspond to a hardware/software selection component (such as a load balancer).
Even further, the DNS server can also use information obtained directly from a client computing device (such as information provided by the client computing device or ISP) or indirectly (such as inferred through a client computing device's IP address) to select a resource cache component. Such client computing device information can, for example, be geographic information. Still further, the DNS server components can utilize network performance metrics or measurements, as discussed above, to assign specific resource cache components.
With reference now to
With reference to
The resource cache component hierarchy 600 illustrated in
Each resource cache component includes tracking components, which may include hardware and/or software components for management of stored resources according to expiration data. In an embodiment, the tracking components may allow the resource cache component to assign expiration data, such as a time to live, to at least a portion of the resources maintained by the respective resource cache component. The assigned time to live may be varied in accordance with the relative position of the logical level within the resource cache component hierarchy 600 and based, at least in part, on resource request parameters. In one embodiment, resource cache components located at a relatively low position within the resource cache component hierarchy 600, such as cache level N of
The tracking components may enable the resource cache components to monitor a residence time for each of the stored resources, which represents a time duration over which each of the resources has been stored by their respective resource cache component from a selected starting time. In one embodiment, the residence time of a resource may be measured starting from the time at which the resource is stored by the resource cache component or the time at which a request for the resource is received by the resource cache component, whichever is more recent.
The resource cache components may further employ the assigned expiration data and monitored residence time in order to make expiration decisions regarding expiration of their stored resources. For example, when the residence time of a resource exceeds the time to live assigned to the resource, the resource may be deleted from the resource cache component. In this manner, because the time to live assigned by resource cache components increases when moving upwards in the resource cache component hierarchy 600, resource cache components will expire from the bottom up within the resource cache component hierarchy 600.
Similarly, in further reference to
In a further example illustrated in
Upon identification of the requested resource components, the residence time of the requested resource is set at an initial value on the resource cache component in which the requested resource is found. Illustratively, the residence time is set, at least in part, based on the relative location of the resource cache component within the resource cache component hierarchy 600. For example, the top resource cached component 604 can set an initial value for the resident time associated with the requested resource such that the resource will be maintained with the resource cache component hierarchy 600. In one example, the initial value for the resident time associated with the requested resource can be set to a minimum value for each lower level within the resource cache component hierarchy. In this example, resources which are frequently requested may be propagated down to the lower levels of the resource cache component hierarchy. Likewise, resources that are less frequently requested will expire on each of the lower levels of the resource cache component hierarchy 600. Accordingly, upon a subsequent request for the resource (after expiration), the resource can be associated with a longer resident time.
In another example, the initial value for the resident time for the resource maintained at each level in the resource cache component hierarchy 600 can be set to various minimums associated with the specific level of the resource cache component within the hierarchy. In such an embodiment, the resident time can be set in accordance with historical information for that particular resource or for the resource cache component. For example, the resident time may be set at the average resident time for some set of resources stored at the particular resource cache component. In another example, the resident time may be fixed for particular levels of the resource cache component hierarchy 600, such as a minimum resident time for the lowest levels of the resource cache component hierarchy 600, often referred to as the edge of the hierarchy. In such an example, the resident times for resources may or may not be adjusted.
With reference now to
At decision block 704, a test is conducted to determine whether the current resource cache component has stored the requested resource. If the current resource cache component maintains the requested resource in storage, the current resource cache component renews the expiration data, such as resident time, at block 706. If, however, at decision block 704, the current resource cache component does not maintain the requested resource in storage, the current resource cache component selects another resource cache component to which a request for the resource is transmitted in block 710. As discussed above, this other resource cache component may include one or more parent resource cache components in communication with the current resource cache component. The test of decision block 704 and the request forwarding operation of block 710 may be repeated, as necessary, with parent resource cache components higher up the resource cache component hierarchy 600 until a resource cache component that maintains the requested resource in storage is identified. The routine 700 then moves to block 706, where the time to live of the requested resource on the identified parent resource cache component is renewed.
The routine 700 subsequently moves to decision block 712, where a test is performed to determine whether the resource computing device that is identified to maintain the requested resource in storage is the resource cache component that originally received the request from the client computing device 102 or a parent resource cache component. In one embodiment, such a determination may be made by review of the resource request. When the original resource cache component forwards a resource request to a parent resource cache component, a record may be stored in the resource request to this effect, allowing the parent resource cache to identify that it is not the original recipient of the resource request.
If the resource computing device that is identified to maintain the requested resource in storage is the resource cache component that is the current resource cache component (e.g., the resource cache component that originally received the request from the client computing device 102), the routine moves to block 716, where the requested resource is transmitted to the client computing device by the current resource cache component.
If, however, the resource computing device that is identified to maintain the requested resource in storage is a parent resource cache component to the current resource cache component, the routine 700 proceeds to block 714. At block 714, the current resource cache component determines whether to adjust the resident time associated with the requested resource. Illustratively, the adjustment is based on the various resource processing parameters and can include increasing the resident time, decreasing the resident time or not adjusting the resident time. An illustrative sub-routine 750 for determining whether to adjust resident time will be described with regard to
With reference now to
In decision block 754, the resource cache component determines whether the resource resident time parameters satisfy one or more threshold values. If the one or more resource resident time parameter are satisfied, the resource cache component adjusts the resident time for the requested resource. Alternatively, if the resource resident time parameters are not satisfied, the routine 750 terminates at block 758.
Illustratively, the satisfaction of the one or more threshold values for the resource resident time parameters can correspond to adjustments to increase and decrease the resident time associated with a resource. For example, if the number of requests received within a given time period increases, the resident time of the resource can be increased to indicate a lower popularity resource because the current resident time expires before the subsequent request. Likewise if a threshold amount of time has expired since the last request for the resource, the resource cache component may reset the resident time to a default value or initial value. Still further, in another example, the resource cache component can be limited in the amount of adjustment for the resident time. For example, each level of the resource cache component hierarchy may be associated with a range of resident times that limits the amount of adjustment for the resident times of resource maintained at the specific level in the resource cache server hierarchy.
While illustrative embodiments have been disclosed and discussed, one skilled in the relevant art will appreciate that additional or alternative embodiments may be implemented within the spirit and scope of the present invention. Additionally, although many embodiments have been indicated as illustrative, one skilled in the relevant art will appreciate that the illustrative embodiments do not need to be combined or implemented together. As such, some illustrative embodiments do not need to be utilized or implemented in accordance with scope of variations to the present disclosure.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5341477 | Pitkin et al. | Aug 1994 | A |
5611049 | Pitts | Mar 1997 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5892914 | Pitts | Apr 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5974454 | Apfel et al. | Oct 1999 | A |
6016512 | Huitema | Jan 2000 | A |
6026452 | Pitts | Feb 2000 | A |
6052718 | Gifford | Apr 2000 | A |
6078960 | Ballard | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6098096 | Tsirigotis et al. | Aug 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6157942 | Chu et al. | Dec 2000 | A |
6182111 | Inohara et al. | Jan 2001 | B1 |
6185598 | Farber et al. | Feb 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6205475 | Pitts | Mar 2001 | B1 |
6223288 | Byrne | Apr 2001 | B1 |
6275496 | Burns et al. | Aug 2001 | B1 |
6286043 | Cuomo et al. | Sep 2001 | B1 |
6286084 | Wexler et al. | Sep 2001 | B1 |
6304913 | Rune | Oct 2001 | B1 |
6351743 | DeArdo et al. | Feb 2002 | B1 |
6351775 | Yu | Feb 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366952 | Pitts | Apr 2002 | B2 |
6374290 | Scharber et al. | Apr 2002 | B1 |
6411967 | Van Renesse | Jun 2002 | B1 |
6415280 | Farber et al. | Jul 2002 | B1 |
6430607 | Kavner | Aug 2002 | B1 |
6438592 | Killian | Aug 2002 | B1 |
6452925 | Sistanizadeh et al. | Sep 2002 | B1 |
6457047 | Chandra et al. | Sep 2002 | B1 |
6459909 | Bilcliff et al. | Oct 2002 | B1 |
6473804 | Kaiser et al. | Oct 2002 | B1 |
6484143 | Swildens et al. | Nov 2002 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6529953 | Van Renesse | Mar 2003 | B1 |
6553413 | Leighton et al. | Apr 2003 | B1 |
6560610 | Eatherton et al. | May 2003 | B1 |
6611873 | Kanehara | Aug 2003 | B1 |
6654807 | Farber et al. | Nov 2003 | B2 |
6658462 | Dutta | Dec 2003 | B1 |
6678791 | Jacobs et al. | Jan 2004 | B1 |
6694358 | Swildens et al. | Feb 2004 | B1 |
6697805 | Choquier et al. | Feb 2004 | B1 |
6724770 | Van Renesse | Apr 2004 | B1 |
6732237 | Jacobs et al. | May 2004 | B1 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6754706 | Swildens et al. | Jun 2004 | B1 |
6760721 | Chasen et al. | Jul 2004 | B1 |
6769031 | Bero | Jul 2004 | B1 |
6782398 | Bahl | Aug 2004 | B1 |
6785704 | McCanne | Aug 2004 | B1 |
6804706 | Pitts | Oct 2004 | B2 |
6810291 | Card et al. | Oct 2004 | B2 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6829654 | Jungck | Dec 2004 | B1 |
6874017 | Inoue et al. | Mar 2005 | B1 |
6928467 | Peng et al. | Aug 2005 | B2 |
6941562 | Gao et al. | Sep 2005 | B2 |
6963850 | Bezos et al. | Nov 2005 | B1 |
6981017 | Kasriel et al. | Dec 2005 | B1 |
6986018 | O'Rourke et al. | Jan 2006 | B2 |
6990526 | Zhu | Jan 2006 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003555 | Jungck | Feb 2006 | B1 |
7006099 | Gut et al. | Feb 2006 | B2 |
7007089 | Freedman | Feb 2006 | B2 |
7010578 | Lewin et al. | Mar 2006 | B1 |
7010598 | Sitaraman et al. | Mar 2006 | B2 |
7024466 | Outten et al. | Apr 2006 | B2 |
7032010 | Swildens et al. | Apr 2006 | B1 |
7058706 | Iyer et al. | Jun 2006 | B1 |
7058953 | Willard et al. | Jun 2006 | B2 |
7065587 | Huitema et al. | Jun 2006 | B2 |
7072982 | Teodosiu et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7082476 | Cohen et al. | Jul 2006 | B1 |
7086061 | Joshi et al. | Aug 2006 | B1 |
7092505 | Allison et al. | Aug 2006 | B2 |
7092997 | Kasriel et al. | Aug 2006 | B1 |
7099936 | Chase et al. | Aug 2006 | B2 |
7103645 | Leighton et al. | Sep 2006 | B2 |
7117262 | Bai et al. | Oct 2006 | B2 |
7133905 | Dilley et al. | Nov 2006 | B2 |
7136922 | Sundaram et al. | Nov 2006 | B2 |
7139821 | Shah et al. | Nov 2006 | B1 |
7143169 | Champagne et al. | Nov 2006 | B1 |
7146560 | Dang et al. | Dec 2006 | B2 |
7149809 | Barde et al. | Dec 2006 | B2 |
7152118 | Anderson, IV et al. | Dec 2006 | B2 |
7174382 | Ramanathan et al. | Feb 2007 | B2 |
7185063 | Kasriel et al. | Feb 2007 | B1 |
7188214 | Kasriel et al. | Mar 2007 | B1 |
7194522 | Swildens et al. | Mar 2007 | B1 |
7200667 | Teodosiu et al. | Apr 2007 | B2 |
7216170 | Danker et al. | May 2007 | B2 |
7225254 | Swildens et al. | May 2007 | B1 |
7228350 | Hong et al. | Jun 2007 | B2 |
7228359 | Monteiro | Jun 2007 | B1 |
7233978 | Overton et al. | Jun 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7254636 | O'Toole, Jr. et al. | Aug 2007 | B1 |
7257581 | Steele et al. | Aug 2007 | B1 |
7260598 | Liskov et al. | Aug 2007 | B1 |
7269784 | Kasriel et al. | Sep 2007 | B1 |
7274658 | Bornstein et al. | Sep 2007 | B2 |
7289519 | Liskov | Oct 2007 | B1 |
7293093 | Leighton | Nov 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7316648 | Kelly et al. | Jan 2008 | B2 |
7320131 | O'Toole, Jr. | Jan 2008 | B1 |
7321918 | Burd et al. | Jan 2008 | B2 |
7363291 | Page | Apr 2008 | B1 |
7373416 | Kagan et al. | May 2008 | B2 |
7376736 | Sundaram et al. | May 2008 | B2 |
7380078 | Ikegaya et al. | May 2008 | B2 |
7398301 | Hennessey et al. | Jul 2008 | B2 |
7430610 | Pace et al. | Sep 2008 | B2 |
7441045 | Skene et al. | Oct 2008 | B2 |
7454500 | Hsu et al. | Nov 2008 | B1 |
7461170 | Taylor et al. | Dec 2008 | B1 |
7464142 | Flurry et al. | Dec 2008 | B2 |
7478148 | Neerdaels | Jan 2009 | B2 |
7492720 | Pruthi et al. | Feb 2009 | B2 |
7499998 | Toebes et al. | Mar 2009 | B2 |
7502836 | Menditto et al. | Mar 2009 | B1 |
7519720 | Fishman et al. | Apr 2009 | B2 |
7543024 | Holstege | Jun 2009 | B2 |
7548947 | Kasriel et al. | Jun 2009 | B2 |
7552235 | Chase et al. | Jun 2009 | B2 |
7565407 | Hayball | Jul 2009 | B1 |
7573916 | Bechtolsheim et al. | Aug 2009 | B1 |
7594189 | Walker et al. | Sep 2009 | B1 |
7596619 | Leighton et al. | Sep 2009 | B2 |
7623460 | Miyazaki | Nov 2009 | B2 |
7624169 | Lisiecki et al. | Nov 2009 | B2 |
7640296 | Fuchs et al. | Dec 2009 | B2 |
7650376 | Blumenau | Jan 2010 | B1 |
7653700 | Bahl et al. | Jan 2010 | B1 |
7653725 | Yahiro et al. | Jan 2010 | B2 |
7657622 | Douglis et al. | Feb 2010 | B1 |
7680897 | Carter et al. | Mar 2010 | B1 |
7702724 | Brydon et al. | Apr 2010 | B1 |
7706740 | Collins et al. | Apr 2010 | B2 |
7707314 | McCarthy et al. | Apr 2010 | B2 |
7711647 | Gunaseelan et al. | May 2010 | B2 |
7711788 | Lev Ran et al. | May 2010 | B2 |
7716367 | Leighton | May 2010 | B1 |
7725602 | Liu et al. | May 2010 | B2 |
7730187 | Raciborski et al. | Jun 2010 | B2 |
7739400 | Lindbo et al. | Jun 2010 | B2 |
7747720 | Toebes et al. | Jun 2010 | B2 |
7756913 | Day | Jul 2010 | B1 |
7761572 | Auerbach | Jul 2010 | B1 |
7765304 | Davis et al. | Jul 2010 | B2 |
7769823 | Jenny et al. | Aug 2010 | B2 |
7773596 | Marques | Aug 2010 | B1 |
7774342 | Virdy | Aug 2010 | B1 |
7787380 | Aggarwal et al. | Aug 2010 | B1 |
7792989 | Toebes et al. | Sep 2010 | B2 |
7809597 | Das et al. | Oct 2010 | B2 |
7813308 | Reddy et al. | Oct 2010 | B2 |
7814229 | Cabrera et al. | Oct 2010 | B1 |
7818454 | Kim et al. | Oct 2010 | B2 |
7836177 | Kasriel et al. | Nov 2010 | B2 |
7904875 | Hegyi | Mar 2011 | B2 |
7912921 | O'Rourke et al. | Mar 2011 | B2 |
7925782 | Sivasubramanian et al. | Apr 2011 | B2 |
7930393 | Baumback et al. | Apr 2011 | B1 |
7930427 | Josefsberg et al. | Apr 2011 | B2 |
7933988 | Nasuto et al. | Apr 2011 | B2 |
7937477 | Day et al. | May 2011 | B1 |
7949779 | Farber et al. | May 2011 | B2 |
7962597 | Richardson et al. | Jun 2011 | B2 |
7966404 | Hedin et al. | Jun 2011 | B2 |
7970816 | Chess et al. | Jun 2011 | B2 |
7970940 | van de Ven et al. | Jun 2011 | B1 |
7979509 | Malmskog et al. | Jul 2011 | B1 |
7991910 | Richardson et al. | Aug 2011 | B2 |
7996533 | Leighton et al. | Aug 2011 | B2 |
7996535 | Auerbach | Aug 2011 | B2 |
8000724 | Rayburn et al. | Aug 2011 | B1 |
8028090 | Richardson et al. | Sep 2011 | B2 |
8041809 | Sundaram et al. | Oct 2011 | B2 |
8041818 | Gupta et al. | Oct 2011 | B2 |
8065275 | Eriksen et al. | Nov 2011 | B2 |
8069231 | Schran et al. | Nov 2011 | B2 |
8073940 | Richardson et al. | Dec 2011 | B1 |
8082348 | Averbuj et al. | Dec 2011 | B1 |
8117306 | Baumback et al. | Feb 2012 | B1 |
8122098 | Richardson et al. | Feb 2012 | B1 |
8122124 | Baumback et al. | Feb 2012 | B1 |
8135820 | Richardson et al. | Mar 2012 | B2 |
8156243 | Richardson et al. | Apr 2012 | B2 |
8190682 | Paterson-Jones et al. | May 2012 | B2 |
8224986 | Liskov et al. | Jul 2012 | B1 |
8234403 | Richardson et al. | Jul 2012 | B2 |
8239530 | Sundaram et al. | Aug 2012 | B2 |
8250211 | Swildens et al. | Aug 2012 | B2 |
8266288 | Banerjee et al. | Sep 2012 | B2 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8291117 | Eggleston et al. | Oct 2012 | B1 |
8301645 | Crook | Oct 2012 | B1 |
8321568 | Sivasubramanian et al. | Nov 2012 | B2 |
8402137 | Sivasubramanian et al. | Mar 2013 | B2 |
8452874 | MacCarthaigh et al. | May 2013 | B2 |
8468222 | Sakata et al. | Jun 2013 | B2 |
8521851 | Richardson et al. | Aug 2013 | B1 |
8521908 | Holmes et al. | Aug 2013 | B2 |
8527658 | Holmes et al. | Sep 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8626950 | Richardson et al. | Jan 2014 | B1 |
8639817 | Sivasubramanian et al. | Jan 2014 | B2 |
8676918 | Richardson et al. | Mar 2014 | B2 |
8688837 | Richardson et al. | Apr 2014 | B1 |
20010000811 | May et al. | May 2001 | A1 |
20010032133 | Moran | Oct 2001 | A1 |
20010034704 | Farhat et al. | Oct 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010056416 | Garcia-Luna-Aceves | Dec 2001 | A1 |
20010056500 | Farber et al. | Dec 2001 | A1 |
20020002613 | Freeman et al. | Jan 2002 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020048269 | Hong et al. | Apr 2002 | A1 |
20020049608 | Hartsell et al. | Apr 2002 | A1 |
20020052942 | Swildens et al. | May 2002 | A1 |
20020062372 | Hong et al. | May 2002 | A1 |
20020068554 | Dusse | Jun 2002 | A1 |
20020069420 | Russell et al. | Jun 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020082858 | Heddaya et al. | Jun 2002 | A1 |
20020083118 | Sim | Jun 2002 | A1 |
20020083148 | Shaw et al. | Jun 2002 | A1 |
20020087374 | Boubez et al. | Jul 2002 | A1 |
20020092026 | Janniello et al. | Jul 2002 | A1 |
20020099616 | Sweldens | Jul 2002 | A1 |
20020099850 | Farber et al. | Jul 2002 | A1 |
20020101836 | Dorenbosch | Aug 2002 | A1 |
20020107944 | Bai et al. | Aug 2002 | A1 |
20020112049 | Elnozahy et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020116491 | Boyd et al. | Aug 2002 | A1 |
20020124047 | Gartner et al. | Sep 2002 | A1 |
20020124098 | Shaw | Sep 2002 | A1 |
20020129123 | Johnson et al. | Sep 2002 | A1 |
20020135611 | Deosaran et al. | Sep 2002 | A1 |
20020138286 | Engstrom | Sep 2002 | A1 |
20020138437 | Lewin et al. | Sep 2002 | A1 |
20020143989 | Huitema et al. | Oct 2002 | A1 |
20020147770 | Tang | Oct 2002 | A1 |
20020147774 | Lisiecki et al. | Oct 2002 | A1 |
20020150094 | Cheng et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020161767 | Shapiro et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020165912 | Wenocur et al. | Nov 2002 | A1 |
20020188722 | Banerjee et al. | Dec 2002 | A1 |
20020198953 | O'Rourke et al. | Dec 2002 | A1 |
20030002484 | Freedman | Jan 2003 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030028642 | Agarwal et al. | Feb 2003 | A1 |
20030033283 | Evans et al. | Feb 2003 | A1 |
20030037139 | Shteyn | Feb 2003 | A1 |
20030065739 | Shnier | Apr 2003 | A1 |
20030074401 | Connell et al. | Apr 2003 | A1 |
20030079027 | Slocombe et al. | Apr 2003 | A1 |
20030093523 | Cranor et al. | May 2003 | A1 |
20030099202 | Lear et al. | May 2003 | A1 |
20030101278 | Garcia-Luna-Aceves et al. | May 2003 | A1 |
20030120741 | Wu et al. | Jun 2003 | A1 |
20030133554 | Nykanen et al. | Jul 2003 | A1 |
20030135509 | Davis et al. | Jul 2003 | A1 |
20030140087 | Lincoln et al. | Jul 2003 | A1 |
20030145038 | Tariq et al. | Jul 2003 | A1 |
20030145066 | Okada et al. | Jul 2003 | A1 |
20030149581 | Chaudhri et al. | Aug 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030163722 | Anderson, IV | Aug 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030172183 | Anderson, IV et al. | Sep 2003 | A1 |
20030172291 | Judge et al. | Sep 2003 | A1 |
20030174648 | Wang et al. | Sep 2003 | A1 |
20030182305 | Balva et al. | Sep 2003 | A1 |
20030182413 | Allen et al. | Sep 2003 | A1 |
20030182447 | Schilling | Sep 2003 | A1 |
20030187935 | Agarwalla et al. | Oct 2003 | A1 |
20030187970 | Chase et al. | Oct 2003 | A1 |
20030191822 | Leighton et al. | Oct 2003 | A1 |
20030200394 | Ashmore et al. | Oct 2003 | A1 |
20030204602 | Hudson et al. | Oct 2003 | A1 |
20030229682 | Day | Dec 2003 | A1 |
20030233423 | Dilley et al. | Dec 2003 | A1 |
20030233455 | Leber et al. | Dec 2003 | A1 |
20030236700 | Arning et al. | Dec 2003 | A1 |
20040010621 | Afergan et al. | Jan 2004 | A1 |
20040019518 | Abraham et al. | Jan 2004 | A1 |
20040024841 | Becker et al. | Feb 2004 | A1 |
20040030620 | Benjamin et al. | Feb 2004 | A1 |
20040034744 | Karlsson et al. | Feb 2004 | A1 |
20040039798 | Hotz et al. | Feb 2004 | A1 |
20040044731 | Chen et al. | Mar 2004 | A1 |
20040044791 | Pouzzner | Mar 2004 | A1 |
20040059805 | Dinker et al. | Mar 2004 | A1 |
20040064501 | Jan et al. | Apr 2004 | A1 |
20040073596 | Kloninger et al. | Apr 2004 | A1 |
20040073867 | Kausik et al. | Apr 2004 | A1 |
20040078468 | Hedin et al. | Apr 2004 | A1 |
20040078487 | Cernohous et al. | Apr 2004 | A1 |
20040083283 | Sundaram et al. | Apr 2004 | A1 |
20040083307 | Uysal | Apr 2004 | A1 |
20040117455 | Kaminsky et al. | Jun 2004 | A1 |
20040128344 | Trossen | Jul 2004 | A1 |
20040128346 | Melamed et al. | Jul 2004 | A1 |
20040167981 | Douglas et al. | Aug 2004 | A1 |
20040172466 | Douglas et al. | Sep 2004 | A1 |
20040194085 | Beaubien et al. | Sep 2004 | A1 |
20040194102 | Neerdaels | Sep 2004 | A1 |
20040203630 | Wang | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20040205162 | Parikh | Oct 2004 | A1 |
20040215823 | Kleinfelter et al. | Oct 2004 | A1 |
20040221034 | Kausik et al. | Nov 2004 | A1 |
20040249939 | Amini et al. | Dec 2004 | A1 |
20040249971 | Klinker | Dec 2004 | A1 |
20040249975 | Tuck et al. | Dec 2004 | A1 |
20040254921 | Cohen et al. | Dec 2004 | A1 |
20040267906 | Truty | Dec 2004 | A1 |
20040267907 | Gustafsson | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050021706 | Maggi et al. | Jan 2005 | A1 |
20050021862 | Schroeder et al. | Jan 2005 | A1 |
20050038967 | Umbehocker et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050102683 | Branson et al. | May 2005 | A1 |
20050108169 | Balasubramanian et al. | May 2005 | A1 |
20050108529 | Juneau | May 2005 | A1 |
20050114296 | Farber et al. | May 2005 | A1 |
20050132083 | Raciborski et al. | Jun 2005 | A1 |
20050157712 | Rangarajan et al. | Jul 2005 | A1 |
20050163168 | Sheth et al. | Jul 2005 | A1 |
20050168782 | Kobashi et al. | Aug 2005 | A1 |
20050171959 | Deforche et al. | Aug 2005 | A1 |
20050188073 | Nakamichi et al. | Aug 2005 | A1 |
20050192008 | Desai et al. | Sep 2005 | A1 |
20050198571 | Kramer et al. | Sep 2005 | A1 |
20050216569 | Coppola et al. | Sep 2005 | A1 |
20050216674 | Robbin et al. | Sep 2005 | A1 |
20050229119 | Torvinen | Oct 2005 | A1 |
20050232165 | Brawn et al. | Oct 2005 | A1 |
20050259672 | Eduri | Nov 2005 | A1 |
20050262248 | Jennings, III et al. | Nov 2005 | A1 |
20050267991 | Huitema et al. | Dec 2005 | A1 |
20050267992 | Huitema et al. | Dec 2005 | A1 |
20050267993 | Huitema et al. | Dec 2005 | A1 |
20050278259 | Gunaseelan et al. | Dec 2005 | A1 |
20050283759 | Peteanu et al. | Dec 2005 | A1 |
20050283784 | Suzuki | Dec 2005 | A1 |
20060013158 | Ahuja et al. | Jan 2006 | A1 |
20060020596 | Liu et al. | Jan 2006 | A1 |
20060020684 | Mukherjee et al. | Jan 2006 | A1 |
20060020714 | Girouard et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060026067 | Nicholas et al. | Feb 2006 | A1 |
20060026154 | Altinel et al. | Feb 2006 | A1 |
20060036720 | Faulk, Jr. | Feb 2006 | A1 |
20060037037 | Miranz | Feb 2006 | A1 |
20060041614 | Oe | Feb 2006 | A1 |
20060047787 | Agarwal et al. | Mar 2006 | A1 |
20060047813 | Aggarwal et al. | Mar 2006 | A1 |
20060059246 | Grove | Mar 2006 | A1 |
20060063534 | Kokkonen et al. | Mar 2006 | A1 |
20060064476 | Decasper et al. | Mar 2006 | A1 |
20060064500 | Roth et al. | Mar 2006 | A1 |
20060074750 | Clark et al. | Apr 2006 | A1 |
20060075084 | Lyon | Apr 2006 | A1 |
20060075139 | Jungck | Apr 2006 | A1 |
20060083165 | McLane et al. | Apr 2006 | A1 |
20060085536 | Meyer et al. | Apr 2006 | A1 |
20060112066 | Hamzy | May 2006 | A1 |
20060112176 | Liu et al. | May 2006 | A1 |
20060120385 | Atchison et al. | Jun 2006 | A1 |
20060129665 | Toebes et al. | Jun 2006 | A1 |
20060143293 | Freedman | Jun 2006 | A1 |
20060149529 | Nguyen et al. | Jul 2006 | A1 |
20060155823 | Tran et al. | Jul 2006 | A1 |
20060161541 | Cencini | Jul 2006 | A1 |
20060168088 | Leighton et al. | Jul 2006 | A1 |
20060179080 | Meek et al. | Aug 2006 | A1 |
20060184936 | Abels et al. | Aug 2006 | A1 |
20060190605 | Franz et al. | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060195866 | Thukral | Aug 2006 | A1 |
20060218304 | Mukherjee et al. | Sep 2006 | A1 |
20060227740 | McLaughlin et al. | Oct 2006 | A1 |
20060227758 | Rana et al. | Oct 2006 | A1 |
20060230137 | Gare et al. | Oct 2006 | A1 |
20060233155 | Srivastava | Oct 2006 | A1 |
20060253546 | Chang et al. | Nov 2006 | A1 |
20060253609 | Andreev et al. | Nov 2006 | A1 |
20060259581 | Piersol | Nov 2006 | A1 |
20060259690 | Vittal et al. | Nov 2006 | A1 |
20060259984 | Juneau | Nov 2006 | A1 |
20060265497 | Ohata et al. | Nov 2006 | A1 |
20060265508 | Angel et al. | Nov 2006 | A1 |
20060265516 | Schilling | Nov 2006 | A1 |
20060265720 | Cai et al. | Nov 2006 | A1 |
20060271641 | Stavrakos et al. | Nov 2006 | A1 |
20060282522 | Lewin et al. | Dec 2006 | A1 |
20070005689 | Leighton et al. | Jan 2007 | A1 |
20070005892 | Mullender et al. | Jan 2007 | A1 |
20070011267 | Overton et al. | Jan 2007 | A1 |
20070014241 | Banerjee et al. | Jan 2007 | A1 |
20070021998 | Laithwaite et al. | Jan 2007 | A1 |
20070038994 | Davis et al. | Feb 2007 | A1 |
20070041393 | Westhead et al. | Feb 2007 | A1 |
20070043859 | Ruul | Feb 2007 | A1 |
20070050522 | Grove et al. | Mar 2007 | A1 |
20070050703 | Lebel | Mar 2007 | A1 |
20070055764 | Dilley et al. | Mar 2007 | A1 |
20070061440 | Sundaram et al. | Mar 2007 | A1 |
20070076872 | Juneau | Apr 2007 | A1 |
20070086429 | Lawrence et al. | Apr 2007 | A1 |
20070094361 | Hoynowski et al. | Apr 2007 | A1 |
20070101377 | Six et al. | May 2007 | A1 |
20070118667 | McCarthy et al. | May 2007 | A1 |
20070118668 | McCarthy et al. | May 2007 | A1 |
20070134641 | Lieu | Jun 2007 | A1 |
20070168517 | Weller | Jul 2007 | A1 |
20070174426 | Swildens et al. | Jul 2007 | A1 |
20070174442 | Sherman et al. | Jul 2007 | A1 |
20070174490 | Choi et al. | Jul 2007 | A1 |
20070183342 | Wong et al. | Aug 2007 | A1 |
20070198982 | Bolan et al. | Aug 2007 | A1 |
20070204107 | Greenfield et al. | Aug 2007 | A1 |
20070208737 | Li et al. | Sep 2007 | A1 |
20070219795 | Park et al. | Sep 2007 | A1 |
20070220010 | Ertugrul | Sep 2007 | A1 |
20070244964 | Challenger et al. | Oct 2007 | A1 |
20070250467 | Mesnik et al. | Oct 2007 | A1 |
20070250560 | Wein et al. | Oct 2007 | A1 |
20070250601 | Amlekar et al. | Oct 2007 | A1 |
20070250611 | Bhogal et al. | Oct 2007 | A1 |
20070253377 | Janneteau et al. | Nov 2007 | A1 |
20070255843 | Zubev | Nov 2007 | A1 |
20070263604 | Tal | Nov 2007 | A1 |
20070266113 | Koopmans et al. | Nov 2007 | A1 |
20070266311 | Westphal | Nov 2007 | A1 |
20070266333 | Cossey et al. | Nov 2007 | A1 |
20070271375 | Hwang | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070280229 | Kenney | Dec 2007 | A1 |
20070288588 | Wein et al. | Dec 2007 | A1 |
20080005057 | Ozzie et al. | Jan 2008 | A1 |
20080008089 | Bornstein et al. | Jan 2008 | A1 |
20080025304 | Venkataswami et al. | Jan 2008 | A1 |
20080046596 | Afergan et al. | Feb 2008 | A1 |
20080065724 | Seed et al. | Mar 2008 | A1 |
20080065745 | Leighton et al. | Mar 2008 | A1 |
20080071859 | Seed et al. | Mar 2008 | A1 |
20080071987 | Karn et al. | Mar 2008 | A1 |
20080072264 | Crayford | Mar 2008 | A1 |
20080082551 | Farber et al. | Apr 2008 | A1 |
20080086574 | Raciborski et al. | Apr 2008 | A1 |
20080103805 | Shear et al. | May 2008 | A1 |
20080104268 | Farber et al. | May 2008 | A1 |
20080114829 | Button et al. | May 2008 | A1 |
20080134043 | Georgis et al. | Jun 2008 | A1 |
20080147866 | Stolorz et al. | Jun 2008 | A1 |
20080147873 | Matsumoto | Jun 2008 | A1 |
20080155061 | Afergan et al. | Jun 2008 | A1 |
20080155614 | Cooper et al. | Jun 2008 | A1 |
20080162667 | Verma et al. | Jul 2008 | A1 |
20080172488 | Jawahar et al. | Jul 2008 | A1 |
20080189437 | Halley | Aug 2008 | A1 |
20080201332 | Souders et al. | Aug 2008 | A1 |
20080215718 | Stolorz et al. | Sep 2008 | A1 |
20080215730 | Sundaram et al. | Sep 2008 | A1 |
20080215735 | Farber et al. | Sep 2008 | A1 |
20080215750 | Farber et al. | Sep 2008 | A1 |
20080222281 | Dilley et al. | Sep 2008 | A1 |
20080222291 | Weller et al. | Sep 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080228574 | Stewart et al. | Sep 2008 | A1 |
20080228920 | Souders et al. | Sep 2008 | A1 |
20080235400 | Slocombe et al. | Sep 2008 | A1 |
20080256175 | Lee et al. | Oct 2008 | A1 |
20080275772 | Suryanarayana et al. | Nov 2008 | A1 |
20080281950 | Wald et al. | Nov 2008 | A1 |
20080288722 | Lecoq et al. | Nov 2008 | A1 |
20080301670 | Gouge et al. | Dec 2008 | A1 |
20080319862 | Golan et al. | Dec 2008 | A1 |
20090013063 | Soman | Jan 2009 | A1 |
20090016236 | Alcala et al. | Jan 2009 | A1 |
20090029644 | Sue et al. | Jan 2009 | A1 |
20090031367 | Sue | Jan 2009 | A1 |
20090031368 | Ling | Jan 2009 | A1 |
20090031376 | Riley et al. | Jan 2009 | A1 |
20090049098 | Pickelsimer et al. | Feb 2009 | A1 |
20090063704 | Taylor et al. | Mar 2009 | A1 |
20090070533 | Elazary et al. | Mar 2009 | A1 |
20090083228 | Shatz et al. | Mar 2009 | A1 |
20090086741 | Zhang | Apr 2009 | A1 |
20090103707 | McGary et al. | Apr 2009 | A1 |
20090106381 | Kasriel et al. | Apr 2009 | A1 |
20090112703 | Brown | Apr 2009 | A1 |
20090125934 | Jones et al. | May 2009 | A1 |
20090132368 | Cotter et al. | May 2009 | A1 |
20090132648 | Swildens et al. | May 2009 | A1 |
20090144412 | Ferguson et al. | Jun 2009 | A1 |
20090150926 | Schlack | Jun 2009 | A1 |
20090157850 | Gagliardi et al. | Jun 2009 | A1 |
20090158163 | Stephens et al. | Jun 2009 | A1 |
20090164331 | Bishop et al. | Jun 2009 | A1 |
20090177667 | Ramos et al. | Jul 2009 | A1 |
20090182815 | Czechowski et al. | Jul 2009 | A1 |
20090182945 | Aviles et al. | Jul 2009 | A1 |
20090187575 | DaCosta | Jul 2009 | A1 |
20090204682 | Jeyaseelan et al. | Aug 2009 | A1 |
20090210549 | Hudson et al. | Aug 2009 | A1 |
20090248786 | Richardson et al. | Oct 2009 | A1 |
20090248787 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248852 | Fuhrmann et al. | Oct 2009 | A1 |
20090248858 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248893 | Richardson et al. | Oct 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090259971 | Rankine et al. | Oct 2009 | A1 |
20090271577 | Campana et al. | Oct 2009 | A1 |
20090271730 | Rose et al. | Oct 2009 | A1 |
20090279444 | Ravindran et al. | Nov 2009 | A1 |
20090287750 | Banavar et al. | Nov 2009 | A1 |
20090307307 | Igarashi | Dec 2009 | A1 |
20090327489 | Swildens et al. | Dec 2009 | A1 |
20090327517 | Sivasubramanian et al. | Dec 2009 | A1 |
20090327914 | Adar et al. | Dec 2009 | A1 |
20100005175 | Swildens et al. | Jan 2010 | A1 |
20100011061 | Hudson et al. | Jan 2010 | A1 |
20100023601 | Lewin et al. | Jan 2010 | A1 |
20100030662 | Klein | Feb 2010 | A1 |
20100034470 | Valencia-Campo et al. | Feb 2010 | A1 |
20100036944 | Douglis et al. | Feb 2010 | A1 |
20100057894 | Glasser | Mar 2010 | A1 |
20100070603 | Moss et al. | Mar 2010 | A1 |
20100088367 | Brown et al. | Apr 2010 | A1 |
20100088405 | Huang et al. | Apr 2010 | A1 |
20100100629 | Raciborski et al. | Apr 2010 | A1 |
20100111059 | Bappu et al. | May 2010 | A1 |
20100121953 | Friedman et al. | May 2010 | A1 |
20100122069 | Gonion | May 2010 | A1 |
20100125673 | Richardson et al. | May 2010 | A1 |
20100125675 | Richardson et al. | May 2010 | A1 |
20100131646 | Drako | May 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100169392 | Lev Ran et al. | Jul 2010 | A1 |
20100192225 | Ma et al. | Jul 2010 | A1 |
20100217801 | Leighton et al. | Aug 2010 | A1 |
20100226372 | Watanabe | Sep 2010 | A1 |
20100257024 | Holmes et al. | Oct 2010 | A1 |
20100257266 | Holmes et al. | Oct 2010 | A1 |
20100257566 | Matila | Oct 2010 | A1 |
20100293479 | Rousso et al. | Nov 2010 | A1 |
20100299438 | Zimmerman et al. | Nov 2010 | A1 |
20100299439 | McCarthy et al. | Nov 2010 | A1 |
20100312861 | Kolhi et al. | Dec 2010 | A1 |
20100318508 | Brawer et al. | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110029598 | Arnold et al. | Feb 2011 | A1 |
20110040893 | Karaoguz et al. | Feb 2011 | A1 |
20110078000 | Ma et al. | Mar 2011 | A1 |
20110078230 | Sepulveda | Mar 2011 | A1 |
20110087769 | Holmes et al. | Apr 2011 | A1 |
20110096987 | Morales et al. | Apr 2011 | A1 |
20110153941 | Spatscheck et al. | Jun 2011 | A1 |
20110191449 | Swildens et al. | Aug 2011 | A1 |
20110238501 | Almeida | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110252142 | Richardson et al. | Oct 2011 | A1 |
20110252143 | Baumback et al. | Oct 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110276623 | Girbal | Nov 2011 | A1 |
20120036238 | Sundaram et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120124184 | Sakata et al. | May 2012 | A1 |
20120131177 | Brandt et al. | May 2012 | A1 |
20120166516 | Simmons et al. | Jun 2012 | A1 |
20120169646 | Berkes et al. | Jul 2012 | A1 |
20120179839 | Raciborski et al. | Jul 2012 | A1 |
20120198043 | Hesketh et al. | Aug 2012 | A1 |
20120233522 | Barton et al. | Sep 2012 | A1 |
20120233668 | Leafe et al. | Sep 2012 | A1 |
20120303804 | Sundaram et al. | Nov 2012 | A1 |
20120311648 | Swildens et al. | Dec 2012 | A1 |
20130041872 | Aizman et al. | Feb 2013 | A1 |
20130086001 | Bhogal et al. | Apr 2013 | A1 |
20130130221 | Kortemeyer et al. | May 2013 | A1 |
20130198341 | Kim | Aug 2013 | A1 |
20130212300 | Eggleston et al. | Aug 2013 | A1 |
20130246567 | Green et al. | Sep 2013 | A1 |
20130268616 | Sakata et al. | Oct 2013 | A1 |
20130339429 | Richardson et al. | Dec 2013 | A1 |
20140075109 | Richardson et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1422468 | Jun 2003 | CN |
1605182 | Apr 2005 | CN |
101189598 | May 2008 | CN |
101460907 | Jun 2009 | CN |
2008167 | Dec 2008 | EP |
2003-167810 | Jun 2003 | JP |
2003-167813 | Jun 2003 | JP |
2003522358 | Jul 2003 | JP |
2004-533738 | Nov 2004 | JP |
2007-133896 | May 2007 | JP |
2009-071538 | Apr 2009 | JP |
WO 2007007960 | Jan 2007 | WO |
WO 2007126837 | Nov 2007 | WO |
WO 2010002603 | Jan 2010 | WO |
WO 2012044587 | Apr 2012 | WO |
Entry |
---|
International Search Report and Written Opinion in PCT/US2011/053302 mailed Nov. 28, 2011 in 11 pages. |
Singapore Written Opinion in Application No. 201006836-9, mailed Oct. 12, 2011 in 12 pages. |
Singapore Written Opinion in Application No. 201006837-7, mailed Oct. 12, 2011 in 11 pages. |
Singapore Written Opinion in Application No. 201006874-0, mailed Oct. 12, 2011 in 10 pages. |
Supplementary European Search Report in Application No. 09727694.3 mailed Jan. 30, 2012 in 6 pages. |
International Search Report and Written Opinion in PCT/US2011/061486 mailed Mar. 30, 2012 in 11 pages. |
American Bar Association; Digital Signature Guidelines Tutorial [online]; Feb. 10, 2002 [retrived on Feb. 3, 2010]; American Bar Association Section of Science and Technology Information Security Committee; Retrieved from the Internet: <URL:http://web.archive.org/web/20020210124615/www.abanet.org/scitech/ec/isc/dsg-tutorial.html; pp. 1-8. |
Singapore Examination Report in Application No. 201006837-7 mailed May 16, 2012. |
Baglioni et al., “Preprocessing and Mining Web Log Data for Web Personalization”, LNAI 2829, 2003, pp. 237-249. |
Liu et al., “Combined mining of Web server logs and web contents for classifying user navigation patterns and predicting users' future requests,” Data & Knowledge Engineering 61 (2007) pp. 304-330. |
Tan et al., “Classification: Basic Concepts, Decision Tree, and Model Evaluation”, Introduction in Data Mining; http://www-users.cs.umn.edu/˜kumar/dmbook/ch4.pdf, 2005, pp. 245-205. |
Xu et al., “Decision tree regression for soft classification of remote sensing data”, Remote Sensing of Environment 97 (2005) pp. 322-336. |
First Office Action in Chinese Application No. 200980119993.1 dated Jul. 4, 2012. |
First Office Action in Chinese Application No. 200980119995.0 dated Jul. 6, 2012. |
First Office Action in Chinese Application No. 200980145872.4 dated Nov. 29, 2012. |
Search Report and Written Opinion in Singapore Application No. 201103333-9 mailed Nov. 19, 2012. |
Singapore Written Opinion in Application No. 201006836-9, mailed Apr. 30, 2012 in 10 pages. |
“Global Server Load Balancing with ServerIron,” Foundry Networks, retrieved Aug. 30, 2007, from http://www.foundrynet.com/pdf/an-global-server-load-bal.pdf, 7 pages. |
“Grid Computing Solutions,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/grid, 3 pages. |
“Grid Offerings,” Java.net, retrieved May 3, 2006, from http://wiki.java.net/bin/view/Sungrid/OtherGridOfferings, 8 pages. |
“Recent Advances Boost System Virtualization,” eWeek.com, retrieved from May 3, 2006, http://www.eWeek.com/article2/0,1895,1772626,00.asp, 5 pages. |
“Scaleable Trust of Next Generation Management (STRONGMAN),” retrieved May 17, 2006, from http://www.cis.upenn.edu/˜dsl/STRONGMAN/, 4 pages. |
“Sun EDA Compute Ranch,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://sun.com/processors/ranch/brochure.pdf, 2 pages. |
“Sun Microsystems Accelerates UltraSP ARC Processor Design Program With New Burlington, Mass. Compute Ranch,” Nov. 6, 2002, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2002-11/sunflash.20021106.3 .xml, 2 pages. |
“Sun N1 Grid Engine 6,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/gridware/index.xml, 3 pages. |
“Sun Opens New Processor Design Compute Ranch,” Nov. 30, 2001, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2001-11/sunflash.20011130.1.xml, 3 pages. |
“The Softricity Desktop,” Softricity, Inc., retrieved May 3, 2006, from http://www.softricity.com/products/, 3 pages. |
“Xen—The Xen virtual Machine Monitor,” University of Cambridge Computer Laboratory, retrieved Nov. 8, 2005, from http://www.cl.cam.ac.uk/Research/SRG/netos/xen/, 2 pages. |
“XenFaq,” retrieved Nov. 8, 2005, from http://wiki.xensource.com/xenwiki/XenFaq?action=print, 9 pages. |
Abi, Issam, et al., “A Business Driven Management Framework for Utility Computing Environments,” Oct. 12, 2004, HP Laboratories Bristol, HPL-2004-171, retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2004/HPL-2004-171.pdf, 14 pages. |
Bellovin, S., “Distributed Firewalls,” ;login;:37-39, Nov. 1999, http://www.cs.columbia.edu/-smb/papers/distfw. html, 10 pages, retrieved Nov. 11, 2005. |
Blaze, M., “Using the KeyNote Trust Management System,” Mar. 1, 2001, from http://www.crypto.com/trustmgt/kn.html, 4 pages, retrieved May 17, 2006. |
Brenton, C., “What is Egress Filtering and How Can I Implement It?—Egress Filtering v 0.2,” Feb. 29, 2000, SANS Institute, http://www.sans.org/infosecFAQ/firewall/egress.htm, 6 pages. |
Byun et al., “A Dynamic Grid Services Deployment Mechanism for On-Demand Resource Provisioning”, IEEE International Symposium on Cluster Computing and the Grid:863-870, 2005. |
Clark, C., “Live Migration of Virtual Machines,” May 2005, NSDI '05: 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, May 2-4, 2005, retrieved from http://www.usenix.org/events/nsdi05/tech/full—papers/clark/clark.pdf, 14 pages. |
Coulson, D., “Network Security Iptables,” Apr. 2003, Linuxpro, Part 2, retrieved from http://davidcoulson.net/writing/lxf/38/iptables.pdf, 4 pages. |
Coulson, D., “Network Security Iptables,” Mar. 2003, Linuxpro, Part 1, retrieved from http://davidcoulson.net/writing/lxf/39/iptables.pdf, 4 pages. |
Deleuze, C., et al., A DNS Based Mapping Peering System for Peering CDNs, draft-deleuze-cdnp-dnsmap-peer-00.txt, Nov. 20, 2000, 20 pages. |
Demers, A., “Epidemic Algorithms for Replicated Database Maintenance,” 1987, Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, Aug. 10-12, 1987, 12 pages. |
First Office Action in Chinese Application No. 200980111426.1 mailed Feb. 16, 2013. |
Gruener, J., “A Vision of Togetherness,” May 24, 2004, NetworkWorld, retrieved May 3, 2006, from, http://www.networkworld.com/supp/2004/ndc3/0524virt.html, 9 pages. |
International Preliminary Report on Patentability in PCT/US2007/007601 mailed Sep. 30, 2008 in 8 pages. |
International Search Report and Written Opinion in PCT/US07/07601 mailed Jul. 18, 2008 in 11 pages. |
International Search Report and Written Opinion in PCT/US2010/060567 mailed on Mar. 28, 2012. |
Ioannidis, S., et al., “Implementing a Distributed Firewall,” Nov. 2000, (ACM) Proceedings of the ACM Computer and Communications Security (CCS) 2000, Athens, Greece, pp. 190-199, retrieved from http://www.cis.upenn.edu/˜dls/STRONGMAN/Papers/df.pdf, 10 pages. |
Joseph, Joshy, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages. |
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/Iptables—Basics.html, 4 pages. |
Maesono, et al., “A Local Scheduling Method considering Data Transfer in Data Grid,” Technical Report of IEICE, vol. 104, No. 692, pp. 435-440, The Institute of Electronics, Information and Communication Engineers, Japan, Feb. 2005. |
Office Action in Candian Application No. 2741895 dated Feb. 25, 2013. |
Office Action in Japanese Application No. 2011-502138 mailed Feb. 1, 2013. |
Office Action in Japanese Application No. 2011-502140 mailed Dec. 7, 2012. |
Office Action in Japanese Application No. 2012-052264 mailed Dec. 11, 2012 in 26 pages. |
Shankland, S., “Sun to buy start-up to bolster N1 ,” Jul. 30, 2003, CNet News.com, retrieved May 3, 2006, http://news.zdnet.com/2100-3513—22-5057752.html, 8 pages. |
Strand, L., “Adaptive distributed firewall using intrusion detection,” Nov. 1, 2004, University of Oslo Department of Informatics, retrieved Mar. 8, 2006, from http://gnist.org/˜lars/studies/master/StrandLars-master.pdf, 158 pages. |
Supplementary European Search Report in Application No. 07754164.7 mailed Dec. 20, 2010 in 7 pages. |
Supplementary European Search Report in Application No. 09728756.9 mailed Jan. 8, 2013. |
Takizawa, et al., “Scalable MultiReplication Framework on The Grid,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2004, No. 81, pp. 247-252, Japan, Aug. 1, 2004. |
Van Renesse, R., “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining,” May 2003, ACM Transactions on Computer Systems (TOCS), 21 (2): 164-206, 43 pages. |
Vijayan, J., “Terraspring Gives Sun's N1 a Boost,” Nov. 25, 2002, Computerworld, retrieved May 3, 2006, from http://www.computerworld.com/printthis/2002/0,4814, 76159,00.html, 3 pages. |
Virtual Iron Software Home, Virtual Iron, retrieved May 3, 2006, from http://www.virtualiron.com/, 1 page. |
Waldspurger, CA., “Spawn: A Distributed Computational Economy,” Feb. 1992, IEEE Transactions on Software Engineering, 18(2): 103-117,I5 pages. |
Watanabe, et al., “Remote Program Shipping System for GridRPC Systems,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2003, No. 102, pp. 73-78, Japan, Oct. 16, 2003. |
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006. |
Zhu, Xiaoyun, et al., “Utility-Driven Workload Management Using Nested Control Design,” Mar. 29, 2006, HP Laboratories Palo Alto, HPL-2005-193(R.1), retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2005/HPL-2005-193R1.pdf, 9 pages. |
Barbir, A., et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt). |
Bennami, M., et al., Resource Allocation for Autonomic Data Centers Using Analytic Performance Models, 2005, IEEE, 12 pages. |
Chipara et al, “Realtime Power-Aware Routing in Sensor Network”, IEEE, 2006, 10 pages. |
International Preliminary Report on Patentability and Written Opinion in PCT/US2010/060567 mailed on Jun. 19, 2012. |
International Preliminary Report on Patentability and Written Opinion in PCT/US2010/060569 mailed Jun. 19, 2012. |
International Preliminary Report on Patentability and Written Opinion in PCT/US2010/060573 mailed Jun. 19, 2012. |
International Preliminary Report on Patentability in PCT/US2011/053302 mailed Apr. 2, 2013. |
International Preliminary Report on Patentability in PCT/US2011/061486 mailed May 22, 2013. |
Kounev, S., et al., Autonomic QoS-Aware Resource Management in Grid Computing Using Online Performance Models, 2007, ICST, Valuetools, 2007, 10 pages. |
Office Action in Canadian Application No. 2726915 dated May 13, 2013. |
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013. |
Office Action in Japanese Application No. 2011-516466 mailed Mar. 6, 2013. |
Second Office Action in Chinese Application No. 200980119993.1 dated Mar. 12, 2013. |
Office Action in Canadian Application No. 2741895 dated Feb. 25, 2013. |
Office Action in Chinese Application No. 200980119995.0 dated Apr. 15, 2013. |
Office Action in Korean Application No. 10-2011-7002461 mailed May 29, 2013. |
Preliminary Examination in Chinese Application No. 201180053405.6 dated May 28, 2013. English Translation Not Yet Received. |
First Office Action in Chinese Application No. 200980111422.3 dated Apr. 13, 2012. |
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013. |
Office Action in Japanese Application No. 2011-502139 dated Nov. 5, 2013. |
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”, Dec. 18, 2004, Technical University Berlin, all pages. |
Second Office Action in Chinese Application No. 200980111426.1 mailed Dec. 25, 2013. |
Examination Report in Singapore Application No. 201006874-0 dated May 16, 2012. |
Third Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013. |
Fourth Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013. |
Office Action in Japanese Application No. 2011-516466 mailed Mar. 17, 2014. |
Preliminary Examination in Chinese Application No. 201310717573.1 dated Feb. 25, 2014. English Translation Not Yet Received. |
Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013. |
Examination Report in Singapore Application No. 201103333-9 dated Aug. 13, 2013. |
First Office Action in Japanese Application No. 2013-529454 mailed Feb. 3, 2014 in 6 pages. |
First Office Action issued in Australian Application No. 2011307319 mailed Mar. 6, 2014 in 5 pages. |