The present invention relates to a manifold, in particular for use in a cooler of a cooling system.
There are known, for example from US2003/0155109 A1, manifolds consisting of two components, namely an inner housing and a covering profile, which is applied and bent on the inner housing. Both those elements are provided with plurality of corresponding slots for introduction of tubes of the cooling assembly/supplying a cooling medium, which tubes are introduced only into the covering profile. The inner housing is provided with a channel defined therein for the flow of the cooling medium. Such a solution, however, results in that it is required to use so-called “end-forming” process, for example by thinning the end of the inserted tube so that only the thinned part of the tube is inserted into the slot of the covering profile, while its non-thinned portion abuts against that covering profile to maintain permeability of the tubes. Manufacturing of the tubes is thus more complicated and additionally during the end-forming process an uncontrolled process of clogging or deforming of the tube channels (especially the extreme ones) may occur what is disadvantageous to the thermal efficiency of the cooler.
The aim of the present invention is to provide a manifold that is simpler and less expensive to manufacture, by means of which the need for any additional processing of the pipes of the cooling assembly is avoided, and which at the same time ensures in any case permeability of the tubes of the cooling assembly, despite its deep insertion into the manifold.
The above object is achieved by a manifold according to claim 1 and the following dependent claims. The manifold comprises a housing which is a unitary element having a closed profile and which is provided with at least one longitudinal channel defined therein and also a plurality of slots on one of surfaces of the housing. The slots are in fluid communication with at least one longitudinal channel. The manifold further includes a covering profile superimposed on the housing and provided with a plurality of slots at positions corresponding to the positions of the slots of the housing. The covering profile is firmly connected to and sealed against the housing while the slots of the covering profile are adapted for receiving cooler tubes. The manifold according to the invention is characterized in that at least one longitudinal channel of the housing has on its surface a stopping means against which the cooler tubes may abut while the slots of the housing are also adapted for receiving the cooler tubes.
The manifold developed in this way is simple and easy to manufacture. Through the use of the stopping means it is not necessary to machine the ends of the cooler tubes and it is ensured that the inlets/outlets of the tubes themselves are always exposed, thus providing the maximum permeability of the gas cooler assembly. Furthermore, the ends of the tubes are not in contact with the optionally plated parts, i.e. the covering profile. Thanks to that the risk of clogging of the channels with the plating material in its liquid phase associated with the capillary effect (rising of the molten solder into the slots) is less critical. Furthermore, the fact that the tubes are received in the interior of the housing causes that the gas cooler assembly comprising manifolds according to the invention is already quite stiff before the permanent connection of components, while its individual elements are fixed relative to each other, what considerably facilitates the permanent connection of all components of the assembly to each other, for example by brazing.
The present invention is illustrated in its embodiments in the accompanying drawings, in which:
The manifold 1 according to the invention comprises a cap or covering profile 2 and an inner housing 4. The covering profile 2 is manufactured from a plate, preferably of aluminium and/or its alloys, having a thickness of 0.8 mm to 2 mm, preferably 1 mm, by means of pressing process and bent in such manner that it substantially replicates the external shape of the inner housing 4. By such a structure of the covering profile 2 it is easy to manufacture. The covering profile 2 made of aluminium and/or its alloys may be plated on its one or both sides and has a plurality of slots 3 arranged in a single row, into which flat tubes 17 of a gas cooler 19 are introduced during the use of the manifold 1. The slots 3 are precisely made slots, so that the flat tubes 17, having internal passages, are tightly received in these slots 3.
The inner housing 4 has a closed hollow profile, it is an unitary element, it is manufactured using an extrusion process, it has thick and solid walls, whereby it is resistant to high operational pressure, and it contains in its interior two separate longitudinal channels 5a and 5b for the flow of a cooling medium. The channels 5a and 5b are separated from each other by a reinforcing arch 7 in order to strengthen the structure of the inner housing 4 and the entire manifold 1. The inner housing 4 is also provided in its interior, i.e. on surfaces 6a, 6b of the channels 5a, 5b, with stopping elements 8, against which the inserted flat tubes 17 abut. In this embodiment, the stopping elements 8 are in the form of projections 8a extending along the channels 5a, 5b and from their surfaces 6a, 6b towards the interior of the channels 5a, 5b. Furthermore, also the inner housing 4 has a plurality of slots 10 at positions corresponding to the positions of the slots 3 in the covering profile 2, which the slots 10 need not be made with such accurate dimensions as the slots 3 of the covering profile 2, that is, their dimensions do not have to be exactly matched to the dimensions of the flat tubes 17, it is sufficient for the slots 10 to have a size larger than, or at least the same as, the size of flat tubes 17, and hence also the slots 3. This results in that the flat tubes 17 are received loosely in the slots 10 and tightly in the slots 3. The slots 10 can be made by a process using a milling saw, which process does not have to be precise, with the result that the inner housing 4 made in that way is simple and cheaper to manufacture. Furthermore, the slots 10 are in fluid communication with the channels 5a, 5b of the inner housing 4. Just like the covering profile 2, the inner housing 4 is also preferably made of aluminium and/or its alloys.
As illustrated in
In use of the manifold 1 according to the invention in the gas cooler assembly 19, the flat tubes 17, between which ribs 18 extend, are introduced into the slots 3, 10 in both components of the manifold 1. The tubes are firstly received tightly in the slots 3 and next loosely in the slots 10 and abut against the stopping elements 8 in the inner housing 4 with the result that their further movement into the inner housing 4 is prevented. This also results in that the outlets/inlets of flat tubes 17 will not be blocked/closed by the surfaces 6a, 6b of the channels 5a, 5b. Such configuration also allows precise and easy assembling of the entire gas cooler assembly, and it ensures that elements of the assembly assembled in such a way will not rotate or otherwise move relative to each other before/during brazing, while eliminating the need for using so-called “end-forming” process. The flat tubes 17 are secured to and sealed against the manifold 1 by brazing between the flat tube 17 and the covering profile 2, i.e. around the slots 3.
Note that it is possible to replace the technical features between the above-described embodiments of the invention. For example, in the inner housing 4 having two separate channels 5a, 5b the stopping elements 8 in the form of the notches 8, 8b can be used, while in the inner housing 4 having a single channel 5, the stopping elements 8 in the form of the projections 8a can be used. It is also not necessary to use two stopping elements 8, in many practical applications only one is sufficient, furthermore the position of these elements in relation to the slots 10 can vary, i.e. adjacently to the slots 10 or at some distance from them. It is also possible to connect several manifolds 1 into one longer manifold, in such a case, the manifolds without plugs 16 are used and are firmly butt joined, and only the extreme ends of the manifolds are closed by plugs 16.
Number | Date | Country | Kind |
---|---|---|---|
14461546.5 | Jun 2014 | EP | regional |