Manual calibration of imaging system

Information

  • Patent Grant
  • 11892289
  • Patent Number
    11,892,289
  • Date Filed
    Monday, March 8, 2021
    3 years ago
  • Date Issued
    Tuesday, February 6, 2024
    2 months ago
Abstract
The invention generally relates to methods for manually calibrating imaging systems such as optical coherence tomography systems. In certain aspects, an imaging system displays an image showing a target and a reference item. A user looks at the image and indicates a point within the image near the reference item. A processer detects an actual location of the reference item within an area around the indicated point. The processer can use an expected location of the reference item with the detected actual location to calculate a calibration value and provide a calibrated image. In this way, a user can identify the actual location of the reference point and a processing algorithm can give precision to the actual location.
Description
TECHNICAL FIELD

The invention generally relates to methods for manually calibrating Time-of-Flight based imaging systems and interferometric systems more particularly, such as optical coherence tomography systems.


BACKGROUND

Time-of-Flight imaging technologies in medicine and other fields involve measuring the time required for light to travel from a light sources to a target and back to a detector. Those measurements are used to provide high resolution images of the target. Time-of-Flight principles have applications in such diverse technologies as optical coherence tomography (OCT), gated viewing, positron emission tomography (PET), and radiotherapy. Beyond medical imaging, time-of-flight technologies are used in computer vision, robotics, art restoration, laser speed enforcement, and vision aids with security and military applications.


One problem that arises in many time-of-flight measurement technologies relates to calibration. Light that has been sent and received by an imaging component such as a lens or a catheter can be used to present an image of the target. But, where a reference point or zero point is not known a priori, the image does not necessarily contain calibration information relating to scale. Different approaches to calibrating these systems have included automatic computer processing algorithms as well as iterative user manipulation.


Known computer processing algorithms are limited. Typical approaches involve programming a computer to try to identify a reference point of a known dimension in the image. But where the known reference point appears among other images with similar shapes or is partially obscured and appears incompletely, computer processors are not adept at the induction required to determine the location or extent of the reference point.


Manual calibration is limited by the imprecision of human input and the time required for multiple iterations of spotting a calibration target and inputting information then zooming, centering, or focusing and repeating the steps. In, for example, the medical imaging context, the time involved is problematic because calibration often must occur while the patient is being examined. The imprecision is problematic for at least two reasons. First, the system must be calibrated precisely so that the imaging operation can be focused on the intended target (i.e., scanning at the desired depth in OCT). Also, tissue conditions such as tumors, plaque, or glaucoma must be measured precisely to monitor the progress of the condition.


SUMMARY

The invention generally provides systems and methods for manually calibrating an imaging system in which a user looks at an image of a target and indicates a point near a location of a reference point within the image. An image processing operation is employed to determine the precise location of the reference point. Thus, a user can identify the actual location of the reference point and a processing algorithm can give precision to the actual location. Where the reference point is, for example, a physical feature that gets imaged while the target is imaged, information about the expected location of that physical feature may be independently provided to the system. The system calculates a calibration value based on the expected and actual locations and adjusts to display an image at a known scale. Where the imaging system is operating live, it can take new images, providing them at the known scale. Where a user is reviewing stored images, the imaging system can adjust those stored images to provide them at a known scale. Because images are provided at a known scale, imaging systems can be focused on the intended target and the resulting images reveal dimensions of target subject matter. For example, in medical imaging, the dimensions of a feature within tissue can be measured to monitor the progress of a condition.


Systems and methods of the invention have particular utility in interferometric imaging applications where light from a reference path is combined with light from a sample path and the resulting interference pattern is analyzed. In OCT, for example, an interferometer is used to split light into fiber optic-based sample and reference paths. The length of the reference path must be adjusted to match the length of the sample path as defined by the outer surface of the imaging catheter sheath. The difference between the length of the sample and the reference path is the z-offset, which is zero when the paths have matched lengths. If the z-offset is known, the system can be calibrated by changing the length of the reference path to match the length of the sample path. This can be accomplished, for example, by operating a motor within a variable delay line (VDL) in the reference path. The invention provides methods for calibrating an interferometric imaging system by determining a z-offset of the system and using the determined z-offset value to provide an image at a known scale.


In certain aspects, the invention provides a method of calibrating an imaging system by displaying an image showing a target and a reference item, receiving user input indicating a point within the image, and detecting a location of the reference item within an area around the indicated point. If the reference is not detected within the area, the area may be expanded and the detection step repeated. The detected location is used to calculate a calibration value and a calibrated image of the target at a known scale is provided.


In some embodiments, the imaging system is an optical coherence tomography system. The reference item can be an image of a catheter sheath (e.g., a known surface such as the outer surface of the sheath). A scan from the system can be displayed, for example, on a computer monitor in tomographic view or in an image-longitudinal display. A user of the system can identify the catheter sheath and indicate its location by an input gesture, such as clicking with a mouse or touching a touchscreen. The reference item can be detected by a morphological image processing operation such as, for example, erosion, dilation, or a combination thereof. Where the imaging system is an intravascular OCT system, the catheter sheath may appear generally as a vertical lineal element in a B-scan.


A processor can begin by analyzing, for example, an area of the B-scan around a point corresponding to the user's input. Thus the user input is taken as a starting point, and image processing is performed to identify the reference item (catheter sheath) within the area around the point. Using signal processing operations, the processing system finds a line in the area, for example, the highest valued contiguous line. The processing system can extrapolate and expand a search or processing algorithm. For example, where the line is substantially vertical, the system looks up and down to identify a location of substantially all of the catheter sheath.


In some OCT operations, an imaging catheter is associated with a specific sample path length. Path length may be provided with each catheter, for example, by a manufacturer. The catheter sample path length can give an expected location of the reference point. Where the expected location is thus provided, a difference between the actual location and the expected location can be used to detect and correct for, for example, path length changes (e.g., stretching) during operation.


With a calibration value calculated, the imaging system can provide a calibrated image—either in live mode, by making a new scan, or in review mode, by transforming stored image data.


In related aspects, the invention provides an imaging system that includes a processor and a computer-readable storage medium having instructions therein which can be executed to cause the system to display an image showing a target and a reference item, receive user input indicating a point within the image, and detect a location of the reference item within an area around the indicated point. The system uses the detected location to calculate a calibration value and provide a calibrated image of the target at a known scale.


In other aspects, the invention provides a method of calibrating an imaging system by displaying an image showing a target and a reference item, receiving user input indicating a motion of the reference item within the image, and calculating a calibration value based on indicated motion of the reference item. For example, a user can use a mouse to drag an image of the reference item onto a calibration mark, as seen on a computer screen. The user input indicating a motion of the reference item can be a drag-and-drop operation performed with a computer pointing device (e.g., mouse or trackpad), a drag along a touchscreen, or any other suitable computer input method. The motion indicated by the input is used to calculate the calibration value. Based on the calculated calibration value, a scaled image of the target is provided.


Methods of the invention include transforming the reference item within the image by, for example, re-sizing, rotation, translating, or a combination thereof. In some embodiments, the system is an interferometric imaging system and the reference item is a portion of the system itself. For example, where the reference item is an image of an OCT catheter sheath, the dragging motion can indicate a z-offset calibration value, i.e., a change in a radius associated with a zero-point in the image. The z-offset calibration can be accomplished by moving a VDL motor or transforming image data.


In some embodiments, the user input is received, and then the calibration operation (e.g., moving the VDL or transforming an existing image) is performed. In certain embodiments, the calibration operation is performed while the user input is received. Thus the user experiences that they are changing the image. Where an OCT system is used, the user experiences dragging the catheter sheath inwards or outwards (for example, to a reference calibration mark) and thus changing the image.


In some related aspects, the invention provides an imaging system that includes a processor and a computer-readable storage medium having instructions therein which can be executed to cause the system to display an image showing a target and a reference item, receive user input indicating a motion of the reference item within the image, and calculate a calibration value based on indicated motion of the reference item. The calibration value is used to provide a scaled image of the target.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows use of an imaging system according to certain embodiments.



FIG. 2 is a diagram of components of an OCT system.



FIG. 3 diagrams components within a patient interface module (PIM).



FIG. 4 shows the structure of a PIM according to certain embodiments.



FIG. 5 is a diagram of components in an imaging engine.



FIG. 6 is a diagram of an interferometer for use with systems of certain embodiments.



FIGS. 7A and 7B illustrate a segment of a blood vessel.



FIG. 8 shows the motion of parts of an imaging catheter according to certain embodiments of the invention.



FIG. 9 shows an array of A scan lines of a three-dimensional imaging system according to certain embodiments of the invention.



FIG. 10 shows the positioning of A scans with in a vessel.



FIG. 11 shows a B-scan.



FIG. 12 shows a tomographic view based on the B-scan of FIG. 10.



FIG. 13 illustrates a set of A scans used to compose a tomographic view.



FIG. 14 shows the set of A scans shown in FIG. 13 within a cross section of a vessel.



FIG. 15 shows a longitudinal plane through a vessel including several A scans.



FIG. 16 is a perspective view of an image longitudinal display (ILD) in the same perspective as the longitudinal plane shown in FIG. 15.



FIG. 17 shows a display of a system of the invention.



FIG. 18 is a display providing an image of the vessel shown in FIGS. 7A and 7B.



FIG. 19 illustrates receiving user input indicating a point within an image.



FIG. 20 shows an area around a point to be searched.



FIG. 21 shows a calibrated B-scan.



FIGS. 22 and 23 illustrates receiving user input indicating a motion



FIG. 24 illustrates providing a scaled image based on an indicated motion.



FIG. 25 illustrates components of a system according to certain embodiments of the invention.





DETAILED DESCRIPTION

The invention provides systems and methods for calibrating an imaging system. Systems and methods of the invention have application in imaging systems that require calibration to provide a scale. Exemplary systems include imaging and sensing systems based on principles of time-of-flight or coherent interference. In some embodiments, systems and applications contemplated for use with the invention include optical coherence tomography (OCT), time-of-flight cameras such as the CamCube 3.0 TOF camera sold under the trademark PDM[VISION] by PMDTechnologies GmbH (Siegen, Germany), or time-of-flight positron emission tomography (PET) technologies. See, e.g., Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Med Phys 39:4-17; Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470. Other imaging systems for use with the invention include, for example, gated viewing, radiotherapy, intra-vascular ultrasound, magnetic resonance imaging, elastographic techniques such as magnetic resonance elastography or transient elastography systems such as FibroScan by Echosens (Paris, France), and electrical impedance tomography, as well as other applications in computer vision, robotics, art restoration, laser speed enforcement, and vision aids with security and military applications.


In OCT systems, a light source is used to provide a beam of coherent light. The light source can include an optical gain medium (e.g., laser or optical amplifier) to produce coherent light by stimulated emission. In some embodiments, the gain medium is provided by a semiconductor optical amplifier. A light source may further include other components, such as a tunable filter that allows a user to select a wavelength of light to be amplified. Wavelengths commonly used in medical applications include near-infrared light, for example between about 800 nm and about 1700 nm.


Generally, there are two types of OCT systems, common beam path systems and differential beam path systems, that differ from each other based upon the optical layout of the systems. A common beam path system sends all produced light through a single optical fiber to generate a reference signal and a sample signal whereas a differential beam path system splits the produced light such that a portion of the light is directed to the sample and the other portion is directed to a reference surface. Common beam path systems are further described for example in U.S. Pat. Nos. 7,999,938; 7,995,210; and 7,787,127 the contents of each of which are incorporated by reference herein in their entirety.


In a differential beam path system, the coherent light from the light source is input into an interferometer and split into a reference path and a sample path. The sample path is directed to the target and used to image the target. Reflections from the sample path are joined with the reference path and the combination of the reference-path light and the sample-path light produces interference patterns in the resulting light. The light, and thus the patterns, are converted to electric signals, which are then analyzed to produce depth-resolved images of the target tissue on a micron scale. Exemplary differential beam path interferometers are Mach-Zehnder interferometers and Michelson interferometers. Differential beam path interferometers are further described for example in U.S. Pat. Nos. 7,783,337; 6,134,003; and 6,421,164, the contents of each of which are incorporated by reference herein in its entirety.


Commercially available OCT systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology where OCT can be used to obtain detailed images from within the retina. The detailed images of the retina allow one to identify diseases and trauma of the eye. Other applications of imaging systems of the invention include, for example, dermatology (e.g., to image subsurface structural and blood flow formations), dentistry (to image teeth and gum line), gastroenterology (e.g., to image the gastrointestinal tract to detect polyps and inflammation), and cancer diagnostics (for example, to discriminate between malignant and normal tissue).


In certain embodiments, systems and methods of the invention image within a lumen of tissue. Various lumen of biological structures may be imaged including, for example, blood vessels, including, but not limited, to vasculature of the lymphatic and nervous systems, various structures of the gastrointestinal tract including lumen of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct, lumen of the reproductive tract including the vas deferens, vagina, uterus and fallopian tubes, structures of the urinary tract including urinary collecting ducts, renal tubules, ureter, and bladder, and structures of the head and neck and pulmonary system including sinuses, parotid, trachea, bronchi, and lungs. Systems and methods of the invention have particular applicability in imaging veins and arteries such as, for example, the arteries of the heart. Since an OCT system can be calibrated to provide scale information, intravascular OCT imaging of the coronary arteries can reveal plaque build-up over time, change in dimensions of features, and progress of thrombotic elements. The accumulation of plaque within the artery wall over decades is the setup for vulnerable plaque which, in turn, leads to heart attack and stenosis (narrowing) of the artery. OCT images, if scaled or calibrated, are useful in determining both plaque volume within the wall of the artery and/or the degree of stenosis of the artery lumen. Intravascular OCT can also be used to assess the effects of treatments of stenosis such as with hydraulic angioplasty expansion of the artery, with or without stents, and the results of medical therapy over time.



FIG. 1 depicts the use of an exemplary intravascular OCT system 801. A physician controls an imaging catheter 826 through use of a handheld patient interface module (PIM) 839 to collect image data from a patient. Image data collected through catheter 826 is transmitted by PIM cable 841 to an imaging engine 859, which can be, for example, housed within a bedside unit or in a nearby computer installation or in a server rack coupled via networking technologies. As shown in FIG. 1, an OCT system can further include a workstation 433 (e.g., a monitor, keyboard, and mouse).



FIG. 2 gives a block diagram of components of OCT system 801. Imaging engine 859 is coupled to PIM 839 via PIM cable 841. Imaging catheter 826 extends from PIM 839 to the site of imaging. Engine cable 845 connects imaging engine 859 to host workstation 433. OCT is discussed in U.S. Pat. No. 8,108,030; U.S. Pub. 2011/0152771; U.S. Pub. 2010/0220334; U.S. Pub. 2009/0043191; U.S. Pub. 2008/0291463; and U.S. Pub. 2008/0180683, the contents of each of which are incorporated by reference in their entirety for all purposes. In certain embodiments, systems and methods of the invention include processing hardware configured to interact with more than one different three dimensional imaging system so that the tissue imaging devices and methods described here in can be alternatively used with OCT, IVUS, or other hardware.


As shown in FIG. 1, an operator controls imaging catheter 826 via handheld PIM 839. PIM 839 may include controls such as knobs or buttons to start or stop operation, set or vary speed or displacement, or otherwise control the imaging operation. PIM 839 further includes hardware for operating the imaging catheter.



FIG. 3 shows components of PIM 839. Catheter 826 is mounted to PIM 839 via a catheter receptacle 869. Spin motor 861 is provided to rotate catheter 826 and pullback motor 865 is provided to drive lateral translation of catheter 826. Also depicted is a keypad for input/output, a fiber-optic rotary joint (iFORj), a printed circuit board assembly (PCBA), and optional RFID components.



FIG. 4 gives a perspective view of PIM 839 with a keypad cover removed. Spin motor 861 is provided to rotate catheter 826 and pullback motor 865 causes lateral translation. Optical signals, electrical signals, or both arrive at PIM 839 via PIM cable 841. PIM cable 841 extends to imaging engine 859 as shown in FIG. 2.



FIG. 5 shows components of imaging engine 859. As shown in FIG. 5, the imaging engine 859 (e.g., a bedside unit) houses a power distribution board 849, light source 827, interferometer 831, and variable delay line 835 as well as a data acquisition (DAQ) board 855 and optical controller board (OCB) 851.


Light source 827, as discussed above, may use a laser or an optical amplifier as a source of coherent light. Coherent light is transmitted to interferometer 831.



FIG. 6 shows a path of light through interferometer 831 during OCT imaging. Coherent light for image capture originates within the light source 827. This light is split between an OCT interferometer 905 and an auxiliary, or “clock”, interferometer 911. Light directed to the OCT interferometer is further split by splitter 917 and recombined by splitter 919 with an asymmetric split ratio. The majority of the light is guided into the sample path 913 and the remainder into a reference path 915. The sample path includes optical fibers running through the PIM 839 and the imaging catheter 826 and terminating at the distal end of the imaging catheter where the image is captured.


An image is captured by introducing imaging catheter 826 into a target within a patient, such as a lumen of a blood vessel. This can be accomplished by using standard interventional techniques and tools such as a guide wire, guide catheter, or angiography system. Suitable imaging catheters and their use are discussed in U.S. Pat. Nos. 8,116,605 and 7,711,413, the contents of which are incorporated by reference in their entirety for all purposes.



FIG. 7A provides an illustration of a segment of a vessel 101 having a feature 113 of interest. FIG. 7B shows a cross-section of vessel 101 through feature 113. In certain embodiments, intravascular imaging involves positioning imaging catheter 826 within vessel 101 near feature 113 and collecting data to provide a three-dimensional image. Data can be collected in three dimensions by rotating catheter 826 around a catheter axis to collect image data in radial directions around the catheter while also translating catheter 826 along the catheter axis. As a result of combined rotation and translation, catheter 826 collects image data from a series of scan lines (each referred to as an A-scan line, or A-scan) disposed in a helical array.



FIG. 8 shows the motion of parts of an imaging catheter according to certain embodiments of the invention. Rotation of imaging catheter 826 around axis 117 is driven by spin motor 861 while translation along axis 117 is driven by pullback motor 865, as discussed above with reference to FIG. 4. An imaging tip of catheter 826 generally follows helical trace 119, resulting in a motion for image capture described by FIG. 8. Blood in the vessel is temporarily flushed with a clear solution for imaging. When operation is triggered from PIM 839 or a control console, the imaging core of catheter 826 rotates while collecting image data, which data is delivered to the imaging system.



FIG. 9 illustrates the helical array of A-scan lines A11, A12, . . . , AN captured by the imaging operation.



FIG. 10 is provided to show the positioning of A-scans A11, A12, . . . , AN within vessel 101. Each place where one of A-scans A11, A12, . . . , AN intersects a surface of a feature within vessel 101 (e.g., a vessel wall) coherent light is reflected and detected. Catheter 826 translates along axis 117 being pushed or pulled by pullback motor 865.


Looking back at FIG. 6, the reflected, detected light is transmitted along sample path 913 to be recombined with the light from reference path 915 at splitter 919. Calibration of the system relates to a length of sample path 913 compared to a length of reference path 915. The difference between these lengths is referred to as the z-offset and when the paths are the same length, the z-offset is said to be zero, and the system is calibrated. Calibration will be discussed in more detail below. Z-offset is discussed in U.S. Pat. No. 8,116,605, the contents of which are hereby incorporated by reference in their entirety for all purposes. When the z-offset is zero, the system is said to be calibrated.


After combining light from the sample, and reference paths, the combined light from splitter 919 is split into orthogonal polarization states, resulting in RF-band polarization-diverse temporal interference fringe signals. The interference fringe signals are converted to photocurrents using PIN photodiodes 929a, 929b, . . . on the OCB 851 as shown in FIG. 6. The interfering, polarization splitting, and detection steps are done by a polarization diversity module (PDM) on the OCB. Signal from the OCB is sent to the DAQ 855, shown in FIG. 5. The DAQ includes a digital signal processing (DSP) microprocessor and a field programmable gate array (FPGA) to digitize signals and communicate with the host workstation and the PIM. The FPGA converts raw optical interference signals into meaningful OCT images. The DAQ also compresses data as necessary to reduce image transfer bandwidth to 1 gigabit per second (Gbps) (e.g., compressing frames with a lossy compression JPEG encoder).


Data is collected from A-scans A11, A12, . . . , AN, as shown in FIG. 10, and stored in a tangible, non-transitory memory. A set of A-scans captured in a helical pattern during a rotation and pullback event can be collected and viewed alongside one another in a plane, in a format known as a B-scan.



FIG. 11 gives a reproduction of a B-scan collected using an OCT system. Each horizontal row of pixels corresponds to one A-scan, with the first A-scan (e.g., A11) being displayed across the top of the image. The horizontal axis labeled “Depth” represents a radial distance from imaging catheter 826. Noting—as shown in FIG. 9—that each A-scan line is progressively displaced from an adjacent A-scan in an angular direction around an axis 117 of catheter 826 (while also being displaced in a translational direction along axis 117), one set of A-scans associated with a 360° displacement around axis 117 can be collected into a view that depicts a slice of vessel 101 perpendicular to axis 117. This view is referred to as a tomographic view.



FIG. 12 shows a tomographic view based on the B-scan of FIG. 10. A tomographic view comprises a set of A-scans that defines one circumference around vessel 101. An arrow pointing straight down in FIG. 11 corresponds to the circular arrow in FIG. 12 and aids in visualization of the three-dimensional nature of the data.



FIG. 13 provides a cartoon illustration of a set of A-scans A11, A12, . . . , A18 used to compose a tomographic view. These A-scan lines are shown as would be seen looking down axis 117 (i.e., longitudinal distance between them is not shown). While eight A-scan lines are here illustrated in cartoon format in FIG. 13, typical OCT applications can include between 300 and 1,000 A-scan lines to create a B scan (e.g., about 660) or a tomographic view.



FIG. 14 provides a cartoon illustration of the tomographic view associated with the A-scans of FIG. 13. Reflections detected along each A-scan line are associated with features within the imaged tissue. Reflected light from each A-scan is combined with corresponding light that was split and sent through reference path 915 and VDL 925 and interference between these two light paths as they are recombined indicates features in the tissue. Where a tomographic view such as is depicted in FIG. 14 generally represents an image as a planar view across a vessel (i.e., normal to axis 117), an image can also be represented as a planar view along a vessel (i.e., axis 117 lies in the plane of the view).



FIG. 15 shows a longitudinal plane 127 through a vessel 101 including several A scans. Such a planar image along a vessel is sometimes referred to as an in-line digital view or image longitudinal display (ILD). As shown in FIG. 15, plane 127 generally comprises data associated with a subset of the A scans. The data of the A scan lines is processed according to systems and methods of the inventions to generate images of the tissue. By processing the data appropriately (e.g., by fast Fourier transformation), a two-dimensional image can be prepared from the three dimensional data set. Systems and methods of the invention provide one or more of a tomographic view, ILD, or both.



FIG. 16 is a perspective view of an idealized plane shown including an exemplary ILD in the same perspective as the longitudinal plane shown in FIG. 15. Where an OCT system captures three-dimensional image data, host workstation 433 may store the three dimensional image data in a tangible, non-transitory memory and provides a display that includes a tomographic view (e.g., FIG. 14), an ILD (e.g., FIG. 16), or both (e.g., on a screen or computer monitor). In some embodiments, a tomographic view and an ILD are displayed together, providing information that operators can intuitively visualize as representing a three-dimensional structure.



FIG. 17 is a reproduction of a display of an OCT system including a tomographic view on the left and an ILD on the right. As shown in FIG. 17, a tomographic view may include ring-like elements near the center and the ILD may include corresponding sets of vertical line-like elements. One ring in the tomographic view may correspond to one pair of lines in the ILD. These elements within the displays are often, in-fact, images of part of the imaging system itself. In some embodiments, a ring in a tomographic view and lines in an ILD represent a surface of catheter 826 such as, for example, an outer surface of a catheter sheath. The portions of the images extending away from those elements are the images of the patient's tissue.


In some embodiments, an OCT system is operated with interchangeable, replaceable, or single-use catheters. Each catheter 826 may provide a different length to sample path 913. For example, catheters may be used that are designed to be of different lengths, like-manufactured catheters may be subject to imperfect manufacturing tolerances, or catheters may stretch during use. However, to provide a calibrated or scaled image, the z-offset must be known (for post-imaging processing) or set to zero. A z-offset can be known directly (e.g., numerically) or can be known by reviewing an image and determining an apparent difference in an actual location of an element within the image and an expected location of the element within the image.


In some embodiments, the z-offset is calibrated by inspecting an image being captured while they system is running in live mode, and adjusting the actual length of reference path 915 to match the length of sample path 913.


VDL 925 on reference path 915 uses an adjustable fiber coil to match the length of reference path 915 to the length of sample path 913. The length of reference path 915 is adjusted by a stepper motor translating a mirror on a translation stage under the control of firmware or software. The free-space optical beam on the inside of the VDL 925 experiences more delay as the mirror moves away from the fixed input/output fiber. As VDL 925 is adjusted, a length of reference path 915 is known (based, for example, on manufactured specifications of the system).


In some embodiments, the known length of reference path 915 is used to display a calibration mark on a display. If the calibration mark is displayed at a position corresponding to a distal point on reference path 915, and if sample path 913 is the same length as reference path 915 (e.g., when z-offset is zero), it may be expected that a ring in a tomographic view that represents an outer surface of a catheter sheath will lie along the calibration mark.


When a display includes a calibration mark and a ring-like element representing an outer surface of the catheter sheath separated from one another, an operator has a visual indication that the display is not calibrated.



FIG. 18 is a cartoon illustration of a display 237 including an image of the vessel shown in FIGS. 7A and 7B, as rendered by a system of the invention. The images included in display 237 in FIG. 18 are rendered in a simplified style of the purposes of ease of understanding. A system of the invention may render a display as shown in FIG. 17, or in any style known in the art (e.g., with or without color).


As shown in FIG. 18, a tomographic view of vessel 101 is depicted alongside an ILD. An outer surface of a catheter sheath appears as a ring 211 in the tomographic view and as lines 217 in the ILD. The tomographic view is depicted as including calibration mark 215, while calibration mark 219 appears in the ILD.


In some embodiments, z-offset calibration involves precisely determining the position of ring 211 (or lines 217) in display 237 so that the system can calculate a z-offset based on a known position of calibration mark 215. Systems of the invention can determine the position of ring 211 or any other calibration element based on user input and an image processing operation. Any suitable user input can be used. In some embodiments discussed below, user input is a “click and drag” operation to move ring 211 to a calibration mark. In certain embodiments, user input is accepted in the form of a single click, a single touch of a touch screen, or some other simple gesture.



FIG. 19 illustrates, in simplified fashion, a display of an imaging system showing a catheter sheath 211 and calibration mark 215. A user can click on the display near the sheath 211. In some embodiments, the system detects the location of the catheter sheath with no more input from a user than an indication of a single point. A single point can be input by a mouse-click, a touch on a touchscreen, a light pen or light gun, by “driving” a point to a certain position with arrow keys or a joystick, or by any other suitable method known in the art.


The system can additionally use a processor to perform an image processing operation to detect sheath 211. In some embodiments, user input indicates a single point 221 on the screen. The system then defines an area around point 221.



FIG. 20 depicts a defined area 227 around point 221 on a B-scan. Area 227 operates as a search window. The search window area 227 may be a rectangle, circle, ellipse, polygon, or other shape. It may have a predetermined area (e.g., a certain number of pixels). In some embodiments, a size and shape of area 227 is determined by a combination of input device resolution, screen area subtended by a pixel at the particular polar coordinates, current zoom factor, usability studies, or a combination thereof. Usability studies can be performed to establish a statistical model of user repeatability and reproducibility under controlled conditions.


The system searches for the sheath within area 227 by performing a processing operation on the corresponding data. The processing operation can be any suitable search algorithm known in the art.


In some embodiments, a morphological image processing operation is used. Morphological image processing includes operations such as erosion, dilation, opening, and closing, as well as combination thereof. In some embodiments, these operations involve converting the image data to binary data giving each pixel a binary value. With pixels within area 227 converted to binary, each pixel of catheter sheath 211 will be black, and the background pixels will predominantly be white. In erosion, every pixel that is touching background is changed into a background pixel. In dilation, every background pixel that is adjacent to the non-background object pixels is changed into an object pixel. Opening is an erosion followed by a dilation, and closing is a dilation followed by an erosion. Morphological image processing is discussed in Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 1997, California Technical Publishing, San Diego, CA, pp. 436-442.


If sheath 211 is not found within area 227, area 227 can be increased and the increased area can be searched. This strategy can exploit the statistical properties of signal-to-noise ratio (SNR) by which the ability to detect an object is proportional to the square root of its area. See Smith, Ibid., pp. 432-436.


With continued reference to FIG. 20, once a portion of catheter sheath 211 is detected within area 227, the search can then be extended “upwards” and “downwards” into adjacent A-scan lines in the B-scan until the entire catheter sheath 211 is detected by the processor and its location is determined with precision. In some embodiments, image processing operations incorporate algorithms with pre-set or user-set parameters that optimize results and continuity of results. For example, if a line appears that is not contiguous across an entire 100% of the image (e.g., the entire extent of the B-scan or a full circle in a tomographic view), an accept or reject parameter can be established based on a percent contiguous factor. In some embodiments, lines that are contiguous across less than 75% (or 50% or 90%, depending on applications) are rejected while others are accepted.


While described above as detecting a reference item (e.g., catheter sheath 211) by receiving user input followed by using a processor to detect a location of the sheath, the steps can be performed in other orders. For example, the system can apply morphological processing operations to an entire image and detect every element, or every element that satisfies a certain quality criterion. Then the system can receive user input that indicates a point within an image and the user can then choose the pre-detected element that is closest to that point within the image. Similarly, the steps can be performed simultaneously.


Using the methodologies herein, systems of the invention can detect an element within an image of an imaging system, such as an OCT system, with great precision, based on human input that need not be precise and computer processing that need not on its own be accurate. Based on this detection, an actual location of a catheter sheath is determined and thus a precise z-coordinate Zs for the catheter sheath (e.g., within a B-scan) is known. Where an expected z-coordinate Zc for the catheter sheath is known, based on information provided extrinsically, the z-offset, and thus a calibration value, can be determined. For example, in FIG. 20, Zs is depicted as lying to the right of Zc, thereby showing a non-zero z-offset. The calibration value is then used to provide a calibrated image, or an image at a known scale.


In some embodiments, the system calculates or uses the mean, median, or root-mean-squared distance of the sheath from the calibration mark to compute the calibration value. This may be advantageous in the event of interfering speckle noise, rough or acylindrical sheaths, non-uniform catheter rotation (NURD), angular displacement of a transducer within the sheath, off-center positioning of the transducer within the sheath, or a combination thereof. In certain embodiments, only a subset of the detected points are used, for example, for efficiency or performance optimization.



FIG. 21 shows a calibrated image, here, a B-scan. The image is depicted having the catheter sheath aligned with the calibration mark. Bars on the left and right side of FIG. 21 show that some data may be shifted out and some blank space introduced by the calibration. In an alternative embodiment, the image can be stretched or compressed, or a combination of stretching and shifting may be performed, depending on preferences, purposes, or functions of a system.


It will be appreciated that the foregoing description is applicable in live mode or review mode. If the imaging system is operating in live mode, capturing an image of tissue, the calibration can be put into effect either by changing the length of reference path 915 so that z-offset is zero or by transforming the dataset or on-screen image. The length of reference path 915 can be changed through the operation of the motor in the VDL. The distance Zc-Zs is converted into millimeters and the a command is sent to move the VDL to a new position.


If the dataset is to be transformed, either in live mode or while the system is operating in review mode, the system is digitally shifted, stretched, or a combination thereof.


In another aspect, the invention provides a method for calibrating an imaging system based on receipt of user input that indicates a “motion”, such as a click-and-drag operation on a computer screen.



FIGS. 22 and 23 illustrate receiving user input indicating a motion through a mouse dragging operation. User input could also be a drag on a touchscreen or other input (arrow keys, pointer, trackball, etc.) As depicted in FIGS. 22-23, a user clicks on a reference item (e.g., sheath 211) with a mouse and drags it to a new position, for example, onto a calibration mark or other position on the display. The system (e.g., using a processor) can then calculate a calibration value based on indicated motion of the reference item.


This method allows a user to manually calibrate or apply any offset using a drag-and-drop operation on the tomographic view or on the ILD. While dragging, the distance between the grab point and current point represented by the tip of the mouse pointer (or analogous finger-touch point in touchscreens) may be continuously calculated. In live mode, the image may be shifted digitally or by moving the VDL and in review mode the image is transformed digitally, as discussed above.



FIG. 24 shows releasing a click-and-drag motion. In some embodiments, the image is shifted (digitally or by moving the VDL) simultaneously with the user's drag motion. In certain embodiments, the system begins the shift after the user completes the drag input motion. (Note that in FIGS. 23 and 24 a dotted line is shown to represent the original location of the catheter sheath, and the dotted line is not meant to represent a calibration mark. A calibration mark is optional.)


While discussed above using a surface of a catheter sheath as a reference item which is used as a basis for calibration, other reference items are suitable. For example, any item that can be depicted such that its expected location and actual location can be compared in a display of an imaging system may be used. In some embodiments, a fiducial marker or calibration bar is introduced into the imaging target having a known dimension (e.g., 1 nm, 1 mm, 1 cm). The system operates to display a scale or a grid based on an expected appearance of the known dimension. The user then gives input indicating a point in the display near the reference item and the system also detects a location of the reference item in an area around the indicated point. Based on the expected and actual locations or dimensions of the reference item, a calibration value is calculated and a calibrated image is provided. User input, displays, and methods of receiving user input and performing calculations may be provided by one or more computers.


In certain embodiments, display 237 is rendered within a computer operating system environment, such as Windows, Mac OS, or Linux or within a display or GUI of a specialized system. Display 237 can include any standard controls associated with a display (e.g., within a windowing environment) including minimize and close buttons, scroll bars, menus, and window resizing controls. Elements of display 237 can be provided by an operating system, windows environment, application programing interface (API), web browser, program, or combination thereof (for example, in some embodiments a computer includes an operating system in which an independent program such as a web browser runs and the independent program supplies one or more of an API to render elements of a GUI). Display 237 can further include any controls or information related to viewing images (e.g., zoom, color controls, brightness/contrast) or handling files comprising three-dimensional image data (e.g., open, save, close, select, cut, delete, etc.). Further, display 237 can include controls (e.g., buttons, sliders, tabs, switches) related to operating a three dimensional image capture system (e.g., go, stop, pause, power up, power down).


In certain embodiments, display 237 includes controls related to three dimensional imaging systems that are operable with different imaging modalities. For example, display 237 may include start, stop, zoom, save, etc., buttons, and be rendered by a computer program that interoperates with OCT or IVUS modalities. Thus display 237 can display an image derived from a three-dimensional data set with or without regard to the imaging mode of the system.



FIG. 25 diagrams an exemplary system 400. As shown in FIG. 25, imaging engine 859 communicates with host workstation 433 as well as optionally server 413 over network 409. In some embodiments, an operator uses host workstation 433, computer 449, or terminal 467 to control system 400 or to receive images. An image may be displayed using an I/O 454, 437, or 471, which may include a monitor. Any I/O may include a monitor, keyboard, mouse or touchscreen to communicate with any of processor 421, 459, 441, or 475, for example, to cause data to be stored in any tangible, nontransitory memory 463, 445, 479, or 429. Server 413 generally includes an interface module 425 to communicate over network 409 or write data to data file 417. Input from a user is received by a processor in an electronic device such as, for example, host workstation 433, server 413, or computer 449. Methods of the invention can be performed using software, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions can also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations (e.g., imaging apparatus in one room and host workstation in another, or in separate buildings, for example, with wireless or wired connections). In certain embodiments, host workstation 433 and imaging engine 855 are included in a bedside console unit to operate system 400.


A computer generally includes a processor for executing instructions and one or more memory devices for storing instructions, data, or both. Processors suitable for the execution of methods and operations described herein include, by way of example, both general and special purpose microprocessors (e.g., an Intel chip, an AMD chip, an FPGA). Generally, a processor will receive instructions or data from read-only memory, random access memory, or both. Generally, a computer will also include, or be operatively coupled, one or more mass storage devices for storing data that represent target such as bodily tissue. Any suitable computer-readable storage device may be used such as, for example, solid-state, magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, particularly tangible, non-transitory memory including by way of example semiconductor memory devices, (e.g., EPROM, EEPROM, NAND-based flash memory, solid state drive (SSD), and other flash memory devices); magnetic disks, (e.g., internal hard disks or removable disks); magneto-optical disks; and optical disks (e.g., CD and DVD disks).


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.

Claims
  • 1. An imaging system, comprising: an intravascular imaging catheter configured to be positioned within a vessel of a patient; anda processor configured for communication with the intravascular imaging catheter, wherein the processor is configured to: receive, from the intravascular imaging catheter, a first intravascular image including the vessel and a reference item;output, to a display in communication with the processor, the first intravascular image including the vessel and the reference item;receive a user input to move the displayed reference item from a first position to a second position, wherein the first position comprises a first diameter, wherein the second position comprises a second diameter different from the first diameter;determine a calibration value based on a difference between the first diameter and the second diameter;generate, in response to determining the calibration value based on the difference between the first diameter and the second diameter, a second intravascular image of the vessel, wherein the second intravascular image is a transformation of the first intravascular image based on the calibration value; andoutput, to the display without conducting a new scan, the second intravascular image of the vessel.
  • 2. The system of claim 1, wherein the reference item comprises a structure of the intravascular imaging catheter disposed within the vessel.
  • 3. The system of claim 2, wherein the reference item comprises a catheter sheath.
  • 4. The system of claim 1, wherein the calibration value comprises a z-offset associated with an interferometric device.
  • 5. The system of claim 1, wherein the user input comprises a start and an end, andwherein the processor is configured to determine the calibration value in response to the start of the user input.
  • 6. The system of claim 1, wherein the user input comprises a start and an end, andwherein the processor is configured to determine the calibration value in response to the end of the user input.
  • 7. The system of claim 1, wherein the user input comprises a click-and-drag motion.
  • 8. The system of claim 1, wherein, to generate the second intravascular image of the vessel, the processor is configured to: digitally transform the first intravascular image based on the user input.
  • 9. The system of claim 8, wherein, to digitally transform the first intravascular image, the processor is configured to at least one of stretch, shift, or compress the first intravascular image.
  • 10. The system of claim 1, wherein the imaging system is an optical coherence tomography system comprising a reference path and a sample path, andwherein, to generate the second intravascular image of the vessel, the processor is configured to: adjust a length of the reference path based on the calibration value; andreceive the second intravascular image of the vessel from the intravascular imaging catheter via the sample path, wherein the second intravascular image of the vessel is obtained with respect to the adjusted length of the reference path.
  • 11. The system of claim 10, wherein the reference path comprises a variable delay line, andwherein, to adjust the length of the reference path, the processor is configured to operate a motor of the variable delay line.
  • 12. The system of claim 2, wherein the first diameter comprises a diameter of the structure of the intravascular imaging catheter in the first intravascular image,wherein the second diameter comprises a diameter of the structure of the intravascular imaging catheter in the second intravascular image, andwherein the user input to move the displayed reference item from the first position to the second position comprises a change to the displayed reference item from the first diameter to the second diameter.
  • 13. A method, comprising: receiving, from an intravascular imaging catheter positioned within a vessel of a patient, a first intravascular image including the vessel and a reference item;outputting, to a display, the first intravascular image including the vessel and the reference item;receiving a user input to move the displayed reference item from a first position to a second position, wherein the first position comprises a first diameter, wherein the second position comprises a second diameter different from the first diameter;determining a calibration value based on a difference between the first diameter and the second diameter;generating, in response to determining the calibration value based on the difference between the first diameter and the second diameter, a second intravascular image of the vessel, wherein the second intravascular image is a transformation of the first intravascular image based on the calibration value; andoutputting, to the display without conducting a new scan, the second intravascular image of the vessel.
  • 14. The method of claim 13, wherein the reference item comprises a structure of the intravascular imaging catheter disposed within the vessel.
  • 15. The method of claim 14, wherein the reference item comprises a catheter sheath.
  • 16. The method of claim 13, wherein the calibration value comprises a z-offset associated with an interferometric device.
  • 17. The method of claim 13, wherein receiving the user input comprises a start and an end, andwherein determining the calibration value is in response to the start of the user input.
  • 18. The method of claim 13, wherein receiving the user input comprises a start and an end, andwherein determining the calibration value is in response to the end of the user input.
  • 19. The method of claim 13, wherein the user input comprises a click-and-drag motion.
  • 20. The method of claim 13, wherein generating the second intravascular image of the vessel comprises digitally transforming the first intravascular image based on the user input.
  • 21. The method of claim 13, wherein generating the second intravascular image of the vessel comprises: adjusting a length of a reference path based on the calibration value; andreceiving the second intravascular image of the vessel from the intravascular imaging catheter via a sample path,wherein the second intravascular image of the vessel is obtained with respect to the adjusted length of the reference path,wherein the reference path comprises a variable delay line, andwherein adjusting the length of the reference path comprises operating a motor of the variable delay line.
RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 14/107,861, filed Dec. 16, 2013, now U.S. Pat. No. 10,942,022, which claims the benefit of and priority to U.S. Provisional Application No. 61/739,881, filed Dec. 20, 2012, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (1007)
Number Name Date Kind
3301258 Werner Jan 1967 A
3617880 Cormack et al. Nov 1971 A
3789841 Antoshkiw Feb 1974 A
3841308 Tate Oct 1974 A
4140364 Yamashita et al. Feb 1979 A
4274423 Mizuno et al. Jun 1981 A
4344438 Schultz Aug 1982 A
4398791 Dorsey Aug 1983 A
4432370 Hughes et al. Feb 1984 A
4552554 Gould et al. Nov 1985 A
4577543 Wilson Mar 1986 A
4676980 Segal et al. Jun 1987 A
4682895 Costello Jul 1987 A
4733665 Palmaz Mar 1988 A
4744619 Cameron May 1988 A
4762129 Bonzel Aug 1988 A
4766386 Oliver et al. Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4794931 Yock Jan 1989 A
4800886 Nestor Jan 1989 A
4803639 Steele et al. Feb 1989 A
4816567 Cabilly et al. Mar 1989 A
4819740 Warrington Apr 1989 A
4821731 Martinelli et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4830023 de Toledo et al. May 1989 A
4834093 Littleford et al. May 1989 A
4841977 Griffith et al. Jun 1989 A
4864578 Proffitt et al. Sep 1989 A
4873690 Adams Oct 1989 A
4877314 Kanamori Oct 1989 A
4887606 Yock et al. Dec 1989 A
4917085 Smith Apr 1990 A
4917097 Proudian Apr 1990 A
4928693 Goodin et al. May 1990 A
4932413 Shockey et al. Jun 1990 A
4932419 de Toledo Jun 1990 A
4948229 Soref Aug 1990 A
4951677 Crowley et al. Aug 1990 A
4969742 Falk et al. Nov 1990 A
4987412 Vaitekunas et al. Jan 1991 A
4993412 Murphy-Chutorian Feb 1991 A
4998972 Chin et al. Mar 1991 A
5000185 Yock Mar 1991 A
5024234 Leary et al. Jun 1991 A
5025445 Anderson et al. Jun 1991 A
5032123 Katz et al. Jul 1991 A
5037169 Chun Aug 1991 A
5039193 Snow et al. Aug 1991 A
5040548 Yock Aug 1991 A
5041108 Fox et al. Aug 1991 A
5054492 Scribner et al. Oct 1991 A
5065010 Knute Nov 1991 A
5065769 de Toledo Nov 1991 A
5085221 Ingebrigtsen et al. Feb 1992 A
5095911 Pomeranz Mar 1992 A
5100424 Jang et al. Mar 1992 A
5120308 Hess Jun 1992 A
5125137 Corl et al. Jun 1992 A
5135486 Eberle et al. Aug 1992 A
5135516 Sahatjian et al. Aug 1992 A
5155439 Holmbo et al. Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163445 Christian et al. Nov 1992 A
5167233 Eberle et al. Dec 1992 A
5174295 Christian et al. Dec 1992 A
5176141 Bom et al. Jan 1993 A
5176674 Hofmann Jan 1993 A
5178159 Christian Jan 1993 A
5183048 Eberle Feb 1993 A
5188632 Goldenberg Feb 1993 A
5201316 Pomeranz et al. Apr 1993 A
5202745 Sorin et al. Apr 1993 A
5203779 Muller et al. Apr 1993 A
5220922 Barany Jun 1993 A
5224953 Morgentaler Jul 1993 A
5226421 Frisbie et al. Jul 1993 A
5240003 Lancee et al. Aug 1993 A
5240437 Christian Aug 1993 A
5242460 Klein et al. Sep 1993 A
5243988 Sieben et al. Sep 1993 A
5257974 Cox Nov 1993 A
5266302 Peyman et al. Nov 1993 A
5267954 Nita Dec 1993 A
5301001 Murphy et al. Apr 1994 A
5312425 Evans et al. May 1994 A
5313949 Yock May 1994 A
5313957 Little May 1994 A
5319492 Dorn et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5325198 Hartley et al. Jun 1994 A
5336178 Kaplan et al. Aug 1994 A
5346689 Peyman et al. Sep 1994 A
5348017 Thornton et al. Sep 1994 A
5348481 Ortiz Sep 1994 A
5353798 Sieben Oct 1994 A
5358409 Obara Oct 1994 A
5358478 Thompson et al. Oct 1994 A
5368037 Eberle et al. Nov 1994 A
5373845 Gardineer et al. Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5383853 Jung et al. Jan 1995 A
5387193 Miraki Feb 1995 A
5396328 Jestel et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5405377 Cragg Apr 1995 A
5411016 Kume et al. May 1995 A
5419777 Hofling May 1995 A
5421338 Crowley et al. Jun 1995 A
5423806 Dale et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431673 Summers et al. Jul 1995 A
5436759 Dijaili et al. Jul 1995 A
5439139 Brovelli Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5453575 O'Donnell et al. Sep 1995 A
5456693 Conston et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5480388 Zadini et al. Jan 1996 A
5485845 Verdonk et al. Jan 1996 A
5492125 Kim et al. Feb 1996 A
5496997 Pope Mar 1996 A
5507761 Duer Apr 1996 A
5512044 Duer Apr 1996 A
5514128 Hillsman et al. May 1996 A
5529674 Hedgcoth Jun 1996 A
5541730 Chaney Jul 1996 A
5546717 Penczak et al. Aug 1996 A
5546948 Hamm et al. Aug 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5581638 Givens et al. Dec 1996 A
5586054 Jensen et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5596079 Smith et al. Jan 1997 A
5598844 Diaz et al. Feb 1997 A
5609606 O'Boyle Mar 1997 A
5630806 Inagaki et al. May 1997 A
5651366 Liang et al. Jul 1997 A
5660180 Malinowski et al. Aug 1997 A
5667499 Welch et al. Sep 1997 A
5667521 Keown Sep 1997 A
5672877 Liebig et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5693015 Walker et al. Dec 1997 A
5713848 Dubrul et al. Feb 1998 A
5745634 Garrett et al. Apr 1998 A
5771895 Slager Jun 1998 A
5779731 Leavitt Jul 1998 A
5780958 Strugach et al. Jul 1998 A
5798521 Froggatt Aug 1998 A
5800450 Lary et al. Sep 1998 A
5803083 Buck et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817025 Alekseev et al. Oct 1998 A
5820594 Fontirroche et al. Oct 1998 A
5824520 Mulligan-Kehoe Oct 1998 A
5827313 Ream Oct 1998 A
5830222 Makower Nov 1998 A
5848121 Gupta et al. Dec 1998 A
5851464 Davila et al. Dec 1998 A
5857974 Eberle et al. Jan 1999 A
5872829 Wischmann et al. Feb 1999 A
5873835 Hastings et al. Feb 1999 A
5882722 Kydd Mar 1999 A
5912764 Togino Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5921931 O'Donnell et al. Jul 1999 A
5925055 Adrian et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951586 Berg et al. Sep 1999 A
5974521 Akerib Oct 1999 A
5976120 Chow et al. Nov 1999 A
5978391 Das et al. Nov 1999 A
5997523 Jang Dec 1999 A
6021240 Murphy et al. Feb 2000 A
6022319 Willard et al. Feb 2000 A
6031071 Mandeville et al. Feb 2000 A
6036889 Kydd Mar 2000 A
6043883 Leckel et al. Mar 2000 A
6050949 White et al. Apr 2000 A
6059738 Stoltze et al. May 2000 A
6068638 Makower May 2000 A
6074362 Jang et al. Jun 2000 A
6078831 Belef et al. Jun 2000 A
6080109 Baker et al. Jun 2000 A
6091496 Hill Jul 2000 A
6094591 Foltz et al. Jul 2000 A
6095976 Nachtomy et al. Aug 2000 A
6097755 Guenther, Jr. et al. Aug 2000 A
6099471 Torp et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6106476 Cori et al. Aug 2000 A
6120445 Grunwald Sep 2000 A
6123673 Eberle et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6141089 Thoma et al. Oct 2000 A
6146328 Chiao et al. Nov 2000 A
6148095 Prause et al. Nov 2000 A
6151433 Dower et al. Nov 2000 A
6152877 Masters Nov 2000 A
6152878 Nachtomy et al. Nov 2000 A
6159225 Makower Dec 2000 A
6165127 Crowley Dec 2000 A
6176842 Tachibana et al. Jan 2001 B1
6179809 Khairkhahan et al. Jan 2001 B1
6186949 Hatfield et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6200268 Vince et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6210332 Chiao et al. Apr 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212308 Donald Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245066 Morgan et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6254543 Grunwald et al. Jul 2001 B1
6256090 Chen et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6261246 Pantages et al. Jul 2001 B1
6275628 Jones et al. Aug 2001 B1
6283921 Nix et al. Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6295308 Zah Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6312384 Chiao Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328696 Fraser Dec 2001 B1
6343168 Murphy et al. Jan 2002 B1
6343178 Burns et al. Jan 2002 B1
6350240 Song et al. Feb 2002 B1
6364841 White et al. Apr 2002 B1
6366722 Murphy et al. Apr 2002 B1
6367984 Stephenson et al. Apr 2002 B1
6373970 Dong et al. Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375618 Chiao et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6376830 Froggatt et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6381350 Klingensmith et al. Apr 2002 B1
6387124 Buscemi et al. May 2002 B1
6396976 Little et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6417948 Chowdhury et al. Jul 2002 B1
6419644 White et al. Jul 2002 B1
6421164 Tearney et al. Jul 2002 B2
6423012 Kato et al. Jul 2002 B1
6426796 Pulliam et al. Jul 2002 B1
6428041 Wohllebe et al. Aug 2002 B1
6428498 Uflacker Aug 2002 B2
6429421 Meller et al. Aug 2002 B1
6440077 Jung et al. Aug 2002 B1
6443903 White et al. Sep 2002 B1
6450964 Webler Sep 2002 B1
6457365 Stephens et al. Oct 2002 B1
6459844 Pan Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6475149 Sumanaweera Nov 2002 B1
6480285 Hill Nov 2002 B1
6491631 Chiao et al. Dec 2002 B2
6491636 Chenal et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6504286 Porat et al. Jan 2003 B1
6508824 Flaherty et al. Jan 2003 B1
6514237 Maseda Feb 2003 B1
6520269 Geiger et al. Feb 2003 B2
6520677 Iizuka Feb 2003 B2
6535764 Imran et al. Mar 2003 B2
6538778 Leckel et al. Mar 2003 B1
6544217 Gulachenski Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6545760 Froggatt et al. Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6551250 Khalil Apr 2003 B2
6566648 Froggatt May 2003 B1
6570894 Anderson May 2003 B2
6572555 White et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6592612 Samson et al. Jul 2003 B1
6594448 Herman et al. Jul 2003 B2
6602241 Makower et al. Aug 2003 B2
6611322 Nakayama et al. Aug 2003 B1
6611720 Hata et al. Aug 2003 B2
6612992 Hossack et al. Sep 2003 B1
6615062 Ryan et al. Sep 2003 B2
6615072 Izatt et al. Sep 2003 B1
6621562 Durston Sep 2003 B2
6631284 Nutt et al. Oct 2003 B2
6638227 Bae Oct 2003 B2
6645152 Jung et al. Nov 2003 B1
6646745 Verma et al. Nov 2003 B2
6655386 Makower et al. Dec 2003 B1
6659957 Vardi et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6663565 Kawagishi et al. Dec 2003 B2
6665456 Dave et al. Dec 2003 B2
6669716 Gilson et al. Dec 2003 B1
6671055 Wavering et al. Dec 2003 B1
6673015 Glover et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6689144 Gerberding Feb 2004 B2
6696173 Naundorf et al. Feb 2004 B1
6701044 Arbore et al. Mar 2004 B2
6701176 Halperin et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6714703 Lee et al. Mar 2004 B2
6719717 Johnson et al. Apr 2004 B1
6725073 Motamedi et al. Apr 2004 B1
6726677 Flaherty et al. Apr 2004 B1
6730107 Kelley et al. May 2004 B2
6733474 Kusleika May 2004 B2
6738144 Dogariu May 2004 B1
6740113 Vrba May 2004 B2
6746464 Makower Jun 2004 B1
6780157 Stephens et al. Aug 2004 B2
6795188 Ruck et al. Sep 2004 B2
6795196 Funakawa Sep 2004 B2
6798522 Stolte et al. Sep 2004 B2
6822798 Wu et al. Nov 2004 B2
6830559 Schock Dec 2004 B2
6832024 Gerstenberger et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6847449 Bashkansky et al. Jan 2005 B2
6855115 Fonseca et al. Feb 2005 B2
6856138 Bohley Feb 2005 B2
6856400 Froggatt Feb 2005 B1
6856472 Herman et al. Feb 2005 B2
6860867 Seward et al. Mar 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6878113 Miwa et al. Apr 2005 B2
6886411 Kjellman et al. May 2005 B2
6891984 Petersen et al. May 2005 B2
6895106 Wang et al. May 2005 B2
6898337 Averett et al. May 2005 B2
6900897 Froggatt May 2005 B2
6912051 Jensen Jun 2005 B2
6916329 Zhao Jul 2005 B1
6922498 Shah Jul 2005 B2
6937346 Nebendahl et al. Aug 2005 B2
6937696 Mostafavi Aug 2005 B1
6943939 DiJaili et al. Sep 2005 B1
6947147 Motamedi et al. Sep 2005 B2
6947787 Webler Sep 2005 B2
6949094 Yaron Sep 2005 B2
6952603 Gerber et al. Oct 2005 B2
6954737 Kalantar et al. Oct 2005 B2
6958042 Honda Oct 2005 B2
6961123 Wang et al. Nov 2005 B1
6966891 Ookubo et al. Nov 2005 B2
6969293 Thai Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6985234 Anderson Jan 2006 B2
7004963 Wang et al. Feb 2006 B2
7006231 Ostrovsky et al. Feb 2006 B2
7010458 Wilt Mar 2006 B2
7024025 Sathyanarayana Apr 2006 B2
7027211 Ruffa Apr 2006 B1
7027743 Tucker et al. Apr 2006 B1
7033347 Appling Apr 2006 B2
7035484 Silberberg et al. Apr 2006 B2
7037269 Nix et al. May 2006 B2
7042573 Froggatt May 2006 B2
7044915 White et al. May 2006 B2
7044964 Jang et al. May 2006 B2
7048711 Rosenman et al. May 2006 B2
7049306 Konradi et al. May 2006 B2
7058239 Singh et al. Jun 2006 B2
7060033 White et al. Jun 2006 B2
7060421 Naundorf et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7068852 Braica Jun 2006 B2
7074188 Nair et al. Jul 2006 B2
7095493 Harres Aug 2006 B2
7110119 Maestle Sep 2006 B2
7113875 Terashima et al. Sep 2006 B2
7123777 Rondinelli et al. Oct 2006 B2
7130054 Ostrovsky et al. Oct 2006 B2
7139440 Rondinelli et al. Nov 2006 B2
7153299 Tu et al. Dec 2006 B1
7171078 Sasaki et al. Jan 2007 B2
7175597 Vince et al. Feb 2007 B2
7177491 Dave et al. Feb 2007 B2
7190464 Alphonse Mar 2007 B2
7215802 Klingensmith et al. May 2007 B2
7218811 Shigenaga et al. May 2007 B2
7236812 Ballerstadt et al. Jun 2007 B1
7245125 Harer et al. Jul 2007 B2
7245789 Bates et al. Jul 2007 B2
7249357 Landman et al. Jul 2007 B2
7291146 Steinke et al. Nov 2007 B2
7292715 Furnish Nov 2007 B2
7292885 Scott et al. Nov 2007 B2
7294124 Eidenschink Nov 2007 B2
7300460 Levine et al. Nov 2007 B2
7335161 Von Arx et al. Feb 2008 B2
7337079 Park et al. Feb 2008 B2
7355716 de Boer et al. Apr 2008 B2
7356367 Liang et al. Apr 2008 B2
7358921 Snyder et al. Apr 2008 B2
7359062 Chen et al. Apr 2008 B2
7359554 Klingensmith et al. Apr 2008 B2
7363927 Ravikumar Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7391520 Zhou et al. Jun 2008 B2
7397935 Kimmel et al. Jul 2008 B2
7399095 Rondinelli Jul 2008 B2
7408648 Kleen et al. Aug 2008 B2
7414779 Huber et al. Aug 2008 B2
7440087 Froggatt et al. Oct 2008 B2
7447388 Bates et al. Nov 2008 B2
7449821 Dausch Nov 2008 B2
7450165 Ahiska Nov 2008 B2
RE40608 Glover et al. Dec 2008 E
7458967 Appling et al. Dec 2008 B2
7463362 Lasker et al. Dec 2008 B2
7463759 Klingensmith et al. Dec 2008 B2
7491226 Palmaz et al. Feb 2009 B2
7515276 Froggatt et al. Apr 2009 B2
7527594 Vardi et al. May 2009 B2
7534251 WasDyke May 2009 B2
7535797 Peng et al. May 2009 B2
7547304 Johnson Jun 2009 B2
7564949 Sattler et al. Jul 2009 B2
7577471 Camus et al. Aug 2009 B2
7583857 Xu et al. Sep 2009 B2
7603165 Townsend et al. Oct 2009 B2
7612773 Magnin et al. Nov 2009 B2
7633627 Choma et al. Dec 2009 B2
7645229 Armstrong Jan 2010 B2
7658715 Park et al. Feb 2010 B2
7660452 Zwirn et al. Feb 2010 B2
7660492 Bates et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7672790 McGraw et al. Mar 2010 B2
7680247 Atzinger et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7711413 Feldman et al. May 2010 B2
7720322 Prisco May 2010 B2
7728986 Lasker et al. Jun 2010 B2
7734009 Brunner et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7743189 Brown et al. Jun 2010 B2
7762954 Nix et al. Jul 2010 B2
7766896 Komkven Volk et al. Aug 2010 B2
7773792 Kimmel et al. Aug 2010 B2
7775981 Guracar et al. Aug 2010 B1
7777399 Eidenschink et al. Aug 2010 B2
7781724 Childers et al. Aug 2010 B2
7783337 Feldman et al. Aug 2010 B2
7787127 Galle et al. Aug 2010 B2
7792342 Barbu et al. Sep 2010 B2
7801343 Unal et al. Sep 2010 B2
7801590 Feldman et al. Sep 2010 B2
7813609 Petersen et al. Oct 2010 B2
7831081 Li Nov 2010 B2
7846101 Eberle et al. Dec 2010 B2
7853104 Oota et al. Dec 2010 B2
7853316 Milner et al. Dec 2010 B2
7860555 Saadat Dec 2010 B2
7862508 Davies et al. Jan 2011 B2
7872759 Tearney et al. Jan 2011 B2
7880868 Aoki Feb 2011 B2
7881763 Brauker et al. Feb 2011 B2
7909844 Alkhatib et al. Mar 2011 B2
7921854 Hennings et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7929148 Kemp Apr 2011 B2
7930014 Huennekens et al. Apr 2011 B2
7930104 Baker et al. Apr 2011 B2
7936462 Jiang et al. May 2011 B2
7942852 Mas et al. May 2011 B2
7947012 Spurchise et al. May 2011 B2
7951186 Eidenschink et al. May 2011 B2
7952719 Brennan, III May 2011 B2
7972353 Hendriksen et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
7977950 Maslen Jul 2011 B2
7978916 Klingensmith et al. Jul 2011 B2
7981041 McGahan Jul 2011 B2
7981151 Rowe Jul 2011 B2
7983737 Feldman et al. Jul 2011 B2
7993333 Oral et al. Aug 2011 B2
7995210 Tearney et al. Aug 2011 B2
7996060 Trofimov et al. Aug 2011 B2
7999938 Wang Aug 2011 B2
8021377 Eskuri Sep 2011 B2
8021420 Dolan Sep 2011 B2
8036732 Milner Oct 2011 B2
8040586 Smith et al. Oct 2011 B2
8047996 Goodnow et al. Nov 2011 B2
8049900 Kemp et al. Nov 2011 B2
8050478 Li et al. Nov 2011 B2
8050523 Younge et al. Nov 2011 B2
8052605 Muller et al. Nov 2011 B2
8057394 Dala-Krishna Nov 2011 B2
8059923 Bates et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8080800 Hoctor et al. Dec 2011 B2
8088102 Adams et al. Jan 2012 B2
8100838 Wright et al. Jan 2012 B2
8104479 Glynn et al. Jan 2012 B2
8108030 Castella et al. Jan 2012 B2
8114102 Galdonik et al. Feb 2012 B2
8116605 Petersen et al. Feb 2012 B2
8125648 Milner et al. Feb 2012 B2
8126239 Sun et al. Feb 2012 B2
8133199 Weber et al. Mar 2012 B2
8133269 Flechsenhar et al. Mar 2012 B2
8140708 Zaharia et al. Mar 2012 B2
8148877 Jiang et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8172757 Jaffe et al. May 2012 B2
8177809 Mavani et al. May 2012 B2
8187191 Hancock et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8187830 Hu et al. May 2012 B2
8199218 Lee et al. Jun 2012 B2
8206429 Gregorich et al. Jun 2012 B2
8208995 Tearney et al. Jun 2012 B2
8222906 Wyar et al. Jul 2012 B2
8233681 Aylward et al. Jul 2012 B2
8233718 Klingensmith et al. Jul 2012 B2
8238624 Doi et al. Aug 2012 B2
8239938 Simeral et al. Aug 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8280470 Milner et al. Oct 2012 B2
8289284 Glynn et al. Oct 2012 B2
8289522 Tearney et al. Oct 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8298149 Hastings et al. Oct 2012 B2
8301000 Sillard et al. Oct 2012 B2
8309428 Lemmerhirt et al. Nov 2012 B2
8317713 Davies et al. Nov 2012 B2
8323201 Towfiq et al. Dec 2012 B2
8329053 Martin et al. Dec 2012 B2
8336643 Harleman Dec 2012 B2
8349000 Schreck Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8353954 Cai et al. Jan 2013 B2
8357981 Martin et al. Jan 2013 B2
8361097 Patel et al. Jan 2013 B2
8386560 Ma et al. Feb 2013 B2
8398591 Mas et al. Mar 2013 B2
8412312 Judell et al. Apr 2013 B2
8417491 Trovato et al. Apr 2013 B2
8449465 Nair et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8454686 Alkhatib Jun 2013 B2
8475522 Jimenez et al. Jul 2013 B2
8478384 Schmitt et al. Jul 2013 B2
8486062 Belhe et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8491567 Magnin et al. Jul 2013 B2
8500798 Rowe et al. Aug 2013 B2
8550911 Sylla Oct 2013 B2
8594757 Boppart et al. Nov 2013 B2
8597349 Alkhatib Dec 2013 B2
8600477 Beyar et al. Dec 2013 B2
8600917 Schimert et al. Dec 2013 B1
8601056 Lauwers et al. Dec 2013 B2
8620055 Barratt et al. Dec 2013 B2
8644910 Rousso et al. Feb 2014 B2
20010007940 Tu et al. Jul 2001 A1
20010029337 Pantages et al. Oct 2001 A1
20010037073 White et al. Nov 2001 A1
20010046345 Snyder et al. Nov 2001 A1
20010049548 Vardi et al. Dec 2001 A1
20020034276 Hu et al. Mar 2002 A1
20020041723 Ronnekleiv et al. Apr 2002 A1
20020069676 Kopp et al. Jun 2002 A1
20020089335 Williams Jul 2002 A1
20020099289 Crowley Jul 2002 A1
20020163646 Anderson Nov 2002 A1
20020186818 Arnaud et al. Dec 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020197456 Pope Dec 2002 A1
20030004412 Izatt et al. Jan 2003 A1
20030016604 Hanes Jan 2003 A1
20030018273 Cori et al. Jan 2003 A1
20030023153 Izatt et al. Jan 2003 A1
20030032886 Dgany et al. Feb 2003 A1
20030050871 Broughton Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069723 Hegde Apr 2003 A1
20030077043 Hamm et al. Apr 2003 A1
20030085635 Davidsen May 2003 A1
20030090753 Takeyama et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030093059 Griffin et al. May 2003 A1
20030103212 Westphal et al. Jun 2003 A1
20030152259 Belykh et al. Aug 2003 A1
20030181802 Ogawa Sep 2003 A1
20030187369 Lewis et al. Oct 2003 A1
20030194165 Silberberg et al. Oct 2003 A1
20030195419 Harada Oct 2003 A1
20030208116 Liang et al. Nov 2003 A1
20030212491 Mitchell et al. Nov 2003 A1
20030219202 Loeb et al. Nov 2003 A1
20030220749 Chen et al. Nov 2003 A1
20030228039 Green Dec 2003 A1
20040015065 Panescu et al. Jan 2004 A1
20040023317 Motamedi et al. Feb 2004 A1
20040028333 Lomas Feb 2004 A1
20040037742 Jen et al. Feb 2004 A1
20040042066 Kinoshita et al. Mar 2004 A1
20040054287 Stephens Mar 2004 A1
20040067000 Bates et al. Apr 2004 A1
20040068161 Couvillon Apr 2004 A1
20040082844 Vardi et al. Apr 2004 A1
20040092830 Scott et al. May 2004 A1
20040106853 Moriyama Jun 2004 A1
20040111552 Arimilli et al. Jun 2004 A1
20040126048 Dave et al. Jul 2004 A1
20040143160 Couvillon Jul 2004 A1
20040146546 Gravett et al. Jul 2004 A1
20040186369 Lam Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040220606 Goshgarian Nov 2004 A1
20040225220 Rich Nov 2004 A1
20040239938 Izatt Dec 2004 A1
20040242990 Brister et al. Dec 2004 A1
20040248439 Gernhardt et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050013778 Green et al. Jan 2005 A1
20050031176 Hertel et al. Feb 2005 A1
20050036150 Izatt et al. Feb 2005 A1
20050078317 Law et al. Apr 2005 A1
20050101859 Maschke May 2005 A1
20050123180 Luo Jun 2005 A1
20050140582 Lee et al. Jun 2005 A1
20050140682 Sumanaweera et al. Jun 2005 A1
20050140981 Waelti Jun 2005 A1
20050140984 Hitzenberger Jun 2005 A1
20050147303 Zhou et al. Jul 2005 A1
20050165439 Weber et al. Jul 2005 A1
20050171433 Boppart et al. Aug 2005 A1
20050171438 Chen et al. Aug 2005 A1
20050182297 Gravenstein et al. Aug 2005 A1
20050196028 Kleen et al. Sep 2005 A1
20050197585 Brockway et al. Sep 2005 A1
20050213103 Everett et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050234445 Conquergood et al. Oct 2005 A1
20050243322 Lasker et al. Nov 2005 A1
20050249391 Kimmel et al. Nov 2005 A1
20050251567 Ballew et al. Nov 2005 A1
20050254059 Alphonse Nov 2005 A1
20050264823 Zhu et al. Dec 2005 A1
20060013523 Childlers et al. Jan 2006 A1
20060015126 Sher Jan 2006 A1
20060029634 Berg et al. Feb 2006 A1
20060036167 Shina Feb 2006 A1
20060038115 Maas Feb 2006 A1
20060039004 de Boer et al. Feb 2006 A1
20060041180 Viswanathan et al. Feb 2006 A1
20060045536 Arahira Mar 2006 A1
20060055936 Yun et al. Mar 2006 A1
20060058622 Tearney et al. Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060067620 Shishkov et al. Mar 2006 A1
20060072808 Grimm et al. Apr 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060098927 Schmidt et al. May 2006 A1
20060100694 Globerman May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060132790 Gutin Jun 2006 A1
20060135870 Webler Jun 2006 A1
20060142703 Carter et al. Jun 2006 A1
20060142733 Forsberg Jun 2006 A1
20060173299 Romley et al. Aug 2006 A1
20060179255 Yamazaki Aug 2006 A1
20060184048 Saadat Aug 2006 A1
20060187537 Huber et al. Aug 2006 A1
20060195269 Yeatman et al. Aug 2006 A1
20060204119 Feng et al. Sep 2006 A1
20060229591 Lee Oct 2006 A1
20060239312 Kewitsch et al. Oct 2006 A1
20060241342 Macaulay et al. Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060258895 Maschke Nov 2006 A1
20060264743 Kleen Nov 2006 A1
20060267756 Kates Nov 2006 A1
20060270976 Savage et al. Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060279742 Tearney et al. Dec 2006 A1
20060279743 Boesser et al. Dec 2006 A1
20060285638 Boese et al. Dec 2006 A1
20060287595 Maschke Dec 2006 A1
20060293597 Johnson et al. Dec 2006 A1
20070015969 Feldman et al. Jan 2007 A1
20070016029 Donaldson et al. Jan 2007 A1
20070016034 Donaldson Jan 2007 A1
20070016062 Park et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070036417 Argiro et al. Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038121 Feldman et al. Feb 2007 A1
20070038125 Kleen et al. Feb 2007 A1
20070043292 Camus et al. Feb 2007 A1
20070043597 Donaldson Feb 2007 A1
20070049847 Osborne Mar 2007 A1
20070060973 Ludvig et al. Mar 2007 A1
20070065077 Childers et al. Mar 2007 A1
20070066888 Maschke Mar 2007 A1
20070066890 Maschke Mar 2007 A1
20070066983 Maschke Mar 2007 A1
20070084995 Newton et al. Apr 2007 A1
20070100226 Yankelevitz et al. May 2007 A1
20070135887 Maschke Jun 2007 A1
20070142707 Wiklof et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070161893 Milner et al. Jul 2007 A1
20070161896 Adachi et al. Jul 2007 A1
20070161963 Smalling Jul 2007 A1
20070162860 Muralidharan et al. Jul 2007 A1
20070165141 Srinivas et al. Jul 2007 A1
20070167710 Unal et al. Jul 2007 A1
20070167804 Park et al. Jul 2007 A1
20070191682 Rolland et al. Aug 2007 A1
20070201736 Klingensmith et al. Aug 2007 A1
20070206193 Pesach Sep 2007 A1
20070208276 Komkven Volk et al. Sep 2007 A1
20070225220 Ming et al. Sep 2007 A1
20070225590 Ramos Sep 2007 A1
20070229801 Tearney et al. Oct 2007 A1
20070232872 Prough et al. Oct 2007 A1
20070232874 Ince Oct 2007 A1
20070232890 Hirota Oct 2007 A1
20070232891 Hirota Oct 2007 A1
20070232892 Hirota Oct 2007 A1
20070232893 Tanioka Oct 2007 A1
20070232933 Gille et al. Oct 2007 A1
20070238957 Yared Oct 2007 A1
20070239395 Jenkins Oct 2007 A1
20070247033 Eidenschink et al. Oct 2007 A1
20070249967 Buly Oct 2007 A1
20070250000 Magnin et al. Oct 2007 A1
20070250036 Volk et al. Oct 2007 A1
20070258094 Izatt et al. Nov 2007 A1
20070260138 Feldman et al. Nov 2007 A1
20070278389 Ajgaonkar et al. Dec 2007 A1
20070287914 Cohen Dec 2007 A1
20080002183 Yatagai et al. Jan 2008 A1
20080013093 Izatt et al. Jan 2008 A1
20080021275 Tearney et al. Jan 2008 A1
20080027481 Gilson et al. Jan 2008 A1
20080043024 Schiwietz et al. Feb 2008 A1
20080045842 Furnish Feb 2008 A1
20080051660 Kakadaris et al. Feb 2008 A1
20080063304 Russak Mar 2008 A1
20080085041 Breeuwer Apr 2008 A1
20080095465 Mullick et al. Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097194 Milner Apr 2008 A1
20080101667 Begelman et al. May 2008 A1
20080108867 Zhou May 2008 A1
20080114254 Matcovitch et al. May 2008 A1
20080119739 Vardi et al. May 2008 A1
20080124495 Horn et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080143707 Mitchell Jun 2008 A1
20080146941 Dala-Krishna Jun 2008 A1
20080147111 Johnson et al. Jun 2008 A1
20080154128 Milner Jun 2008 A1
20080161696 Schmitt et al. Jul 2008 A1
20080171944 Brenneman et al. Jul 2008 A1
20080175465 Jiang et al. Jul 2008 A1
20080177183 Courtney Jul 2008 A1
20080180683 Kemp Jul 2008 A1
20080181477 Izatt et al. Jul 2008 A1
20080183075 Govari Jul 2008 A1
20080187201 Liang et al. Aug 2008 A1
20080228086 Ilegbusi et al. Sep 2008 A1
20080247622 Aylward et al. Oct 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080262470 Lee et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080269599 Csavoy et al. Oct 2008 A1
20080281205 Naghavi et al. Nov 2008 A1
20080281248 Angheloiu et al. Nov 2008 A1
20080285043 Fercher et al. Nov 2008 A1
20080287795 Klingensmith et al. Nov 2008 A1
20080291463 Milner et al. Nov 2008 A1
20080292173 Hsieh et al. Nov 2008 A1
20080294034 Krueger et al. Nov 2008 A1
20080298655 Edwards Dec 2008 A1
20080306766 Ozeki et al. Dec 2008 A1
20090009801 Tabuki Jan 2009 A1
20090018393 Dick et al. Jan 2009 A1
20090034813 Dikmen et al. Feb 2009 A1
20090043191 Castella et al. Feb 2009 A1
20090046295 Kemp et al. Feb 2009 A1
20090052614 Hempel et al. Feb 2009 A1
20090069843 Agnew Mar 2009 A1
20090079993 Yatagai et al. Mar 2009 A1
20090088650 Cori Apr 2009 A1
20090093980 Kemp et al. Apr 2009 A1
20090122320 Petersen May 2009 A1
20090138544 Wegenkittl et al. May 2009 A1
20090149739 Maschke Jun 2009 A9
20090156941 Moore Jun 2009 A1
20090174886 Inoue Jul 2009 A1
20090174931 Huber et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090177183 Pinkernell et al. Jul 2009 A1
20090195514 Glynn et al. Aug 2009 A1
20090196470 Carl et al. Aug 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090203991 Papaioannou et al. Aug 2009 A1
20090264768 Courtney et al. Oct 2009 A1
20090269014 Winberg et al. Oct 2009 A1
20090270695 McEowen Oct 2009 A1
20090284322 Harrison et al. Nov 2009 A1
20090284332 Moore et al. Nov 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090290167 Flanders et al. Nov 2009 A1
20090292048 Li et al. Nov 2009 A1
20090299195 Muller et al. Dec 2009 A1
20090299284 Holman et al. Dec 2009 A1
20090318951 Kashkarov et al. Dec 2009 A1
20090326634 Vardi Dec 2009 A1
20100007669 Bethune et al. Jan 2010 A1
20100030042 Denninghoff et al. Feb 2010 A1
20100061611 Xu et al. Mar 2010 A1
20100063400 Hall et al. Mar 2010 A1
20100087732 Eberle et al. Apr 2010 A1
20100094125 Younge et al. Apr 2010 A1
20100094127 Xu Apr 2010 A1
20100094135 Fang-Yen et al. Apr 2010 A1
20100094143 Mahapatra et al. Apr 2010 A1
20100113919 Maschke May 2010 A1
20100125238 Lye et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100125648 Zaharia et al. May 2010 A1
20100128348 Taverner May 2010 A1
20100152717 Keeler Jun 2010 A1
20100160788 Davies et al. Jun 2010 A1
20100161023 Cohen et al. Jun 2010 A1
20100168714 Burke et al. Jul 2010 A1
20100179421 Tupin Jul 2010 A1
20100179426 Davies et al. Jul 2010 A1
20100220334 Condit et al. Sep 2010 A1
20100226607 Zhang et al. Sep 2010 A1
20100234736 Corl Sep 2010 A1
20100249601 Courtney Sep 2010 A1
20100253949 Adler Oct 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100272432 Johnson Oct 2010 A1
20100284590 Peng et al. Nov 2010 A1
20100290693 Cohen et al. Nov 2010 A1
20100331950 Strommer Dec 2010 A1
20110010925 Nix et al. Jan 2011 A1
20110021926 Spencer et al. Jan 2011 A1
20110025853 Richardson Feb 2011 A1
20110026797 Declerck et al. Feb 2011 A1
20110032533 Izatt et al. Feb 2011 A1
20110034801 Baumgart Feb 2011 A1
20110044546 Pan et al. Feb 2011 A1
20110066073 Kuiper et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110072405 Chen et al. Mar 2011 A1
20110077528 Kemp et al. Mar 2011 A1
20110080591 Johnson et al. Apr 2011 A1
20110087104 Moore et al. Apr 2011 A1
20110137140 Tearney et al. Jun 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110152771 Milner et al. Jun 2011 A1
20110157597 Lu et al. Jun 2011 A1
20110160586 Li et al. Jun 2011 A1
20110178413 Schmitt et al. Jul 2011 A1
20110190586 Kemp Aug 2011 A1
20110191084 Cooke Aug 2011 A1
20110216378 Poon et al. Sep 2011 A1
20110220985 Son et al. Sep 2011 A1
20110238061 van der Weide et al. Sep 2011 A1
20110238083 Moll et al. Sep 2011 A1
20110245669 Zhang Oct 2011 A1
20110249094 Wang et al. Oct 2011 A1
20110257545 Suri Oct 2011 A1
20110264125 Wilson et al. Oct 2011 A1
20110274329 Mathew et al. Nov 2011 A1
20110282334 Groenhoff Nov 2011 A1
20110301684 Fischell et al. Dec 2011 A1
20110306995 Moberg Dec 2011 A1
20110319752 Steinberg et al. Dec 2011 A1
20120004529 Tolkowsky et al. Jan 2012 A1
20120004668 Wallace et al. Jan 2012 A1
20120013914 Kemp et al. Jan 2012 A1
20120016344 Kusakabe Jan 2012 A1
20120016395 Olson Jan 2012 A1
20120022360 Kemp Jan 2012 A1
20120026503 Lewandowski et al. Feb 2012 A1
20120029007 Graham et al. Feb 2012 A1
20120059253 Wang et al. Mar 2012 A1
20120059368 Takaoka et al. Mar 2012 A1
20120062843 Ferguson et al. Mar 2012 A1
20120065481 Hunter et al. Mar 2012 A1
20120071823 Chen Mar 2012 A1
20120071838 Fojtik Mar 2012 A1
20120075638 Rollins Mar 2012 A1
20120083696 Kitamura Apr 2012 A1
20120095340 Smith Apr 2012 A1
20120095372 Sverdlik et al. Apr 2012 A1
20120108943 Bates et al. May 2012 A1
20120113108 Dala-Krishna May 2012 A1
20120116353 Arnold et al. May 2012 A1
20120130243 Balocco et al. May 2012 A1
20120130247 Waters et al. May 2012 A1
20120136259 Milner et al. May 2012 A1
20120136427 Palmaz et al. May 2012 A1
20120137075 Vorbach May 2012 A1
20120155734 Barratt et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120162660 Kemp Jun 2012 A1
20120165661 Kemp et al. Jun 2012 A1
20120170848 Kemp et al. Jul 2012 A1
20120172698 Teo et al. Jul 2012 A1
20120176607 Ott Jul 2012 A1
20120184853 Waters Jul 2012 A1
20120184859 Shah et al. Jul 2012 A1
20120184977 Wolf Jul 2012 A1
20120215094 Rahimian et al. Aug 2012 A1
20120220836 Alpert et al. Aug 2012 A1
20120220851 Razansky et al. Aug 2012 A1
20120220865 Brown et al. Aug 2012 A1
20120220874 Hancock et al. Aug 2012 A1
20120220883 Manstrom et al. Aug 2012 A1
20120224751 Kemp et al. Sep 2012 A1
20120226153 Brown et al. Sep 2012 A1
20120230565 Steinberg et al. Sep 2012 A1
20120232400 Dickinson et al. Sep 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20120238956 Yamada et al. Sep 2012 A1
20120244043 Leblanc et al. Sep 2012 A1
20120250028 Schmitt et al. Oct 2012 A1
20120253186 Simpson et al. Oct 2012 A1
20120253192 Cressman Oct 2012 A1
20120253276 Govari et al. Oct 2012 A1
20120257210 Whitney et al. Oct 2012 A1
20120262720 Brown et al. Oct 2012 A1
20120265077 Gille et al. Oct 2012 A1
20120265268 Blum et al. Oct 2012 A1
20120265296 McNamara et al. Oct 2012 A1
20120271170 Emelianov et al. Oct 2012 A1
20120271175 Moore et al. Oct 2012 A1
20120271339 O'Beirne et al. Oct 2012 A1
20120274338 Baks et al. Nov 2012 A1
20120276390 Ji et al. Nov 2012 A1
20120277722 Gerber et al. Nov 2012 A1
20120279764 Jiang et al. Nov 2012 A1
20120283758 Miller et al. Nov 2012 A1
20120289987 Wilson et al. Nov 2012 A1
20120299439 Huang Nov 2012 A1
20120310081 Adler et al. Dec 2012 A1
20120310332 Murray et al. Dec 2012 A1
20120319535 Dausch Dec 2012 A1
20120323075 Younge et al. Dec 2012 A1
20120323127 Boyden et al. Dec 2012 A1
20120330141 Brown et al. Dec 2012 A1
20130006105 Furuichi Jan 2013 A1
20130015975 Huennekens et al. Jan 2013 A1
20130023762 Huennekens et al. Jan 2013 A1
20130023763 Huennekens et al. Jan 2013 A1
20130026655 Lee et al. Jan 2013 A1
20130030295 Huennekens et al. Jan 2013 A1
20130030303 Ahmed et al. Jan 2013 A1
20130030410 Drasler et al. Jan 2013 A1
20130053949 Pintor et al. Feb 2013 A1
20130109958 Baumgart et al. May 2013 A1
20130109959 Baumgart et al. May 2013 A1
20130137980 Waters et al. May 2013 A1
20130150716 Stigall et al. Jun 2013 A1
20130158594 Carrison et al. Jun 2013 A1
20130218201 Obermiller et al. Aug 2013 A1
20130218267 Braido et al. Aug 2013 A1
20130223789 Lee et al. Aug 2013 A1
20130223798 Jenner et al. Aug 2013 A1
20130296704 Magnin et al. Nov 2013 A1
20130303907 Corl Nov 2013 A1
20130303920 Corl Nov 2013 A1
20130310698 Judell et al. Nov 2013 A1
20130331820 Itou et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130339958 Droste et al. Dec 2013 A1
20140039294 Jiang Feb 2014 A1
20140180067 Stigall et al. Jun 2014 A1
20140180128 Corl Jun 2014 A1
20140200438 Millett et al. Jul 2014 A1
20140268167 Friedman Sep 2014 A1
Foreign Referenced Citations (79)
Number Date Country
1041373 Oct 2000 EP
01172637 Jan 2002 EP
2438877 Apr 2012 EP
2280261 Jan 1995 GB
2000-262461 Sep 2000 JP
2000-292260 Oct 2000 JP
2001-125009 May 2001 JP
2001-272331 Oct 2001 JP
2002-374034 Dec 2002 JP
2003-143783 May 2003 JP
2003-172690 Jun 2003 JP
2003-256876 Sep 2003 JP
2003-287534 Oct 2003 JP
2005-274380 Oct 2005 JP
2006-184284 Jul 2006 JP
2006-266797 Oct 2006 JP
2006-313158 Nov 2006 JP
2007-024677 Feb 2007 JP
2009-233001 Oct 2009 JP
2011-56786 Mar 2011 JP
9101156 Feb 1991 WO
9216865 Oct 1992 WO
9306213 Apr 1993 WO
9308829 May 1993 WO
9838907 Sep 1998 WO
9857583 Dec 1998 WO
0011511 Mar 2000 WO
00044296 Aug 2000 WO
0111409 Feb 2001 WO
03062802 Jul 2003 WO
03073950 Sep 2003 WO
2004010856 Feb 2004 WO
2004023992 Mar 2004 WO
2004096049 Nov 2004 WO
2005047813 May 2005 WO
2005106695 Nov 2005 WO
2006029634 Mar 2006 WO
2006037132 Apr 2006 WO
2006039091 Apr 2006 WO
2006061829 Jun 2006 WO
2006068875 Jun 2006 WO
2006111704 Oct 2006 WO
2006119416 Nov 2006 WO
2006121851 Nov 2006 WO
2006130802 Dec 2006 WO
2007002685 Jan 2007 WO
2007025230 Mar 2007 WO
2007045690 Apr 2007 WO
2007058895 May 2007 WO
2007067323 Jun 2007 WO
2007084995 Jul 2007 WO
2008058084 May 2008 WO
2008069991 Jun 2008 WO
2008107905 Sep 2008 WO
2009009799 Jan 2009 WO
2009009801 Jan 2009 WO
2009046431 Apr 2009 WO
2009121067 Oct 2009 WO
2009137704 Nov 2009 WO
201106886 Jan 2011 WO
2011038048 Mar 2011 WO
2011081688 Jul 2011 WO
2012003369 Jan 2012 WO
2012061935 May 2012 WO
2012071388 May 2012 WO
2012087818 Jun 2012 WO
2012098194 Jul 2012 WO
2012109676 Aug 2012 WO
2012130289 Oct 2012 WO
2012154767 Nov 2012 WO
2012155040 Nov 2012 WO
2013033414 Mar 2013 WO
2013033415 Mar 2013 WO
2013033418 Mar 2013 WO
2013033489 Mar 2013 WO
2013033490 Mar 2013 WO
2013033592 Mar 2013 WO
2013126390 Aug 2013 WO
2014109879 Jul 2014 WO
Non-Patent Literature Citations (195)
Entry
Bell, Malcolm R., et al. “Validation of a new UNIX-based quantitative coronary angiographic system for the measurement of coronary artery lesions.” Catheterization and cardiovascular diagnosis 40.1 (1997): 66-74. (Year: 1997).
Liew, Yih Miin, et al. “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo.” Journal of biomedical optics 16.11 (2011): 116018-116018. (Year: 2011).
Westphal, Volker, et al. “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle.” Optics express 10.9 (2002): 397-404. (Year: 2002).
Bell, Malcolm R. et al “Validation of a new UNIX based Quantitative Coronary Angiographic System for the Measurment of Coronary Artery Lesions” Catheterizaiton and Cardiovascular Diagnosis, vol. 40.1, 1997, pp. 66-74.
Tommasini, Giorgio et al “A Deterministic Approach to Automated Stenosis Quantification”, Catheterization and Cardiovascular Interventions, vol. 48.4, 1999, pp. 435-445.
Sihan et al., 2008, A novel approach to quantitative analysis of intraluminal optical coherence tomography imaging, Comput. Cardiol:1089-1092.
Siwy et al., 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Applied Physics A: Materials Science & Processing 76:781-785.
Smith et al., 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelsor interferometer, Applied Optics, 28(16):3339-3342.
Smith, 1997, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA:432-436.
Soller, 2003, Polarization diverse optical frequency domain interferometry:All coupler implementation, Bragg Grating, Photosensitivity, and Poling in Glass Waveguides Conference MB4:30-32.
Song et al., 2012, Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography, Optics Express, 20(21):23414-23421.
Stenqvist et al., 1983, Stiffness of central venous catheters, Acta Anaesthesiol Scand., 2:153-157.
Strickland, 1970, Time-Domain Reflectometer Measurements, Tektronix, Beaverton, OR, (107 pages).
Strobl et al., 2009, An Introduction to Recursive Partitioning:Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests, Psychol Methods., 14(4):323-348.
Sutcliffe et al., 1986, Dynamics of UV laser ablation of organic polymer surfaces, Journal of Applied Physics, 60(9):3315-3322.
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54.
Tanimoto et al., 2008, A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection, Cathet Cardiovascular Intervent., 72(2):228-235.
Tearney et al., 1997, In vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 276:2037-2039.
Tonino et al., 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, The New England Journal of Medicine, 360:213-224.
Toregeani et al., 2008, Evaluation of hemodialysis arteriovenous fistula maturation by color-flow Doppler ultrasound, J Vasc. Bras. 7(3):203-213.
Translation of Notice of Reason(s) for Refusal dated Apr. 30, 2014, for Japanese Patent Application No. 2011-508677, (5 pages).
Translation of Notice of Reason(s) for Refusal dated May 25, 2012, for Japanese Patent Application No. 2009-536425, (3 pages).
Translation of Notice of Reason(s) for Refusal dated Nov. 22, 2012, for Japanese Patent Application No. 2010-516304, (6 pages).
Traunecker et al., 1991, Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells EMBO J., 10:3655-3659.
Trolier-McKinstry et al., 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17.
Tuniz et al., 2010, Weaving the invisible thread: design of an optically invisible metamaterial fibre, Optics Express 18(17):18095-18105.
Turk et al., 1991, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1):71-86.
Tuzel et al., 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV).
Urban et al., 2010, Design of a Pressure Sensor Based on Optical Bragg Grating Lateral Deformation, Sensors (Basel), 10(12):11212-11225.
Vakhtin et al., 2003, Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34):6953-6958.
Vakoc et al., 2005, Phase-Resolved Optical Frequency Domain Imaging, Optics Express 13(14):5483-5493.
Verhoeyen et al., 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536.
Villard et al., 2002, Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography, Circulation, 105:1843-1849.
Wang et al., 2002, Optimizing the Beam Patten of a Forward-Viewing Ring-Annular Ultrasound Array for Intravascular Imaging, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12).
Wang et al., 2006, Multiple biomarkers for the prediction of first major cardiovascular events and death, The New England Journal of Medicine, 355(25):2631-2639.
Wang et al., 2009, Robust Guidewire Tracking in Fluoroscopy, IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2009:691-698.
Wang et al., 2011, In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation, J. Biomed. Opt. 0001 16(11):110505-1 (3 pages).
Waterhouse et al., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucleic Acids Res., 21:2265-2266.
Wegener, 2011, 3D Photonic Metamaterials and Invisibility Cloaks: The Method of Making, MEMS 2011, Cancun, Mexico, Jan. 23-27, 2011.
West et al., 1991, Arterial insufficiency in hemodialysis access procedures: correction by banding technique, Transpl Proc 23(2):1838-40.
Wyawahare et al., 2009, Image registration techniques: an overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3):11-28.
Yaqoob et al., 2006, Methods and application areas of endoscopic optical coherence tomography, J. Biomed. Opt., 11, 063001-1-063001-19.
Yasuno et al., 2004, Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples, Applied Physics Letters 85(15):3023-3025.
Zhang et al., 2004, Full range polarization-sensitive Fourier domain optical coherence tomography, Optics Express, 12(24):6033-6039.
Zitova et al., 2003, Image registration methods: A survey. Image and Vision Computing, 21(11):977-1000.
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinica Cardiology, 14(11):868-874.
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40.
Machine translation of JP 2000-097846.
Machine translation of JP 2000-321034.
Machine translation of JP 2000-329534.
Machine translation of JP 2004-004080.
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages).
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265.
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597.
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783.
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148.
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554.
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46.
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24.
Miller et al., 2010, The Miller banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366.
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540.
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202.
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855.
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239.
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Source in the Telescope-Less Configurations with Application in Optical Coherence Tomography, Optics Letters 33(15):1741-1743.
Nissen, 2001, Coronary Angiography and Intravascular Ultrasound, American Journal of Cardiology, 87(suppl):15A-20A.
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21.
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filing date May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages).
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412.
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63.
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30.
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247.
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611.
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341.
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26(1):80-113.
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30.
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944.
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4):1547-1556.
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890.
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89.
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17.
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417.
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19.
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271.
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327.
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7.
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64.
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229.
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3×3 Fiber Couplers, Optics Express 13(3):957-967.
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952.
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405.
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402.
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121.
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635.
Shen et al., 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642.
International Search Report and Written Opinion dated Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion dated Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages).
International Search Report and Written Opinion dated Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages).
International Search Report and Written Opinion dated Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion dated Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages).
International Search Report and Written Opinion dated Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion dated Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion dated Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 Pages).
International Search Report and Written Opinion dated Jul. 30, 2014, for International Patent Application No. PCT/ US14/21659, filed Mar. 7, 2014 (15 pages).
International Search Report and Written Opinion dated Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion dated Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages).
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255.
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258.
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609.
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366.
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571.
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525.
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149.
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89.
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470.
Kelly et al., 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336.
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518.
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520.
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages).
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014.
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3.
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7.
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997.
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005.
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371.
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852.
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7.
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34.
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162.
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585.
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930.
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459.
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628.
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey.
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287.
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867.
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”—Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089.
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag.
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186.
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721.
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages).
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533.
Breiman, 2001, Random forests, Machine Learning 45:5-32.
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376.
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540.
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172.
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263.
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698.
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257.
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189.
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303.
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281.
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35.
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187.
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021.
Davies et al., 1985, Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373.
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381.
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937.
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080.
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84.
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43.
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608.
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61(1):55-79.
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815.
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92.
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages).
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT.
Forstner & Moonen, 1999, A metric for covariance matrices, In Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128.
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (Miller) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70.
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229.
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94.
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260.
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479.
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801.
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528.
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237.
International Search Report and Written Opinion dated Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion dated Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages).
Related Publications (1)
Number Date Country
20210190476 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
61739881 Dec 2012 US
Continuations (1)
Number Date Country
Parent 14107861 Dec 2013 US
Child 17194729 US