The described technology relates generally to manufacturing a graphene structure solution and a graphene device.
Graphene shows stable characteristics and high electric mobility, and has accumulated considerable interest as a material for use in next generation semiconductor devices. However, in order to show semiconductor characteristics, the graphene is typically required to be formed as a channel having a nanoscale line width. This is because the graphene basically has a metallic characteristic.
Graphene nanostructures are typically synthesized in a form of a solution or powder. Therefore, in order to manufacture a device using a graphene nanostructure, a process of aligning a graphene nanostructure on a solid surface with a desired directivity is required.
Recently, in order to commercialize a device utilizing a graphene nanostructure, techniques for selectively adhering graphene nanostructures on a substrate at desired positions have been widely studied. Among them, a technique in which a solution having graphenes dispersed therein is spread on a silicon substrate so that graphenes may be adhered on the substrate is being studied.
However, when a nanoscale graphene device is manufactured using a graphene-dispersed solution according to conventional schemes, including the aforementioned schemes, it is difficult to fabricate devices having uniformly good characteristics since the nanostructure graphenes dispersed in the solution are not uniform in their widths. In addition, a technique that positions graphenes at desired positions for mass production has not yet been developed.
Techniques for manufacturing a graphene device and a graphene nanostructure solution are provided. In one embodiment, a method of manufacturing a graphene nanostructure solution comprises: forming a target nanostructure on a multi-layered graphene; forming a multi-layered graphene nanostructure by performing anisotropic etching using the target nanostructure as a mask; and forming a solution having graphene nanostructures dispersed therein by dispersing the multi-layered graphene nanostructure in a dispersion solvent.
In one embodiment, a method of manufacturing a graphene nano device comprises: forming a molecule layer pattern having a hydrophobic molecule layer in a first region on a substrate; and aligning a graphene nanostructure in a second region of the substrate where the hydrophobic molecule layer is not formed.
In another embodiment, a method of manufacturing a graphene nano device comprises: forming a target nanostructure on a multi-layered graphene; forming a multi-layered graphene nanostructure by performing anisotropic etching using the target nanostructure as a mask; forming a solution having graphene nanostructures dispersed therein by dispersing the multi-layered graphene nanostructure in a dispersion solvent; forming a molecule layer pattern having a hydrophobic molecule layer in a first region on a substrate; and aligning a graphene nanostructure in a second region of the substrate where the hydrophobic molecule layer is not formed, by dipping the substrate with the molecule layer pattern in a solution having graphene nanostructures dispersed therein.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. The Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the components of the present disclosure, as generally described herein, and illustrated in the Figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
In addition, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
The term “nanostructure” used hereinafter recites a structure of nanoscale, and includes a nanoribbon, a nanowire, a nanotube, and a structure made of a combination thereof. In addition, nanostructure, as used hereinafter, includes various other shapes.
Hereinafter, a method of manufacturing a solution including graphene nanostructures dispersed therein according to an example embodiment is described in detail with reference to
As shown in
In the present example embodiment, a van der Waals force is utilized to attach the oxide nanowire 20 to the graphene 10. However, it is notable that the oxide nanowire 20 may be adhered to the graphene 10 in various other ways, for example by utilizing an electrostatic force. A vanadium oxide nanowire, by way of example, may be used as the oxide nanowire 20, and in the following description, the oxide nanowire 20 is referred to as a vanadium oxide nanowire 20 for better understanding of the description.
When the electrostatic force is utilized, a separate voltage is applied to the graphene. When the van der Waals force is utilized, the graphene may simply be dipped in a nanowire solution without the need to apply an external force, and therefore an oxide nanowire may be easily adhered to the graphene.
An oxide nanowire having a covalent bond shows stronger bonding than graphene having a metallic bond, and shows a far lower etch-rate with respect to ion beam milling than graphene. Therefore, an oxide nanowire may be used as a mask in order to remove graphene at the periphery of the mask when an etching period is appropriately controlled.
That is, as shown in
In the present example embodiment, a vanadium oxide nanowire is taken as an example of the oxide nanowire 20 used as a mask since the vanadium oxide nanowire may be easily formed in a very narrow nanoscale size.
Other than the vanadium oxide, any material that has strong resistivity with respect to an ion beam may be used. As an example, oxide materials such as, by way of example, vanadium pentoxide (V2O5) (other vanadium oxides VxOy may also be used), zinc oxide (ZnO5), and silicon dioxide (SiO2) typically show high resistivity with respect to an ion beam. This is partly because the bonding strength thereof is high. Additionally, since the oxides are typically insulators, charges generated when exposed to the ion beam do not flow but are accumulated, and the accumulated charges may redirect the ion beam. Materials other than the oxide nanowires 20, such as, by way of example, undoped silicon (Si) and germanium (Ge), may also be used since they show high resistivity with respect to an ion beam.
In
Subsequently, as shown in
Subsequently, such produced multi-layer graphene nanoribbon 12 is put in a dispersion solvent and ultrasonic waves are applied thereto as shown in
In the present embodiment, o-dichlorobenzene is used as a dispersion solvent. However, other materials such as, by way of example, 1,2-dichloroethane or poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) may also be used.
According to the present example embodiment illustrated in
Hereinafter, a method of manufacturing a graphene device using a solution having graphene nanostructures dispersed therein is described in detail with reference to
The graphene has a benzene ring and a double bond of carbons, and accordingly has a dipole by a delocalized electron. Therefore, graphenes are not assembled with a hydrophobic molecule layer but are assembled with a hydrophilic molecule layer or a solid surface that is charged with the opposite polarity with respect to the graphenes. A method of manufacturing a nanoscale graphene structure described hereinafter employs a technique for forming a graphene nanoribbon at a specific position and direction on a substrate utilizing the selective assembling characteristic on a hydrophilic molecule layer or a solid surface, which is hereinafter referred to as a “selective assembly process.”
As shown in
While the molecule layer pattern 40 may be formed in various ways, photolithography is used in the present example embodiment, since a molecule layer pattern utilizing photolithography is beneficial for compatibility with a conventional semiconductor process. However, techniques other than photolithography, for example microcontact printing or dip-pen nanolithography (DPN), may also be utilized to form the molecule layer pattern 40.
Subsequently, as shown in
At this time, molecules such as, by way of example, octadecyltrichlorosilane (OTS), octadecyltrimethoxysilane (OTMS), and octadecyl-triethoxysilane (OTE) that are hydrophobic molecules may be used for the molecule layer pattern 40 used for aligning the graphene on the substrate. The molecule layer pattern 40 shown in
Subsequently, referring back to
Although the graphene nanostructures adhere to the substrate region 42 that is not covered with the hydrophobic molecule layer pattern 40 without any prior treatment according to the present example embodiment illustrated in
A hydrophilic molecule layer may help adhesion of the graphene nanostructure to the substrate by increasing affinity therebetween. In further detail, graphene nanostructures may be adhered to the hydrophilic molecule layer by applying a positive voltage to the substrate after forming the hydrophilic molecule layer in the region where the graphene is adhered.
Aminopropyltriethoxysilane (APTES), 3-mercaptopropyl trimethoxysilane (MPTMS), etc., may be used for the hydrophilic molecule layer.
Finally, the substrate with the graphene nanostructures as shown in
From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2008-0076584 | Aug 2008 | KR | national |