All publications and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference, including: U.S. patent application Ser. No. 15/253,826, titled “SYSTEMS AND METHODS FOR VEHICLE SUBASSEMBLY AND FABRICATION”, filed on Aug. 31, 2016; which is a continuation-in-part of U.S. Pat. No. 9,895,747, titled “SYSTEMS AND METHODS FOR FABRICATING JOINT MEMBERS”, filed on Jun. 30, 2015; and U.S. Pat. No. 9,884,663, titled “MODULAR FORMED NODES FOR VEHICLE CHASSIS AND THEIR METHODS OF USE”, filed on May 15, 2015.
The present disclosure generally relates to manufacturing systems and methods for a wide variety of vehicles, and more specifically to manufacturing cell based manufacturing systems and methods for a wide variety of vehicles.
The automotive industry has been evolving over the years. Body-on-frame is the original method for assembling a car or truck. The body and frame are two separate entities. The frame is a ladder frame on which both the body and drivetrain are installed. However, body-on-frame vehicles are heavier, which results in worse fuel efficiency. Also, the rigidity creates a noticeably harsher ride.
Throughout the 1930s and 1940s, the unibody method began to gain popularity. Currently, most vehicles are designed by the unibody method, which is now considered standard in the industry. The unibody method integrates the frame into the body construction. Different parts of the vehicle are welded, riveted and screwed together to create its body structure. Unibody construction cuts significant weight out of the vehicle, allowing for better fuel economy. It is generally considered safe, since the entire body can absorb the energy forces in a crash. However, introducing a new unibody model is very expensive and has a very long Research and Development (R&D) cycle, because the entire design of the vehicle and the corresponding assembly line need to be changed. Further, since the unibody design incorporates the frame into the passenger shell, serious accidents become very costly to repair.
Space frame is another method which is a development of the earlier ladder frame. In a space frame chassis, the suspension, engine, and body panels are attached to a three-dimensional skeletal frame, and the body panels have little or no structural function. Advantages of space frame chassis construction include better torsional rigidity that is required in high performance vehicles. The modular design of the space frame can further allow customized design and easy new product development. However, a conventional space frame chassis includes many parts, which are manually welded or glued together. The process is very time consuming and labor intensive. Due to the complicated manufacturing process, conventional space frame chassis platform is predominantly used for high performance and specialty market cars.
There is a need to develop new manufacturing systems and methods that are modular in design and flexible for manufacturing a wide variety of vehicles, with high robot utilization and automatic assembling process, while saving weight and space, and enabling easier service and repair.
Manufacturing cell based manufacturing systems and methods for a wide variety of vehicles will be described more fully hereinafter with reference to various illustrative aspects of the present disclosure.
In one aspect of the disclosure, a manufacturing cell configured for assembling a frame of a vehicle is disclosed. The manufacturing cell includes a positioner, a robot carrier and a robot. The positioner is configured to receive a fixture table, where the fixture table is configured to hold the frame. The robot carrier includes a vertical lift, where the vertical lift includes a vertical column and a shelf, where the shelf is movably attached to the vertical column and movable along a vertical direction. The robot is mounted on the shelf and configured to assemble the frame. The positioner is configured to support the frame in a vertical position during an assembling process of the frame.
In another aspect of the disclosure, a system for manufacturing a vehicle based on a manufacturing cell is disclosed. The system includes a fixture table configured to hold a frame of the vehicle and a manufacturing cell configured for assembling the frame. The manufacturing cell includes a positioner configured to receive the fixture table, a robot carrier, a robot, and a controller. The robot is mounted on the robot carrier and configured to assemble the frame. The controller is configured to control an assembling process of the frame. The positioner is configured to support the frame during the assembling process of the frame. For example, the positioner may be configured to support the frame in a vertical position during the assembling process. The robot carrier may include a vertical lift, and where the vertical lift includes a vertical column and a shelf movably attached to the vertical column, where the shelf is movable along a vertical direction, and where the robot is mounted on the shelf. The robot carrier may include a base, where the base has a base central axis, wherein the base is configured to be rotatable around the base central axis. The system may include the frame, where the frame includes a plurality of connecting components and a plurality of joint members, where each joint member is sized and shaped to mate with at least a subset of the plurality of connecting components to form a three-dimensional frame structure.
In another aspect of the disclosure, a method for manufacturing a vehicle based on a manufacturing cell is disclosed. The method for manufacturing a vehicle includes a step of receiving a fixture table by a positioner. The method can include supporting the fixture table with the positioner. The method can further include introducing parts to the fixture table. The method include a step of assembling a frame of the vehicle using the parts by a robot in an assembling process inside a manufacturing cell. The method further includes a step of controlling the assembling process by a controller. For example, the step of supporting the fixture table with the positioner includes supporting the fixture table in a vertical position with the positioner during the assembling process.
It will be understood that other aspects of manufacturing a vehicle based on a manufacturing cell thereof will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the disclosed subject matter is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of manufacturing cell based manufacturing systems and methods for a wide variety of vehicles thereof will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure. In addition, the figures may not be drawn to scale and instead may be drawn in a way that attempts to most effectively highlight various features relevant to the subject matter described.
This disclosure is generally directed to manufacturing cell based systems and methods for manufacturing a vehicle. The term “vehicle” used throughout this disclosure means a transport structure used for transporting people or goods, including automobiles, trucks, trains, metro systems, boats, ships, watercrafts, aircrafts, helicopters, motorcycles, bicycles, space crafts, and the like. The manufacturing cell based systems and methods disclosed herein can be used to manufacture a wide variety of vehicles, including, but not being limited to, automobiles, water vessels, aircrafts and human powered vehicles, etc. The term “frame” used throughout this disclosure means a supporting structure of a vehicle to which other components are attached. Examples of a frame include, but not being limited to, a chassis, a space frame, a three-dimensional frame, an internal frame, an outer frame, a partially inner and partially outer frame, a supporting component/structure, or supporting components/structures, of a vehicle.
This disclosure presents a system for manufacturing a vehicle based on a manufacturing cell. The system includes a fixture table configured to hold a frame of the vehicle and a manufacturing cell configured for assembling the frame. The manufacturing cell includes a positioner configured to receive the fixture table, a robot carrier, a robot and a controller. The robot is mounted on the robot carrier and configured to assemble the frame. The controller is configured to control an assembling process of the frame. The positioner is configured to support the frame during the assembling process of the frame. For example, the positioner may be configured to support the frame in a vertical position during the assembling process. The robot carrier may include a vertical lift. The vertical lift includes a vertical column and a shelf movably attached to the vertical column. The shelf is movable along a vertical direction, and where the robot is mounted on the shelf. The robot carrier may include a base, where the base has a base central axis, wherein the base is configured to be rotatable around the base central axis. The system may include the frame. The system can serve as a flexible universal constructor, with high robot utilization.
This disclosure presents a manufacturing cell configured for assembling a frame of a vehicle. The manufacturing cell includes a positioner, a robot carrier and a robot. The positioner is configured to receive a fixture table, where the fixture table is configured to hold the frame. The robot carrier includes a vertical lift, where the vertical lift includes a vertical column and a shelf, where the shelf is movably attached to the vertical column and movable along a vertical direction. The robot is mounted on the shelf and configured to assemble the frame. The positioner is configured to support the frame in a vertical position during an assembling process of the frame.
Advantageously, the systems and methods disclosed herein are modular in design and flexible for manufacturing a wide variety of vehicles. New products only need minimal retooling, resulting in significantly lower new product development cost, and much shorter R&D cycles. In addition, the systems and methods offer smaller footprint, and higher space utilization. Notably, the manufacturing cell based systems and methods have high robot utilization, and automatic assembly processes, which lends itself useful for high volume production of vehicles. Thus, the manufacturing cell based systems and methods can significantly lower the manufacturing cost of the vehicles.
As shown in
The robot carrier 122 may further includes a rotary base 126. For example, the vertical lift 124 is attached to the rotary base 126. The base 126 has a base central axis 128, where the base 126 is configured to be rotatable around the base central axis 128. The robot carrier 122 is configured to support the robot 132. In this embodiment, the robot carrier 122 has 2 degrees of freedom, vertical movement and rotation. The robot carrier 122 has an independent rotation of the vertical lift column 124a. Since the base 126 is configured to be rotatable around the base central axis 128, the vertical column 124a mounted on the base 126 is rotatable around the base central axis 128 as well.
The robot 132 may have various axis configurations. For example, the robot 132 may have a robot base 132b and an arm 132a. The robot base 132b is mounted on the shelf 124b of the vertical lift 124. The robot 132 may have six axes, also called six degrees of freedom. The six axis robot 132 allows for greater maneuverability, and can perform a wider variety of manipulations than robots with fewer axes. In other configurations, however, fewer than six axes may be used. In some embodiments, the robot 132 has a first axis 138 located at the robot base 132b, allows the robot to rotate from side to side. The first axis 138 is the central axis 138 of the robot 132. The robot 132 is configured to rotate around the robot central axis 138. This axis 138 allows the robot 132 to spin up to or past a full 180 degree range from center, in either direction.
The robot 132 may have a second axis which allows the lower arm 132a of the robot 132 to extend forward and backward. It is the axis powering the movement of the entire lower arm 132a. The robot 132 may have a third axis which extends the robot's reach. It allows the upper arm to be raised and lowered. On some articulated models, it allows the upper arm to reach behind the body, further expanding the work envelope. This axis gives the upper arm the better part access. The robot 132 may have a fourth axis which aids in the positioning of the end effector and manipulation of the part to be assembled. The robot 132 may further have a fifth axis which allows the wrist of the robot arm to tilt up and down. The robot 132 may further have a sixth axis which is the wrist of the robot arm 132a.
In some embodiments, the robot central axis 138 is offset from the base central axis 128, as shown in
In some embodiments, the robot carrier 122 may include a control unit (not shown). The control unit is configured to control the robot carrier 122. The manufacturing cell 100 may further include a controller 185, which can be configured to control the robot carrier 122, the robot 132, the positioner 112, and controls for the rest of the system. The controller 185 can be configured to control an assembling process of the frame 103, for example, an automatic assembling process. The entire assembling process can be automated with high efficiency and low cost. In other embodiments, a central control station may communicate to the robot carrier 122 to issue instructions for the assembling process. In still other embodiments, the robot carrier 122 may be authorized to perform certain functions and make certain decisions on its own, while a central station or an on-site server may have control over other, potentially more important decisions which may be conveyed to the robot carrier 122 electronically or otherwise. In short, a wide variety of control automation configurations may be implemented into the system depending on the application and objectives, and each such configuration is intended to fall within the spirit and scope of the present disclosure.
The frame 103 may form the framework of a vehicle. The frame 103 may provide the structure for placement of body panels of the vehicle, where body panels may be door panels, roof panels, floor panels, or any other panels forming the vehicle enclosure. Furthermore, the frame 103 may be the structural support for the wheels, drive train, engine block, electrical components, heating and cooling systems, seats, storage space, and other systems.
The vehicle may be a passenger vehicle capable of carrying at least about 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, ten or more, twenty or more, or thirty or more passengers. Examples of vehicles may include, but are not limited to sedans, trucks, buses, vans, minivans, station wagons, RVs, trailers, tractors, go-carts, automobiles, trains, or motorcycles, boats, spacecraft, or airplanes. The frame may provide a form factor that matches the form factor of the type of vehicle. Depending on the type of vehicle, the frame may have varying configurations. The frame may have varying levels of complexity. In some instances, a three-dimensional frame may provide an outer framework for the vehicle. In some other instances, a three-dimensional frame may provide an inner framework for the vehicle. In yet some other instances, a three-dimensional frame may provide partially inner and partially outer framework for the vehicle. The framework may be configured to accept body panels to form a three-dimensional enclosure. Optionally, inner supports or components may be provided. The inner supports or components can be connected to the frame through connection to the one or more joint members of the frame. Different layouts of multi-port nodes and connecting components may be provided to accommodate different vehicle frame/chassis configurations. In some cases, a set of nodes can be arranged to form a single unique frame/chassis design. Alternatively at least a subset of the set of nodes can be used to form a plurality of frame/chassis designs. In some cases at least a subset of nodes in a set of nodes can be assembled into a first frame/chassis design and then disassembled and reused to form a second frame/chassis design. The first frame/chassis design and the second frame/chassis design can be the same or they can be different. Nodes may be able to support components in a two or three-dimensional plane. The details of the frame/chassis are described in U.S. patent application Ser. No. 15/253,826, U.S. Pat. Nos. 9,895,747, and 9,884,663, which are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
In some other embodiments, the frame may include other types of frame or other features which include nodes, channels to inject adhesives, pick-up features which allow robots to pick up or otherwise manipulate portions or all of the frame, and tooling features built into the frame. The frame may be assembled entirely by robots, or by an automatic assembling process.
The positioner 212 is configured to perform one or more of lifting the fixture table 242, tilting the fixture table 242, and rotating the fixture table 242. In some embodiments, the positioner 212 is a 3-axis positioner, which adds 3 degrees of freedom to the manufacturing cell. The positioner 212 can lift the fixture table 242 up and down, from and to the ground. The positioner 212 can further tilt the fixture table 242 from a horizontal position to a vertical position, and anywhere in between. In some embodiments, it can go beyond the horizontal and vertical positions. Moreover, the positioner 212 can rotate the fixture table 242 around a positional axis 118 (see
In some embodiments, the positioner 212 includes a 3-point kinematic mount 215 and a positioner base 219. The fixture table 242 may be secured to the positioner 212 with the 3-point kinematic mount 215. For example, the positioner 212 may be attached to the fixture table 242 by various fail-safe methods, including bolting or a zero-point quick release mechanism. For example, the positioner 212 may include one or more zero point pins to secure the fixture table 242 to the positioner 212. In some embodiments, a mechanical lock between the fixture table 242 and positioner 212 can be used to securely lock the fixture table 242 to the positioner 212. Therefore, the positioner 212 can support the fixture table 242 at various positions, including a vertical position, a horizontal position, and anywhere in between, as shown in
As shown in
In an embodiment, the fixture table 342 as shown in
Referring generally to
In addition, the manufacturing cell 100 is configured for volume production. The manufacturing cell 100 may have high robot utilization, where required, for high volumes. The manufacturing cell 100 can be configured to be fully automatic, for example. The automatic assembling process can significantly reduce the manufacturing effort of the frame, thereby enabling vehicles with the frame to be produced more efficiently and economically.
As shown in
In some embodiments, the manufacturing cell 100 may further include a second robot carrier 125 and a second robot 135. Both robots 132, 135 work together to assemble the frame 103, or parts thereof. For example, the second robot carrier 125 may be positioned at an opposite side of the positioner 112 than the robot carrier 122. For another example, the robot carrier 122 may be positioned at +45 degrees relative to the positioner 112, and the second robot carrier 125 may be positioned at −45 degrees relative to the positioner 112. The manufacturing cell 100 may further include one or more robot carriers. There is no limit to the number of robot carriers. There are also many configurations to place the one or more robot carriers. The examples discussed above are only for illustration purpose, and there is no limitation to the relative positions of the one or more robot carriers.
In some embodiments, the manufacturing cell 100 may further include one or more stationary robots 162. For example, each of the one or more stationary robots 162 may be placed on a corresponding pedestal 164, which elevates the stationary robot to a desired working height to enable greater accessibility and reach. The stationary robots 162 may perform a variety of tasks, such as assembling assemblies, subassemblies, assisting, etc.
As shown in
The manufacturing cell 100 allows for a plurality of robots to be positioned strategically inside the cell, enabling pooled work envelopes. The compact footprint of the manufacturing cell 100 further has the advantage of saving space. The manufacturing cell 100 may have various dimensions. For example, the manufacturing cell 100 may have an area between 400 square feet and 3600 square feet. The space of the manufacturing cell 100 can be significantly lower than the conventional assembly line for vehicles.
Moreover, the vertical manufacturing cell 100 enables robots to act as fixtures, in place of a customary stationary fixture, to thereby achieve an overall reduction or elimination of fixtures during the assembling process.
For example, the fixture table may have legs with wheels that enable movement on the floor, while holding the frame within the required tolerance.
Referring back to
In some embodiments, the manufacturing cell 100 may include an adhesive injection subsystem. The robots 132, 135 are further configured to apply an adhesive to bond the frame 103. The adhesive injection subsystem may include adhesive injection end effectors 132c, 135c. The frame 103 includes a plurality of connecting components 101a, 101b, 101c, a plurality of joint members 102, or nodes 102 (
In some embodiments, the manufacturing cell 100 may include one or more fastener drivers (not shown). The robots 132, 135 are further configured to install fasteners to the frame 103 by using the fastener drivers. For example, the arms 132a, 135a of the robots 132, 135 may be configured to be coupled to end effectors for fastener drivers. The one or more fastener drivers may be attached to the arms 132a, 135a of the robots 132, 135, to reach all necessary locations, by leveraging all axes of freedom that the manufacturing cell 100 offers. The number of robots and fastener drivers needed may be minimized because of the better reach and accessibility offered by the increased number of degrees of freedom of the manufacturing cell 100.
In some embodiments, the manufacturing cell 100 may include one or more metrology devices (not shown). Metrology devices may include, for example, a laser scanner. The robots 132, 135 are further configured to measure multiple points on the frame 103 to perform a general measurement of the frame 103. For example, the arms 132a, 135a of the robots 132, 135 may be configured to be coupled to end effectors for metrology devices. The one or more metrology devices may be attached to the arms 132a, 135a of the robots 132, 135. For example, the robots 132, 135 may be configured to scan and measure the frame 103. As an example, the robots 132, 135 may be configured to measure the frame 103 by scanning the frame 103. As another example, the robots 132, 135 may be configured to measure the frame 103 by probing the frame 103. The vertical manufacturing cell 100 may advantageously ensure full access of the frame 103, avoiding need for additional components or hardware (e.g., overhead gantry rail system).
In some embodiments, the manufacturing cell 100 may include one or more subassembly robots and one or more subassembly tables. For example, each of the one or more subassembly robots may be configured to assemble a subassembly or subsection of the frame 103 on a corresponding subassembly table. The subassembly robots may pass the assembled subassemblies to the robots 132, 135 on the robot carriers 122, 125. The robots 132, 135 may assemble the frame 103 from the subassemblies. The one or more subassembly robots may enable concurrent assembling and therefore may further reduce the overall time of the assembling process.
For example, the manufacturing cell 100 may include one or more tool changers. The tool changers are configured to exchange the plurality of end effectors for the robots. For example, tool changers may be used to switch from specially designed end effectors for assembly, scanning heads for measurements, fastener drivers for bolt installations, and adhesive injection end effectors for adhesive and sealer applications.
As shown in
The manufacturing cell 100 offers agility and dexterity with reduced duplication of bonding, fastening, and measurement equipment. Scalability of the manufacturing cell 100 can be accomplished through the addition of derivative manufacturing cells to the vertical manufacturing cell 100, or decoupling of fastening, bonding, and or measurement operations. Scalability can also be achieved through duplication of the manufacturing cells in series or parallel, or a combination of the two. Flexibility can be attained through the robots' use of a virtually unlimited number of customized end effectors and other tools for performing a wide variety of specialized operations on the vehicle.
For example, the step 504 of supporting the fixture table with the positioner includes supporting the fixture table in a vertical position with the positioner during the assembling process.
The method 500 includes the step 508 of assembling the frame by a robot inside a manufacturing cell. The method 500 may further include moving the robot along a vertical direction by placing the robot on a vertical lift. The method 500 may include moving the robot along an arc by placing the vertical lift on a base rotatable around a central base axis. The method 500 may include performing one or more of lifting the fixture table, tilting the fixture table, and rotating the fixture table by the positioner. In some embodiments, the method 500 may include assembling the frame by a second robot.
The method 500 further includes supporting the frame by the positioner during the assembling process inside the manufacturing cell. For example, the method 500 of supporting the frame by the positioner may comprise supporting the frame in a vertical position by the positioner during the assembling process. There are many advantageous to assemble the frame in the vertical position, such as easy accessibility, large degrees of freedom, a compact footprint, low moving parts and convenient maintenance. The overhead space can be utilized. The robots can access the frame from many angles, which can increase the efficiency of the assembling process of the frame.
The method 500 further includes a step 510 of controlling the assembling process by a controller. The entire assembling process of assembling the frame may include high robot utilization, and can be fully automated in some embodiments. Further attributes and advantages of the controlling step 510 are described throughout this disclosure.
The method 500 may include applying an adhesive to bond together sections of the frame by the robot during the assembling process inside the manufacturing cell. Further, the method 500 may include installing fasteners to the frame by the robot using a fastener driver during the assembling process inside the manufacturing cell. The method 500 may also include measuring multiple points on the frame for measurement of the frame by the robot through a metrology device inside the manufacturing cell during the assembling process. The method 500 may include using a safety sensor to provide safety measure to the manufacturing cell. The method 500 may also include assembling one or more subassemblies of the frame by one or more subassembly robots on one or more subassembly tables inside the manufacturing cell. It will be appreciated that the above are merely non-exhaustive examples of the wide variety of tasks that the robots or other devices can undertake during the assembling process.
Advantageously, the systems and methods disclosed herein are modular in design and flexible for manufacturing a wide variety of vehicles. Newly developed products only require minimal retooling, resulting in significantly lower new product development efforts, and a reduced R&D cycle.
Notably, the manufacturing cell based systems and methods involve high robot utilization and a potentially fully automatic manufacturing process, which lead to the possibility of cost effective mass production. Thus, the manufacturing cell based systems and methods significantly lower the manufacturing efforts of the vehicles.
Importantly, the frame design results in weight savings and enables easier repair and service. The manufacturing cell enables easy assembling in a small space, which significantly saves overall manufacturing space. Therefore, the manufacturing cell based systems and methods provide a new platform for manufacturing vehicles.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for assembling a frame. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Number | Name | Date | Kind |
---|---|---|---|
2884242 | Fleming | Apr 1959 | A |
3370723 | Czarnecki | Feb 1968 | A |
3905495 | Wayne | Sep 1975 | A |
4238169 | DePriester | Dec 1980 | A |
4811891 | Yamaoka | Mar 1989 | A |
5125149 | Inaba | Jun 1992 | A |
5203226 | Hongou et al. | Apr 1993 | A |
5258598 | Alborante | Nov 1993 | A |
5742385 | Champa | Apr 1998 | A |
5990444 | Costin | Nov 1999 | A |
6010155 | Rinehart | Jan 2000 | A |
6096249 | Yamaguchi | Aug 2000 | A |
6140602 | Costin | Oct 2000 | A |
6193142 | Segawa | Feb 2001 | B1 |
6250533 | Otterbein et al. | Jun 2001 | B1 |
6252196 | Costin et al. | Jun 2001 | B1 |
6318642 | Goenka et al. | Nov 2001 | B1 |
6339874 | Segawa | Jan 2002 | B2 |
6365057 | Whitehurst et al. | Apr 2002 | B1 |
6391251 | Keicher et al. | May 2002 | B1 |
6409930 | Whitehurst et al. | Jun 2002 | B1 |
6468439 | Whitehurst et al. | Oct 2002 | B1 |
6554345 | Jonsson | Apr 2003 | B2 |
6585151 | Ghosh | Jul 2003 | B1 |
6644721 | Miskech et al. | Nov 2003 | B1 |
6811744 | Keicher et al. | Nov 2004 | B2 |
6866497 | Saiki | Mar 2005 | B2 |
6899377 | Ghuman | May 2005 | B2 |
6919035 | Clough | Jul 2005 | B1 |
6926970 | James et al. | Aug 2005 | B2 |
7152292 | Hohmann et al. | Dec 2006 | B2 |
7344186 | Hausler et al. | Mar 2008 | B1 |
7459656 | Yamaoka | Dec 2008 | B2 |
7500373 | Quell | Mar 2009 | B2 |
7586062 | Heberer | Sep 2009 | B2 |
7637134 | Burzlaff et al. | Dec 2009 | B2 |
7710347 | Gentilman et al. | May 2010 | B2 |
7716802 | Stern et al. | May 2010 | B2 |
7745293 | Yamazaki et al. | Jun 2010 | B2 |
7766123 | Sakurai et al. | Aug 2010 | B2 |
7798316 | Powers | Sep 2010 | B2 |
7852388 | Shimizu et al. | Dec 2010 | B2 |
7908922 | Zarabadi et al. | Mar 2011 | B2 |
7951324 | Naruse et al. | May 2011 | B2 |
8094036 | Heberer | Jan 2012 | B2 |
8163077 | Eron et al. | Apr 2012 | B2 |
8286236 | Jung et al. | Oct 2012 | B2 |
8289352 | Vartanian et al. | Oct 2012 | B2 |
8297096 | Mizumura et al. | Oct 2012 | B2 |
8354170 | Henry et al. | Jan 2013 | B1 |
8383028 | Lyons | Feb 2013 | B2 |
8408036 | Reith et al. | Apr 2013 | B2 |
8429754 | Jung et al. | Apr 2013 | B2 |
8437513 | Derakhshani et al. | May 2013 | B1 |
8442686 | Saito | May 2013 | B2 |
8444903 | Lyons et al. | May 2013 | B2 |
8452073 | Taminger et al. | May 2013 | B2 |
8599301 | Dowski, Jr. et al. | Dec 2013 | B2 |
8606540 | Haisty et al. | Dec 2013 | B2 |
8610761 | Haisty et al. | Dec 2013 | B2 |
8631996 | Quell et al. | Jan 2014 | B2 |
8675925 | Derakhshani et al. | Mar 2014 | B2 |
8678060 | Dietz et al. | Mar 2014 | B2 |
8686314 | Schneegans et al. | Apr 2014 | B2 |
8686997 | Radet et al. | Apr 2014 | B2 |
8694284 | Berard | Apr 2014 | B2 |
8720876 | Reith et al. | May 2014 | B2 |
8752166 | Jung et al. | Jun 2014 | B2 |
8755923 | Farahani et al. | Jun 2014 | B2 |
8787628 | Derakhshani et al. | Jul 2014 | B1 |
8818771 | Gielis et al. | Aug 2014 | B2 |
8873238 | Wilkins | Oct 2014 | B2 |
8978535 | Ortiz et al. | Mar 2015 | B2 |
9006605 | Schneegans et al. | Apr 2015 | B2 |
9071436 | Jung et al. | Jun 2015 | B2 |
9101979 | Hofmann et al. | Aug 2015 | B2 |
9104921 | Derakhshani et al. | Aug 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9128476 | Jung et al. | Sep 2015 | B2 |
9138924 | Fen | Sep 2015 | B2 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186848 | Mark et al. | Nov 2015 | B2 |
9244986 | Karmarkar | Jan 2016 | B2 |
9248611 | Divine et al. | Feb 2016 | B2 |
9254535 | Buller et al. | Feb 2016 | B2 |
9266566 | Kim | Feb 2016 | B2 |
9269022 | Rhoads et al. | Feb 2016 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9329020 | Napoletano | May 2016 | B1 |
9332251 | Haisty et al. | May 2016 | B2 |
9346127 | Buller et al. | May 2016 | B2 |
9389315 | Bruder et al. | Jul 2016 | B2 |
9399256 | Buller et al. | Jul 2016 | B2 |
9403235 | Buller et al. | Aug 2016 | B2 |
9418193 | Dowski, Jr. et al. | Aug 2016 | B2 |
9457514 | Schwarzler | Oct 2016 | B2 |
9469057 | Johnson et al. | Oct 2016 | B2 |
9478063 | Rhoads et al. | Oct 2016 | B2 |
9481402 | Muto et al. | Nov 2016 | B1 |
9486878 | Buller et al. | Nov 2016 | B2 |
9486960 | Paschkewitz et al. | Nov 2016 | B2 |
9502993 | Deng | Nov 2016 | B2 |
9517895 | Bacalia | Dec 2016 | B2 |
9525262 | Stuart et al. | Dec 2016 | B2 |
9533526 | Nevins | Jan 2017 | B1 |
9534311 | Clifford | Jan 2017 | B2 |
9555315 | Aders | Jan 2017 | B2 |
9555580 | Dykstra et al. | Jan 2017 | B1 |
9557856 | Send et al. | Jan 2017 | B2 |
9566742 | Keating et al. | Feb 2017 | B2 |
9566758 | Cheung et al. | Feb 2017 | B2 |
9573193 | Buller et al. | Feb 2017 | B2 |
9573225 | Buller et al. | Feb 2017 | B2 |
9586290 | Buller et al. | Mar 2017 | B2 |
9595795 | Lane et al. | Mar 2017 | B2 |
9597843 | Stauffer et al. | Mar 2017 | B2 |
9600929 | Voung et al. | Mar 2017 | B1 |
9609755 | Coull et al. | Mar 2017 | B2 |
9610737 | Johnson et al. | Apr 2017 | B2 |
9611667 | GangaRao et al. | Apr 2017 | B2 |
9616623 | Johnson et al. | Apr 2017 | B2 |
9626487 | Jung et al. | Apr 2017 | B2 |
9626489 | Nilsson | Apr 2017 | B2 |
9643361 | Liu | May 2017 | B2 |
9662840 | Buller et al. | May 2017 | B1 |
9665182 | Send et al. | May 2017 | B2 |
9672389 | Mosterman et al. | Jun 2017 | B1 |
9672550 | Apsley et al. | Jun 2017 | B2 |
9676145 | Buller et al. | Jun 2017 | B2 |
9684919 | Apsley et al. | Jun 2017 | B2 |
9688032 | Kia et al. | Jun 2017 | B2 |
9690286 | Hovsepian et al. | Jun 2017 | B2 |
9700966 | Kraft et al. | Jul 2017 | B2 |
9703896 | Zhang et al. | Jul 2017 | B2 |
9713903 | Paschkewitz et al. | Jul 2017 | B2 |
9718302 | Young et al. | Aug 2017 | B2 |
9718434 | Hector, Jr. et al. | Aug 2017 | B2 |
9724877 | Flitsch et al. | Aug 2017 | B2 |
9724881 | Johnson et al. | Aug 2017 | B2 |
9725178 | Wang | Aug 2017 | B2 |
9731730 | Stiles | Aug 2017 | B2 |
9731773 | Garni et al. | Aug 2017 | B2 |
9741954 | Bruder et al. | Aug 2017 | B2 |
9747352 | Karmarkar | Aug 2017 | B2 |
9764415 | Seufzer et al. | Sep 2017 | B2 |
9764520 | Johnson et al. | Sep 2017 | B2 |
9765226 | Dain | Sep 2017 | B2 |
9770760 | Liu | Sep 2017 | B2 |
9773393 | Velez | Sep 2017 | B2 |
9776234 | Ausen et al. | Oct 2017 | B2 |
9782936 | Glunz et al. | Oct 2017 | B2 |
9783324 | Embler et al. | Oct 2017 | B2 |
9783977 | Alqasimi et al. | Oct 2017 | B2 |
9789548 | Golshany et al. | Oct 2017 | B2 |
9789922 | Dosenbach et al. | Oct 2017 | B2 |
9796137 | Zhang et al. | Oct 2017 | B2 |
9802108 | Aders | Oct 2017 | B2 |
9809977 | Carney et al. | Nov 2017 | B2 |
9817922 | Glunz et al. | Nov 2017 | B2 |
9818071 | Jung et al. | Nov 2017 | B2 |
9821339 | Paschkewitz et al. | Nov 2017 | B2 |
9821411 | Buller et al. | Nov 2017 | B2 |
9823143 | Twelves, Jr. et al. | Nov 2017 | B2 |
9829564 | Bruder et al. | Nov 2017 | B2 |
9846933 | Yuksel | Dec 2017 | B2 |
9854828 | Langeland | Jan 2018 | B2 |
9858604 | Apsley et al. | Jan 2018 | B2 |
9862833 | Hasegawa et al. | Jan 2018 | B2 |
9862834 | Hasegawa et al. | Jan 2018 | B2 |
9863885 | Zaretski et al. | Jan 2018 | B2 |
9870629 | Cardno et al. | Jan 2018 | B2 |
9879981 | Niri et al. | Jan 2018 | B1 |
9884663 | Czinger et al. | Feb 2018 | B2 |
9898776 | Apsley et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
9919360 | Buller et al. | Mar 2018 | B2 |
9931697 | Levin et al. | Apr 2018 | B2 |
9933031 | Bracamonte et al. | Apr 2018 | B2 |
9933092 | Sindelar | Apr 2018 | B2 |
9957031 | Golshany et al. | May 2018 | B2 |
9958535 | Send et al. | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9963978 | Johnson et al. | May 2018 | B2 |
9971920 | Derakhshani et al. | May 2018 | B2 |
9976063 | Childers et al. | May 2018 | B2 |
9987792 | Flitsch et al. | Jun 2018 | B2 |
9988136 | Tiryaki et al. | Jun 2018 | B2 |
9989623 | Send et al. | Jun 2018 | B2 |
9990565 | Rhoads et al. | Jun 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996890 | Cinnamon et al. | Jun 2018 | B1 |
9996945 | Holzer et al. | Jun 2018 | B1 |
10002215 | Dowski et al. | Jun 2018 | B2 |
10006156 | Kirkpatrick | Jun 2018 | B2 |
10011089 | Lyons et al. | Jul 2018 | B2 |
10011685 | Childers et al. | Jul 2018 | B2 |
10012532 | Send et al. | Jul 2018 | B2 |
10013777 | Mariampillai et al. | Jul 2018 | B2 |
10015908 | Williams et al. | Jul 2018 | B2 |
10016852 | Broda | Jul 2018 | B2 |
10016942 | Mark et al. | Jul 2018 | B2 |
10017384 | Greer et al. | Jul 2018 | B1 |
10018576 | Herbsommer et al. | Jul 2018 | B2 |
10022792 | Srivas et al. | Jul 2018 | B2 |
10022912 | Kia et al. | Jul 2018 | B2 |
10027376 | Sankaran et al. | Jul 2018 | B2 |
10029369 | Carlisle | Jul 2018 | B1 |
10029415 | Swanson et al. | Jul 2018 | B2 |
10040239 | Brown, Jr. | Aug 2018 | B2 |
10046412 | Blackmore | Aug 2018 | B2 |
10048769 | Selker et al. | Aug 2018 | B2 |
10052712 | Blackmore | Aug 2018 | B2 |
10052820 | Kemmer et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10058764 | Aders | Aug 2018 | B2 |
10058920 | Buller et al. | Aug 2018 | B2 |
10061906 | Nilsson | Aug 2018 | B2 |
10065270 | Buller et al. | Sep 2018 | B2 |
10065361 | Susnjara et al. | Sep 2018 | B2 |
10065367 | Brown, Jr. | Sep 2018 | B2 |
10068316 | Holzer et al. | Sep 2018 | B1 |
10071422 | Buller et al. | Sep 2018 | B2 |
10071525 | Susnjara et al. | Sep 2018 | B2 |
10072179 | Drijfhout | Sep 2018 | B2 |
10074128 | Colson et al. | Sep 2018 | B2 |
10076875 | Mark et al. | Sep 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10081140 | Paesano et al. | Sep 2018 | B2 |
10081431 | Seack et al. | Sep 2018 | B2 |
10086568 | Snyder et al. | Oct 2018 | B2 |
10087320 | Simmons et al. | Oct 2018 | B2 |
10087556 | Gallucci et al. | Oct 2018 | B2 |
10099427 | Mark et al. | Oct 2018 | B2 |
10100542 | GangaRao et al. | Oct 2018 | B2 |
10100890 | Bracamonte et al. | Oct 2018 | B2 |
10107344 | Bracamonte et al. | Oct 2018 | B2 |
10108766 | Druckman et al. | Oct 2018 | B2 |
10113600 | Bracamonte et al. | Oct 2018 | B2 |
10118347 | Stauffer et al. | Nov 2018 | B2 |
10118579 | Lakic | Nov 2018 | B2 |
10120078 | Bruder et al. | Nov 2018 | B2 |
10124546 | Johnson et al. | Nov 2018 | B2 |
10124570 | Evans et al. | Nov 2018 | B2 |
10137500 | Blackmore | Nov 2018 | B2 |
10138354 | Groos et al. | Nov 2018 | B2 |
10144126 | Krohne et al. | Dec 2018 | B2 |
10145110 | Carney et al. | Dec 2018 | B2 |
10151363 | Bracamonte et al. | Dec 2018 | B2 |
10152661 | Kieser | Dec 2018 | B2 |
10160278 | Coombs et al. | Dec 2018 | B2 |
10161021 | Lin et al. | Dec 2018 | B2 |
10166752 | Evans et al. | Jan 2019 | B2 |
10166753 | Evans et al. | Jan 2019 | B2 |
10168686 | Choi | Jan 2019 | B2 |
10171578 | Cook et al. | Jan 2019 | B1 |
10173255 | TenHouten et al. | Jan 2019 | B2 |
10173327 | Kraft et al. | Jan 2019 | B2 |
10178800 | Mahalingam et al. | Jan 2019 | B2 |
10179640 | Wilkerson | Jan 2019 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183478 | Evans et al. | Jan 2019 | B2 |
10189187 | Keating et al. | Jan 2019 | B2 |
10189240 | Evans et al. | Jan 2019 | B2 |
10189241 | Evans et al. | Jan 2019 | B2 |
10189242 | Evans et al. | Jan 2019 | B2 |
10190424 | Johnson et al. | Jan 2019 | B2 |
10195693 | Buller et al. | Feb 2019 | B2 |
10196539 | Boonen et al. | Feb 2019 | B2 |
10197338 | Melsheimer | Feb 2019 | B2 |
10200677 | Trevor et al. | Feb 2019 | B2 |
10201932 | Flitsch et al. | Feb 2019 | B2 |
10201941 | Evans et al. | Feb 2019 | B2 |
10202673 | Lin et al. | Feb 2019 | B2 |
10204216 | Nejati et al. | Feb 2019 | B2 |
10207454 | Buller et al. | Feb 2019 | B2 |
10209065 | Estevo, Jr. et al. | Feb 2019 | B2 |
10210662 | Holzer et al. | Feb 2019 | B2 |
10213837 | Kondoh | Feb 2019 | B2 |
10214248 | Hall et al. | Feb 2019 | B2 |
10214252 | Schellekens et al. | Feb 2019 | B2 |
10214275 | Goehlich | Feb 2019 | B2 |
10220575 | Reznar | Mar 2019 | B2 |
10220881 | Tyan et al. | Mar 2019 | B2 |
10221530 | Driskell et al. | Mar 2019 | B2 |
10226900 | Nevins | Mar 2019 | B1 |
10232550 | Evans et al. | Mar 2019 | B2 |
10234342 | Moorlag et al. | Mar 2019 | B2 |
10237477 | Trevor et al. | Mar 2019 | B2 |
10252335 | Buller et al. | Apr 2019 | B2 |
10252336 | Buller et al. | Apr 2019 | B2 |
10254499 | Cohen et al. | Apr 2019 | B1 |
10257499 | Hintz et al. | Apr 2019 | B2 |
10259044 | Buller et al. | Apr 2019 | B2 |
10268181 | Nevins | Apr 2019 | B1 |
10269225 | Velez | Apr 2019 | B2 |
10272860 | Mohapatra et al. | Apr 2019 | B2 |
10272862 | Whitehead | Apr 2019 | B2 |
10275564 | Ridgeway et al. | Apr 2019 | B2 |
10279580 | Evans et al. | May 2019 | B2 |
10285219 | Fetfatsidis et al. | May 2019 | B2 |
10286452 | Buller et al. | May 2019 | B2 |
10286603 | Buller et al. | May 2019 | B2 |
10286961 | Hillebrecht et al. | May 2019 | B2 |
10289263 | Troy et al. | May 2019 | B2 |
10289875 | Singh et al. | May 2019 | B2 |
10291193 | Dandu et al. | May 2019 | B2 |
10294552 | Liu et al. | May 2019 | B2 |
10294982 | Gabrys et al. | May 2019 | B2 |
10295989 | Nevins | May 2019 | B1 |
10303159 | Czinger et al. | May 2019 | B2 |
10307824 | Kondoh | Jun 2019 | B2 |
10310197 | Droz et al. | Jun 2019 | B1 |
10313651 | Trevor et al. | Jun 2019 | B2 |
10315252 | Mendelsberg et al. | Jun 2019 | B2 |
10336050 | Susnjara | Jul 2019 | B2 |
10337542 | Hesslewood et al. | Jul 2019 | B2 |
10337952 | Bosetti et al. | Jul 2019 | B2 |
10339266 | Urick et al. | Jul 2019 | B2 |
10343330 | Evans et al. | Jul 2019 | B2 |
10343331 | McCall et al. | Jul 2019 | B2 |
10343355 | Evans et al. | Jul 2019 | B2 |
10343724 | Polewarczyk et al. | Jul 2019 | B2 |
10343725 | Martin et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10356341 | Holzer et al. | Jul 2019 | B2 |
10356395 | Holzer et al. | Jul 2019 | B2 |
10357829 | Spink et al. | Jul 2019 | B2 |
10357957 | Buller et al. | Jul 2019 | B2 |
10359756 | Newell et al. | Jul 2019 | B2 |
10369629 | Mendelsberg et al. | Aug 2019 | B2 |
10382739 | Rusu et al. | Aug 2019 | B1 |
10384393 | Xu et al. | Aug 2019 | B2 |
10384416 | Cheung et al. | Aug 2019 | B2 |
10389410 | Brooks et al. | Aug 2019 | B2 |
10391710 | Mondesir | Aug 2019 | B2 |
10392097 | Pham et al. | Aug 2019 | B2 |
10392131 | Deck et al. | Aug 2019 | B2 |
10393315 | Tyan | Aug 2019 | B2 |
10400080 | Ramakrishnan et al. | Sep 2019 | B2 |
10401832 | Snyder et al. | Sep 2019 | B2 |
10403009 | Mariampillai et al. | Sep 2019 | B2 |
10406750 | Barton et al. | Sep 2019 | B2 |
10412283 | Send et al. | Sep 2019 | B2 |
10416095 | Herbsommer et al. | Sep 2019 | B2 |
10421496 | Swayne et al. | Sep 2019 | B2 |
10421863 | Hasegawa et al. | Sep 2019 | B2 |
10422478 | Leachman et al. | Sep 2019 | B2 |
10425793 | Sankaran et al. | Sep 2019 | B2 |
10427364 | Alves | Oct 2019 | B2 |
10429006 | Tyan et al. | Oct 2019 | B2 |
10434573 | Buller et al. | Oct 2019 | B2 |
10435185 | Divine et al. | Oct 2019 | B2 |
10435773 | Liu et al. | Oct 2019 | B2 |
10436038 | Buhler et al. | Oct 2019 | B2 |
10438407 | Pavanaskar et al. | Oct 2019 | B2 |
10440351 | Holzer et al. | Oct 2019 | B2 |
10442002 | Benthien et al. | Oct 2019 | B2 |
10442003 | Symeonidis et al. | Oct 2019 | B2 |
10449696 | Elgar et al. | Oct 2019 | B2 |
10449737 | Johnson et al. | Oct 2019 | B2 |
10461810 | Cook et al. | Oct 2019 | B2 |
10493883 | Mizobata et al. | Dec 2019 | B2 |
10737817 | Rogers | Aug 2020 | B2 |
20010047591 | Yamaoka | Dec 2001 | A1 |
20040056498 | Ghuman | Mar 2004 | A1 |
20060108783 | Ni et al. | May 2006 | A1 |
20060245901 | Yamaoka | Nov 2006 | A1 |
20080168639 | Otake | Jul 2008 | A1 |
20080251351 | Powers | Oct 2008 | A1 |
20090003975 | Kuduvalli | Jan 2009 | A1 |
20090249606 | Diez | Oct 2009 | A1 |
20130309055 | Yoshinaga | Nov 2013 | A1 |
20140277669 | Nardi et al. | Sep 2014 | A1 |
20150239067 | Bricker | Aug 2015 | A1 |
20170050677 | Czinger et al. | Feb 2017 | A1 |
20170113344 | Schonberg | Apr 2017 | A1 |
20170341309 | Piepenbrock et al. | Nov 2017 | A1 |
20170341553 | Mizobata et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
103801888 | May 2014 | CN |
57199718 | Dec 1982 | JP |
62238099 | Oct 1987 | JP |
S63260681 | Oct 1988 | JP |
H02117481 | May 1990 | JP |
H02 220775 | Sep 1990 | JP |
H05069249 | Mar 1993 | JP |
H0755667 | Jun 1995 | JP |
2008-074251 | Apr 2008 | JP |
2012135818 | Jul 2012 | JP |
100775147 | Nov 2007 | KR |
20130050026 | May 2013 | KR |
1996036455 | Nov 1996 | WO |
1996036525 | Nov 1996 | WO |
1996038260 | Dec 1996 | WO |
WO-0071292 | Nov 2000 | WO |
2003024641 | Mar 2003 | WO |
2004108343 | Dec 2004 | WO |
2005093773 | Oct 2005 | WO |
2007003375 | Jan 2007 | WO |
2007110235 | Oct 2007 | WO |
2007110236 | Oct 2007 | WO |
2008019847 | Feb 2008 | WO |
2007128586 | Jun 2008 | WO |
2008068314 | Jun 2008 | WO |
2008086994 | Jul 2008 | WO |
2008087024 | Jul 2008 | WO |
WO-2008098605 | Aug 2008 | WO |
2008107130 | Sep 2008 | WO |
2008138503 | Nov 2008 | WO |
2008145396 | Dec 2008 | WO |
2009083609 | Jul 2009 | WO |
2009098285 | Aug 2009 | WO |
2009112520 | Sep 2009 | WO |
2009135938 | Nov 2009 | WO |
2009140977 | Nov 2009 | WO |
2010125057 | Nov 2010 | WO |
2010125058 | Nov 2010 | WO |
WO-2010125057 | Nov 2010 | WO |
2010142703 | Dec 2010 | WO |
2011032533 | Mar 2011 | WO |
2014016437 | Jan 2014 | WO |
2014187720 | Nov 2014 | WO |
2014195340 | Dec 2014 | WO |
2015193331 | Dec 2015 | WO |
2016116414 | Jul 2016 | WO |
2017036461 | Mar 2017 | WO |
2019030248 | Feb 2019 | WO |
2019042504 | Mar 2019 | WO |
2019048010 | Mar 2019 | WO |
2019048498 | Mar 2019 | WO |
2019048680 | Mar 2019 | WO |
2019048682 | Mar 2019 | WO |
Entry |
---|
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn) |
US 9,809,265 B2, 11/2017, Kinjo (withdrawn) |
WO-0071292-A1 Machine Translation (Year: 2000). |
International Search Report & Written Opinion received in PCT/US2019/021544 dated Jun. 28, 2019. |
Supplementary European Search Report issued for corresponding application 19772033.7, dated Dec. 6, 2021, 45 pages. |
English language translation of the Subject of the Invention of JP publication No. H0569249A, publication date Nov. 22, 2012, EPO, 3 pages. |
English language translation of the Subject of the Invention of JP Publication No. H02117481A, © TXPMTJEA publication date May 1, 1990, EPO 5 pages. |
English language translation of the Subject of the Invention of JP Publication No. S63260681A, © TXPMTJEA publication date Oct. 27, 1988, EPO, 1 page. |
English language translation of the Subject of the Invention of JP Publication No. H02117481A, © TXPJPEA, Thomson, publication date Nov. 22, 2021, 21 pages. |
English language translation of the Subject of the Invention of JP Publication No. 2012135818A, EPO, © TXPJPEA publication date Jul. 19, 2012, 20 pages. |
English language translation of the Subject of the Invention of JP Publication No. H02220775A, EPO, © TXPJPEA publication date Sep. 3, 1990, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190283824 A1 | Sep 2019 | US |