The present invention relates to a carrier for a double-side polishing apparatus used for polishing both surfaces of a wafer simultaneously, a manufacturing method of the same, and a double-side polishing method of a wafer with the double-side polishing apparatus.
When both surfaces of a wafer are polished simultaneously by polishing processing and the like, the wafer is held by a carrier for a double-side polishing apparatus.
The wafer W is inserted into the holding hole 104 to hold it, and upper and lower surfaces of the wafer W are sandwiched by polishing pads 110 attached on surfaces of the upper turn table 108 and the lower turn table 109, facing to the wafer.
The carrier 101 for a double-side polishing apparatus is engaged with a sun gear 111 and an internal gear 112, and is rotated and revolved by driving to rotate the sun gear 111. Both surfaces of the wafer W are polished simultaneously with the polishing pads 110 attached to the upper and lower turn tables by rotating the upper turn table 108 and the lower turn table 109 in an opposite direction to each other, while supplying a polishing agent to the surfaces to be polished.
The above-described carrier 101 for a double-side polishing apparatus used in a double-side polishing process of the wafer W is mostly made of metal. A resin insert 103 is therefore attached along an inner circumference of the holding hole 104 formed in a carrier body 102 in order to protect a peripheral portion of the wafer W from damage caused by the metal carrier 101. With regard to attachment of the resin insert, it has been conventionally known that an outer circumferential portion of the resin insert is formed into a wedge shape, fitted into the carrier body, and further fixed by an adhesive in order to prevent the resin insert from coming off during processing and conveying the wafer (See Patent Literature 1).
When the wafer W is polished with the above-described double-side polishing apparatus 120, however, a sag may be generated at an outer circumference of the wafer W, and nano-topology failure may be generated in some cases.
The present inventor investigated the cause of the generation of the outer peripheral sag and nano-topology failure of the wafer. As a result, the present inventor found the following. As shown in
Conventionally, in manufacture of the carrier for a double-side polishing apparatus by combination between the carrier body and resin insert, first, the carrier body and the resin insert are separately fabricated, and thereafter the resin insert is attached to the carrier body.
When the resin insert is fabricated, a resin base material is cut to form a ring having a wedge-shaped outer circumferential portion. Since the width of the ring containing the wedge-shaped portion is typically as small as 5 mm or less, this part has low mechanical strength, and is easily strained. Moreover, a cutting length of the wedge-shaped portion is longer than a length of the inner circumferential surface of the resin insert. This longer cutting length causes expansion of the resin base material due to generated processing heat, and it is easily strained before inserting into the carrier body.
In addition, to prevent the resin insert from coming off during processing, there is no room to increase dimensional tolerance of wedge-shaped fitting portions of the carrier body and the resin insert. Because of differences of processing precision and mechanical strength between them, the resin insert is inserted into the carrier body in a condition where the resin insert is strained.
When the above-described strained resin insert is inserted into the carrier body having low tolerance, the resin insert is consequently strained more. For example, even when an angle between the inner circumferential surface of the resin insert and the main surface of the carrier needs to be a right angle, the angle does not become a right angle but inclined due to the strain.
The present invention was accomplished in view of the above-explained problems, and its object is to provide a manufacturing method of a carrier for a double-side polishing apparatus that enables suppression of the strain of the resin insert to form the inner circumferential surface into a desirable shape with high precision and thereby enables suppression of the outer peripheral sag and nano-topology failure of the polished wafer.
An another object of the present invention is to provide a double-side polishing method of a wafer that enables suppression of the outer peripheral sag and nano-topology failure of the polished wafer due to the strain of the resin insert.
To achieve this object, the present invention provides a manufacturing method of a carrier for a double-side polishing apparatus for polishing both surfaces of a wafer, the carrier having: a carrier body arranged between upper and lower turn tables each having a polishing pad attached thereto, the carrier body having a holding hole for holding the wafer to be sandwiched between the upper and lower turn tables during polishing; and a ring-shaped resin insert arranged along an inner circumference of the holding hole of the carrier body, the resin insert having an inner circumferential surface to be brought into contact with a peripheral portion of the wafer to be held, the method comprising at least the steps of attaching, to the holding hole of the carrier body, a base material for the resin insert not having the inner circumferential surface to be brought into contact with the wafer to be held, and thereafter performing inner-circumferential-surface-forming processing on the base material for the resin insert to form the inner circumferential surface to be brought into contact with the peripheral portion of the wafer to be held.
In this manner, when the method has at least the steps of attaching, to the holding hole of the carrier body, the base material for the resin insert not having the inner circumferential surface to be brought into contact with the wafer to be held, and thereafter performing inner-circumferential-surface-forming processing on the base material for the resin insert to form the inner circumferential surface to be brought into contact with the peripheral portion of the wafer to be held, the carrier for a double-side polishing apparatus can be manufactured which enables the suppression of the strain of the resin insert to form the inner circumferential surface into a desirable shape with high precision and thereby enables the suppression of the outer peripheral sag and nano-topology failure of the polished wafer.
In this case, the inner-circumferential-surface-forming processing can be performed so that an angle θ between the inner circumferential surface of the resin insert and a main surface of the carrier body satisfies a condition of 88°≦θ≦92°.
In this manner, when the inner-circumferential-surface-forming processing is performed so that the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier body satisfies a condition of 88°≦θ≦92°, the carrier for a double-side polishing apparatus can be manufactured which enables the outer peripheral sag and nano-topology failure of the polished wafer to be more surely suppressed.
In this case, the base material for the resin insert to be used can be of a disklike shape or a ring shape having an inner diameter smaller than a diameter of the wafer.
In this manner, when the base material for the resin insert to be used is of a disklike shape, the strain of the resin insert can be more surely suppressed. When the base material for the resin insert to be used is of a ring shape having an inner diameter smaller than a diameter of the wafer, the strain of the resin insert can be sufficiently suppressed.
In this case, the base material for the resin insert can be made of aramid resin.
In this manner, when the base material for the resin insert is made of aramid resin, the mechanical strength thereof becomes high while it is capable of protecting the peripheral portion of the wafer W from damage caused by the carrier.
Furthermore, the present invention provides a carrier for a double-side polishing apparatus manufactured by the above-described manufacturing method of a carrier for a double-side polishing apparatus according to the present invention.
The carrier for a double-side polishing apparatus manufactured by the above-described manufacturing method of a carrier for a double-side polishing apparatus according to the present invention has the resin insert in which the strain is suppressed and the inner circumferential surface is formed into a desirable shape with high precision, and thereby enables the suppression of the outer peripheral sag and nano-topology failure during the polishing of the wafer.
Furthermore, the present invention provides a double-side polishing method of a wafer including: holding the wafer by a carrier for a double-side polishing apparatus having a holding hole for holding the wafer and a ring-shaped resin insert arranged along an inner circumference of the holding hole, the resin insert having an inner circumferential surface to be brought into contact with a peripheral portion of the wafer to be held; sandwiching the held wafer between upper and lower turn tables each having a polishing pad attached thereto; and polishing both surfaces of the wafer simultaneously, wherein an angle θ between the inner circumferential surface of the resin insert and a main surface of the carrier is preliminarily inspected before polishing the wafer, and the wafer is polished by using only the carrier in which the inspected angle θ satisfies a condition of 88°≦θ≦92°.
In this manner, when the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier is preliminarily inspected before polishing the wafer, and the wafer is polished by using only the carrier in which the inspected angle θ satisfies a condition of 88°≦θ≦92°, the outer peripheral sag and nano-topology failure can be surely suppressed during the polishing of the wafer.
In the manufacturing method of a carrier for a double-side polishing apparatus according to the present invention, at least the base material for the resin insert not having the inner circumferential surface to be brought into contact with the wafer to be held is attached to the holding hole of the carrier body, and thereafter the inner-circumferential-surface-forming processing is performed on the base material for the resin insert to form the inner circumferential surface to be brought into contact with the peripheral portion of the wafer to be held. Therefore, the carrier for a double-side polishing apparatus that enables the suppression of the strain of the resin insert to form the inner circumferential surface into a desirable shape with high precision and enables the suppression of the outer peripheral sag and nano-topology failure of the polished wafer can be manufactured.
Moreover, in the double-side polishing method of a wafer, the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier is preliminarily inspected before polishing the wafer, and the wafer is polished by using only the carrier in which the inspected angle θ satisfies a condition of 88°≦θ≦92°. Therefore, the outer peripheral sag and nano-topology failure can be surely suppressed during the polishing of the wafer.
Hereinafter, an embodiment of the present invention will be explained, but the present invention is not restricted thereto.
Conventionally, in manufacture of the carrier for a double-side polishing apparatus by combination between the carrier body and resin insert, first, the carrier body and the resin insert are separately fabricated, that is, the inner-circumferential-surface-forming processing is performed on the resin insert to form it into a ring shape and thereafter the resin insert is attached to the carrier body. However, the above-described manufacture of the carrier for a double-side polishing apparatus causes the strain of the resin insert. For example, even when the processing is performed in advance in an attempt to make the angle between the inner circumferential surface of the resin insert and the main surface of the carrier a right angle, the inner circumferential surface does not become a right angle but inclined due to the strain of the resin insert after the attachment.
When the wafer is polished in this state, there arises a problem that the outer peripheral sag and the nano-topology failure are generated in the polished wafer.
In view of this, the present inventors repeatedly keenly conducted studies to solve the problem. As a result, the present inventors conceived the following. In the manufacture of the carrier for a double-side polishing apparatus, the inner-circumferential-surface-forming processing is performed on the resin insert to form the inner circumferential surface to be brought into contact with the peripheral portion of the wafer to be held, after attaching the base material for the resin insert to the carrier body, instead of forming the inner circumferential surface of the resin insert in advance. The strain of the resin insert can be thereby suppressed, and the inner circumferential surface of the resin insert can be formed into a desirable shape, such as a right angle with respect to the main surface of the carrier, with high precision.
The present inventors also conceived that the outer peripheral sag and nano-topology failure of the wafer can be surely suppressed by inspecting the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier before polishing the wafer and polishing the wafer by using only the carrier in which the inspected angle θ satisfies, particularly, a condition of 88°≦θ≦92°, and thereby brought the present invention to completion.
As shown in
The wafer W is inserted into the holding hole 4 of the carrier 1 for a double-side polishing apparatus, and held in a condition where the inner circumferential surface 6 of the resin insert 3 comes into contact with the peripheral portion of the wafer W.
Moreover, the carrier 1 for a double-side polishing apparatus is provided with a polishing-solution hole 13 through which a polishing solution passes, separately from the holding hole 4, and an outer circumferential gear 7 at the outer circumferential portion thereof.
As shown in
Moreover, the teeth of the sun gear 11 and internal gear 12 are engaged with the outer circumferential gear 7 of the carrier 1 for a double-side polishing apparatus, and the carrier 1 for a double-side polishing apparatus is rotated and revolved around the sun gear 11 by rotating the upper turn table 8 and lower turn table 9 with a driving device (not shown).
Hereinafter, the manufacturing method according to the present invention for manufacturing the above-described carrier for a double-side polishing apparatus will be explained in detail.
First, the carrier body of the carrier for a double-side polishing apparatus is fabricated. As shown in
The polishing-solution hole 13 through which a polishing solution passes can be formed in the carrier body 2.
Here, the arrangement or the number of the polishing-solution hole 13 is not restricted to
In an example of the carrier 1 for a double-side polishing apparatus described in
Here, the material of the carrier body 2 is not restricted in particular. For example, it can be titanium. Moreover, the surface of the carrier body 2 can be coated with a DLC (Diamond Like Carbon) film with high hardness. In this manner, when it is coated with the DLC film, the durability of the carrier 1 for a double-side polishing apparatus is improved, the lifetime of the carrier can be thereby extended, and a frequency of changing it can be consequently reduced.
Moreover, there is prepared the base material for the resin insert 3 not having the inner circumferential surface 6 to be brought into contact with the wafer W to be held. The outer circumferential portion of the base material is subjected to processing for forming the shape fitting to the inner circumference of the holding hole 4 of the fabricated carrier body 2. The base material is thereafter attached to the holding holes 4 of the fabricated carrier body 2. In this case, the resin insert 3 becomes hard to come off the carrier body 2 by forming the outer circumferential portion of the base material and the inner circumferential portion of the holding hole 4 of the carrier body 2 into a wedge shape to fit. Furthermore, they can be fixed by an adhesive.
Here, the base material for the resin insert 3 can be made of aramid resin. The aramid resin is a material with high strength and high modulus of elasticity, and thereby enables the peripheral portion of the wafer W to be protected from damage caused by the carrier 1 for a double-side polishing apparatus, made of metal, such as titanium, while the durability is improved.
The inner-circumferential-surface-forming processing is thereafter performed on the base material for the resin insert 3 in a condition of being attached to the holding hole 4 of the carrier body 2, to form the inner circumferential surface to be brought into contact with the peripheral portion of the wafer to be held. Here, the inner-circumferential-surface-forming processing of the base material for the resin insert 3 can be performed by mechanical grinding processing at low cost. Alternatively, it can be more rapidly performed by laser cutting processing with high precision.
As described above, the resin insert 3 is processed to form the inner circumferential surface after attaching, to the carrier body 2, the base material for the resin insert 3 not having the inner circumferential surface to be brought into contact with the wafer W to be held, instead of a conventional method in which a ring-shaped resin insert 3 having the inner circumferential surface that is formed thereto in advance and that is to be brought into contact with the wafer W is fabricated and the resin insert is thereafter arranged in the carrier body 2. The strain of the resin insert 3 can be thereby suppressed, and the inner circumferential surface can be formed into a desired shape with high precision, for example, when the outer circumferential portion of the resin insert 3 is formed into a wedge shape or when the base material for the resin insert 3 is attached to the carrier body 2. When the wafer is polished by using the carrier for a double-side polishing apparatus according to the present invention having the resin insert in which the strain is suppressed and the inner circumferential surface is formed with high precision, the outer peripheral sag and nano-topology failure of the wafer W can be suppressed.
In this case, particularly by performing the inner-circumferential-surface-forming processing of the resin insert 3 so that the angle θ between the inner circumferential surface 6 of the resin insert 3 and the main surface 5 of the carrier body 2 satisfies a condition of 88°≦θ≦92°, as shown in
Moreover, as shown in
Moreover, as shown in
Next, the double-side polishing method of a wafer according to the present invention will be explained. Here, a case of using the double-side polishing apparatus shown in
First, the angle θ between the inner circumferential surface 6 of the resin insert 3 and the main surface 5 of the carrier 1 for a double-side polishing apparatus is preliminarily inspected before holding the wafer W with the carrier 1 for a double-side polishing apparatus to polish it. The inspection can be performed, for example, with an outline-shape-measuring machine.
Thereafter, only the carrier 1 for a double-side polishing apparatus in which the angle θ inspected as described above satisfies a condition of 88°≦θ≦92° is selected. The wafer W to be polished is held in the holding hole 4 of the selected carrier 1 for a double-side polishing apparatus. The upper and lower polishing surfaces of the wafer W are sandwiched between the polishing pads 10 attached to the upper turn table 8 and lower turn table 9, and a polishing agent is supplied to the polishing surfaces to polish.
Other polishing conditions and the like may be the same as a conventional double-side polishing method.
When the wafer is polished as described above, the outer peripheral sag and nano-topology failure of the polished wafer can be surely suppressed.
It is to be noted that the carrier in which the angle θ between the inner circumferential surface 6 of the resin insert 3 and the main surface 5 of the carrier 1 for a double-side polishing apparatus satisfies a condition of 88°≦θ≦92° can be surely manufactured by the manufacturing method of a carrier for a double-side polishing apparatus according to the present invention.
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Example, but the present invention is not restricted thereto.
A carrier for a double-side polishing apparatus shown in
First, a titanium carrier body having one holding hole as shown in
Here, aramid resin was used as the material of the resin insert.
With the double-side polishing apparatus, shown in
Before polishing, the outline-shape-measuring machine (made by MITUTOYO Corp.) was used to preliminarily inspect the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier. As a result, it was confirmed that the angle θ was 90°. The silicon wafer was thereafter double-side polished with the carrier.
As described above, it was confirmed that the manufacturing method of a carrier for a double-side polishing apparatus according to the present invention enables the carrier for a double-side polishing apparatus to be manufactured which can suppress the strain of the resin insert to form the inner circumferential surface into a desirable shape and thereby suppress the outer peripheral sag and nano-topology failure of the polished wafer.
In addition, it was confirmed that the double-side polishing method of a wafer according to the present invention enables the outer peripheral sag and nano-topology failure of the polished wafer to be surely suppressed.
The carriers for a double-side polishing apparatus were manufactured as with Example 1, except that the respective angles θ between the inner circumferential surface of the resin insert and the main surface of the carrier were 88° and 92°. Silicon wafers were double-side polished and evaluated as with Example 1.
A carrier for a double-side polishing apparatus was manufactured by a conventional manufacturing method in which a carrier body and a resin insert were separately fabricated, and thereafter the resin insert was attached to the carrier body.
The resin insert was fabricated by processing in an attempt to make the angle between the inner circumferential surface and the main surface of the carrier body 90°. However, as a result of inspection of the angle θ between the inner circumferential surface of the resin insert and the main surface of the carrier by the outline-shape-measuring machine (made by MITUTOYO Corp.) after attaching it to the carrier, it was revealed that the angle θ was not 90° and it was thus inclined. It was considered to be caused by the strain of the resin insert.
The angle θ between the inner circumferential surface of the resin insert of the carrier for a double-side polishing apparatus manufactured as described above and the main surface of the carrier was inspected to select the carriers each having an angle θ of 72.5° and 107.5° and to double-side polish silicon wafers. The same evaluation as Example 1 was thereafter carried out.
It is to be noted that the present invention is not restricted to the foregoing embodiment. The embodiment is just an exemplification, and any examples that have substantially the same feature and demonstrate the same functions and effects as those in the technical concept described in claims of the present invention are included in the technical scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-170138 | Jul 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/004077 | 6/18/2010 | WO | 00 | 12/20/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/010423 | 1/27/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5244555 | Allen et al. | Sep 1993 | A |
6439984 | Andres | Aug 2002 | B1 |
20070184662 | Yamashita et al. | Aug 2007 | A1 |
20110104995 | Ueno et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
A-2000-210863 | Aug 2000 | JP |
A-2001-198804 | Jul 2001 | JP |
A-2003-305637 | Oct 2003 | JP |
A-2003-340711 | Dec 2003 | JP |
WO 2006001340 | Jan 2006 | WO |
Entry |
---|
International Search Report issued in Application No. PCT/JP2010/004077; Dated Jul. 13, 2010. |
Taiwanese Patent Office, Office Action issued on Feb. 21, 2014 in Taiwanese Patent Application No. 099120481 w/Partial English-language Translation. |
Feb. 7, 2012 International Preliminary Report on Patentability issued in International Patent Application No. PCT/JP2010/004077. |
Dec. 11, 2012 Office Action issued in Japanese Application No. 2009-170138 (with translation). |
Number | Date | Country | |
---|---|---|---|
20120100788 A1 | Apr 2012 | US |