This invention is related to a manufacturing method of coating target, particularly to a manufacturing method of coating alloy target where phosphorus or boron atoms were added to control precisely the content of phosphorus or boron atoms in coating process.
The sputtering deposition processes use glow discharge to produce argon (Ar) ions and then the ions collide the surface of target. The film is formed on the surface of substrate by the deposition of ejected atoms of target. The properties and uniformity of thin films by sputtering processes are always better than the films which are made by thermal evaporation. The electron motion is helical by a strong magnetron in the progressive equipments of sputter. This motion leads to accelerate ionization of argon around the target. At the same time, the impact probability between target and Ar ions is increased and then to increase the deposition rate.
In general, the metal films and the insulating ceramic thin films are fabricated by DC and RF sputtering respectively. The processes use glow discharge to produce argon ions in a vacuum circumstance and then the ions impact the surface of target. The target is connected to the negative terminal of a DC or RF power supply, it is also known as the cathode. The cations in the plasma strike the surface of cathode and eject target atoms. These atoms deposit on the substrate to form thin films.
In general, the sputtering process for coating thin films has following characteristics:
The films with multi-compositions are wildly used for hard coating and surface treatment engineering applications in industry because of its high hardness and toughness, good corrosion resistance and thermal cyclic behavior.
The alloys with multiple compositions are available in many methods. However, the thin films with multiple compositions are mostly fabricated by physical or chemical vapor deposition in vacuum. One or more targets, which include all elements of multi-compositional thin films, are needed to fabricate multi-compositional thin films in physical vapor deposition method.
While single target is used to fabricate multi-compositional thin films, the target should have all elements of thin films. This makes the films have the same composition as the target source. Therefore, the design of single target sputtering process is more difficult when the composition of target is fixed.
Further, the disadvantages of single target sputtering can be overcome by multiple targets sputtering process. In the multi-targets system, the composition of films is controlled by several targets which possess only one or two elements. The control methods depend on the parameters of each target. Therefore, the additive amount can be controlled precisely in multi-elements coating process.
Further, previous researches indicate that the multi-elements functional coatings can be used under the elevated temperature because of the addition of phosphorus and boron atoms in the thin films. The precipitation of second phases induced better thermal cyclic behavior and mechanical properties.
The melting point of pure phosphorus is law. The plasma impact the target in sputtering process will cause the temperature of target higher than 100° C. Therefore the pure phosphorus can not apply in the vacuum coating process to form multi-elements thin films.
The main purpose of this invention provides one kind preparation method to produce multi-elements target which contains phosphorus or boron atoms. The multi-elements functional coatings can be used under the elevated temperature because of the target contain phosphorus and boron atoms. The precipitation of second phases induced better thermal cyclic behavior and mechanical properties.
Additional purpose of this invention is to control the content of phosphorus or boron atoms of thin film in the multi-targets coating system.
This invention relates to a composite target material which is prepared a thin film on the substrates via electroplating or electroless plating method. The thin film contains phosphorus or boron atoms. The ratio of phosphorus or boron atoms of the thin film is controlled by the solution or process parameters of electroplating or electroless plating process. The multi-elements functional thin film, which possesses optimum contents of phosphorus or boron atoms by coating process, can be used for high-temperature applications because of its better thermal cyclic properties and mechanical properties.
Detailed and technical descriptions of this invention are explained with the figures as follows:
Therefore, the existence of phosphorus or boron atoms must be alloy in order to sputtering process. The present invention provides one kind preparation method to produce target for sputtering process. The target material is prepared a thin film 20 on the substrate 10 via electroplating or electroless plating method. The thin film 20 contains phosphorus or boron atoms as a composite target. Furthermore, the ratio of phosphorus or boron atoms of the thin film 20 is controlled by the solution or process parameters of electroplating or electroless plating process. Therefore, the contents of phosphorus or boron in the thin film 20 can be controlled precisely from 0.5˜25 at %. This target, that contains phosphorus or boron atoms, can be used in multiple targets sputtering process. The multi-elements functional thin film, which possesses optimum contents of phosphorus or boron atoms by coating process, can be used for high-temperature applications because of its better thermal cyclic properties and mechanical properties.
The term “substrate” is intended to include elemental Cu, Fe, Co, Si, Ti, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Cr, Mn, Ge, Pt, Ag, Au, as well as such various alloyed combinations is conductive. The term “film” is intended to include elemental Ni, Al, Cr, W, as well as such various alloyed combinations is conductive.
Explanation is now made to the procedures. Referring to
The polished substrate 10 is electroplated 35 in the plating solution 34. The temperature of solution is in the range of 40 to 75° C., pH value is in the range of 1.3 to 4.0. The coating time is 1 to 5 hours at the current density is in the range of 50 to 200 mA/cm2. The coated specimen is rinsed and cleaned 36 in water for 2 minutes to form a composite target.
Referring now to
The polished substrate 10 is electroless plating 45 in the electroless plating solution 44. The ratio of volume and surface area is in the range of 15 to 30 cm3/cm2. The pH value of solution is 4˜5.8. The specimens are coated at 70˜90° C. for 1˜2 hours. The frequency of the solution for electroless plating is 1˜20 per batch. The coated specimen is rinsed and cleaned 36 in water for 2 minutes to form a composite target with a thin film which contain phosphorus or boron atoms.
In summary, a composite target with the thin film 20, which contains precision amount of phosphorus or boron atoms, is prepared via electroplating or electroless plating method. In the multi-targets system, the composition of films is controlled by several targets which possess pure elements or alloy material. The control methods depend on the parameters of each target. Therefore, the additive amount can be controlled precisely in multi-elements coating process. The multi-elements functional thin film, which possesses addition of phosphorus or boron atoms, can be used for high-temperature applications because of its better thermal cyclic properties and mechanical properties.
A better understanding of the present invention may be obtained in light of the examples as described above which are set forth to illustrate, but are not intended to be in any way limiting to the scope of the invention as claimed. It is intended to claim all such changes and modifications that fall within the true scope of the invention.