The Sequence Listing submitted in text format (.txt) filed on Oct. 1, 2019, named “SequenceListing.txt”, created on Oct. 1, 2019 (12.6 KB), is incorporated herein by reference.
The present invention relates to a marker for detecting a highly pathogenic influenza virus and a use thereof, and more particularly, to a marker for detecting a highly pathogenic influenza virus, which includes a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein, a composition for detecting a highly pathogenic virus, which includes an agent for measuring the protein mutant and a detection kit including the same, a method for detecting a highly pathogenic virus, which includes measuring the protein mutant, an antiviral composition against influenza A virus, which includes an inhibitor of binding between a PB1-F2 protein in which the amino acids 68 and 69 are substituted and Dead box protein 3 (DDX3) as an active ingredient, and a method for screening an antiviral substance against influenza A virus.
Influenza A virus (IAV) is a pathogen capable of infecting both humans and animals, and a virus which caused Spanish flu resulting in the deaths of 50 million people in 1918. PB1-F2 is a non-structural protein of an influenza virus encoded by a part from the +1 open reading frame to a PB1 gene. Until now, through various studies, PB1-F2 has been reported to have various functions including apoptosis induction and inhibition of innate immunity, and has been known as a significant factor exhibiting virality associated with pathogenicity in a very highly pathogenic influenza virus. It has been reported that this protein contributes to the pathogenesis of influenza by inhibiting production of cytokines, increasing immunopathology of secondary bacterial infection, and delaying viral clearance during the infection of IAV in mouse models.
In the first defense mechanism against influenza virus infection, type I interferon (type I IFN) is a significant factor for antiviral immunity of a host, and a regulator for adaptive immunity. When a host is infected with a virus such as an influenza virus or another pathogen, three types of main proteins known as pattern-recognition receptors (PRRs) inducing innate immunity recognize pathogen-associated molecular patterns (PAMPs) of pathogens. Such PRRs include toll-like receptors (TLRs), retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding domain-leucine-rich repeat-containing molecules (NLRs), and when a host is infected with an influenza virus, RIG-I serves as main sensor of viral RNA to induce the production of type I IFN. In such a pathway, formation of a complex of DDX3 and a different phosphokinase has been known to be essential for induction of the production of type I IFN.
Although an IFN system has strong antiviral activity, influenza viruses have also been evolved to attenuate an IFN response for replication and proliferation thereof in a host. For example, it was reported that an NS1 protein of a highly pathogenic virus such as the H5N1 avian influenza virus has a strong inhibitory effect on type I IFN, and rapid collection of neutrophils, a serious lung damage, and rapid secretion of inflammatory cytokines are induced in Ifnar1−/−mice (Proc Natl Acad Sci U S A 2002;99:10736-10741).
In the present invention, in order to investigate the influence of a PB1-F2 protein of a highly pathogenic 1918 strain on the pathogenic mechanism of IAV infection, the correlation between viral virulence and the PB1-F2 protein was examined, and a molecular mechanism related to inhibition of a type I IFN response was to be identified.
As a result of the investigation of the influence of a PB1-F2 protein in a highly pathogenic 1918 strain of IAV on virulence and the correlation therebetween, the inventors first identified the correlation between the 1918 PB1-F2 protein and high pathogenicity of the virus and the molecular mechanism thereof by confirming that low stability of the virus is mediated by the amino acids 68 and 69 on the sequence of the PB1-F2 protein of the 1918 strain, and virulence of the virus is increased by inhibiting the expression of INFβ inducing an antiviral response through binding to intracellular DDX3, and based on this finding, the present invention was completed.
Therefore, the present invention is directed to providing a marker composition for detecting a highly pathogenic influenza virus, which includes a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1.
In addition, the present invention is directed to providing a composition for detecting a highly pathogenic virus, which includes an agent for measuring the protein mutant, and a kit for detecting a highly pathogenic virus, which includes the composition.
In addition, the present invention is directed to providing a method for detecting a highly pathogenic virus, which includes measuring the protein mutant.
In addition, the present invention is directed to providing an antiviral composition against IAV, which includes an inhibitor of binding between DDX3 and a PB1-F2 protein as an active ingredient.
In addition, the present invention is directed to providing a method for screening an antiviral substance against IAV.
However, technical problems to be solved in the present invention are not limited to the above-described problems, and other problems which are not described herein will be fully understood by those of ordinary skill in the art from the following descriptions.
To achieve the objects of the present invention, the present invention provides a marker composition for detecting a highly pathogenic influenza virus, which includes a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1.
In addition, the present invention provides a composition for detecting a highly pathogenic virus, which includes an agent for measuring a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1, and a detection kit including the same.
In addition, the present invention provides a method for detecting a highly pathogenic virus, which includes measuring a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1.
In one exemplary embodiment of the present invention, the protein mutant may be prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively.
In another exemplary embodiment of the present invention, the protein mutant may consist of an amino acid sequence of SEQ ID NO: 2.
In still another exemplary embodiment of the present invention, the virus may be an influenza virus.
In yet another exemplary embodiment of the present invention, the agent for measuring the protein mutant may be an antibody specifically binding to the protein.
In addition, the present invention provides an antiviral composition against IAV, which includes an inhibitor of binding between DDX3 and a PB1-F2 protein as an active ingredient, and the PB1-F2 protein may be prepared by substituting the amino acids 68 and 69 on the amino acid sequence of SEQ ID NO: 1.
In one exemplary embodiment of the present invention, the DDX3 may consist of an amino acid sequence of SEQ ID NO: 3.
In another exemplary embodiment of the present invention, the binding inhibitor may be any one selected from the group consisting of a nucleic acid, a compound, a microbial culture medium or extract, a natural substance extract, a peptide, a substrate analog, an aptamer, and an antibody.
In yet another exemplary embodiment of the present invention, the PB1-F2 protein may be prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively.
In yet another exemplary embodiment of the present invention, the PB1-F2 protein may consist of an amino acid sequence of SEQ ID NO: 2.
In yet another exemplary embodiment of the present invention, the composition may increase the production of interferon beta (IFNβ) in cells.
In addition, the present invention may provide a method for screening an antiviral substance against IAV, which includes:
(a) in vitro treating cells with a candidate substance;
(b) measuring binding between DDX3 and a PB1-F2 protein in the cells; and
(c) selecting a substance decreasing the binding between the DDX3 and the PB1-F2 protein as an antiviral substance against IAV, compared to a candidate substance untreated group, and
the PB1-F2 protein may be prepared by substituting the amino acids 68 and 69 of an amino acid sequence of SEQ ID NO: 1.
In one exemplary embodiment of the present invention, the candidate substance may be selected from the group consisting of a nucleic acid, a compound, a microbial culture medium or extract, a natural substance extract, a peptide, a substrate analog, an aptamer, and an antibody.
In another exemplary embodiment of the present invention, the nucleic acid may be selected from the group consisting of siRNA, shRNA, microRNA, antisense RNA, an aptamer, a locked nucleic acid (LNA), a peptide nucleic acid (PNA), and a morpholino.
In still another exemplary embodiment of the present invention, step (b) is executed using a method selected from the group consisting of western blotting, immunoprecipitation, immunohistochemistry, and immunofluorescence.
In addition, the present invention provides a method for treating IAV, which includes administering an antiviral composition including an inhibitor of binding between DDX3 and a PB1-F2 protein as an active ingredient into a subject.
Moreover, the present invention provides a use of an antiviral composition for treating IAV, which includes an inhibitor of binding between DDX3 and a PB1-F2 protein as an active ingredient.
From the pathogenic mechanism of IAV infection, the inventors first identified that low stability of the virus is mediated by the amino acids 68 and 69 on the sequence of a PB1-F2 protein of a 1918 strain using the highly pathogenic 1918 strain and a low-pathogenic PR8 strain, and virulence of the virus is increased by inhibiting expression of IFN(3 inducing an antiviral response through binding to intracellular DDX3, a protein mutant prepared by substituting the amino acids 68 and 69 on the PB1-F2 protein sequence of an influenza virus can be used as a marker for detecting a highly pathogenic virus, and a highly pathogenic virus can be effectively detected by measuring the mutant.
In addition, the viral mechanism of the evasion of innate immunity by the PB1-F2 protein mutant, which was newly identified in the present invention, can provide new understanding for developing an antiviral agent, and the antiviral composition according to the present invention can be effectively used in development of an antiviral agent.
As a result of investigation of the influence of a PB1-F2 protein on virulence in a highly pathogenic 1918 strain of IAV and the correlation therebetween, the inventors confirmed that low stability of the virus is mediated by the amino acids 68 and 69 on the PB1-F2 protein sequence of the 1918 strain, and viral virulence is increased by inhibiting IFNI3 expression inducing an antiviral response through the binding between the PB1-F2 protein and intracellular DDX3, and also confirmed that the IFNβ expression is restored by injecting a recombinant DDX3 protein into a mouse infected with 1918 PB1-F2 influenza virus, and the viral pathogenicity is decreased due to an increased survival rate. Therefore, the correlation between the 1918 PB1-F2 protein and the high pathogenicity of the virus and a molecular mechanism thereof were first identified, and based on these, the present invention was completed.
Accordingly, the present invention provides a marker composition for detecting a highly pathogenic influenza virus, which includes a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1.
In the present invention, the PB1-F2 protein is preferably a non-structural protein of an influenza virus encoded by a part from the +1 open reading frame to a PB1 gene. The protein has been known to induce apoptosis by mediating the efflux of cytochrome c when binding to the mitochondria in CD8 T cells and alveolar macrophages, and it has been reported that the protein increases severity in primary viral and secondary bacterial infections, and the protein is associated with high pathogenicity of an influenza virus.
Accordingly, in exemplary embodiment of the present invention, to examine the influence of the PB1-F2 protein on high pathogenicity of the 1918 strain of IAV, the PB1-F2 proteins of the 1918 strain and a low-pathogenic PR8 strain are compared to each other, thereby first identifying the correlation between the high pathogenicity and PB1-F2, and its molecular mechanism.
In one exemplary embodiment of the present invention, it was confirmed that, compared to the low-pathogenic PR8 strain of IAV, the PB1-F2 protein of the highly pathogenic 1918 strain has considerably low stability, which is caused by rapid protein degradation using a ubiquitin-proteasome system (refer to Examples 2 and 3).
In another exemplary embodiment of the present invention, as a result of analyzing expression patterns of the PB1-F2 proteins using a variety of PB1-F2 protein mutants prepared by substituting amino acids to find the reason for induction of degradation only in the PB1-F2 protein derived from the highly pathogenic 1918 strain, it was confirmed that the amino acids 68 and 69 on the amino acid sequence of the PB1-F2 protein affect stability of the protein (refer to Example 4).
In another exemplary embodiment of the present invention, in order to examine the influence of the instability of the PB1-F2 protein on a host defense system in IAV 1918 infection, the influence of the PB1-F2 protein on induction of type I IFN playing a very important role in the defense against a virus in innate immunity was analyzed. As a result, it was confirmed that, unlike the PR8 strain, IFN(3 expression is inhibited by PB1-F2 of the 1918 strain, and a promoter activity of the PB1-F2 of the 1918 strain is also inhibited (refer to Example 5). In addition, by confirming that such a phenomenon does not occur when proteasome-dependent degradation is inhibited, and that the amino acids 68 and 69 identified to determine instability of the 1918 PB1-F2 protein affect the inhibitory response of type I IFN induction, it was confirmed that there is a correlation between the instability due to the proteasome-dependent degradation of the 1918 PB1-F2 protein and the inhibitory response of the type I IFN induction (refer to Example 6).
In still another exemplary embodiment of the present invention, it was confirmed that, among mouse models infected with each of the PR8 and 1918 strains of influenza virus, high virulence is exhibited in the mouse model infected with the 1918 strain of influenza virus, and it was also confirmed by using protein mutants prepared by substituting the amino acids 68 and/or 69 of a PB1-F2 protein that the amino acids at 68 and 69 residues of the PB1-F2 protein contribute to the high pathogenicity of the 1918 strain of IAV (refer to Example 7).
In yet another exemplary embodiment of the present invention, it can be known that the PB1-F2 protein of the 1918 strain inhibited IFNβ induction in the IAV-infected model, and therefore, due to improper viral clearance, a viral titer was maintained at a high level (refer to Example 8).
According to the exemplary embodiment of the present invention, a protein in which the amino acids 68 and 69 of the PB1-F2 protein are substituted, and preferably, a PB1-F2 protein mutant prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively, like the 1918 strain, may be used as a marker for detecting a highly pathogenic influenza virus and used to detect a highly pathogenic virus by measuring the mutant.
Therefore, the present invention provides a composition for detecting a highly pathogenic virus, which includes an agent for measuring a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1, and a kit for detecting a highly pathogenic virus, which includes the composition.
In the present invention, the protein mutant may be prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively, and may consist of an amino acid of SEQ ID NO: 2.
In the present invention, the virus is preferably an influenza virus, but the present invention is not limited thereto.
In the present invention, the agent for measuring the protein mutant may be an antibody specifically binding to the protein, but the present invention is not limited thereto.
The term “antibody” used herein includes an immunoglobulin molecule immunologically having a reactivity with a specific antigen, and encompasses both of monoclonal and polyclonal antibodies. In addition, the antibody includes forms produced by genetic engineering such as a chimeric antibody (e.g., a humanized murine antibody) and a heterogeneous binding antibody (e.g., a bispecific antibody).
The detection kit of the present invention is composed of a composition, solution, or a device including one or more different components which are suitable for an analysis method.
In addition, the present invention provides a method for detecting a highly pathogenic virus, which includes measuring a protein mutant prepared by substituting the amino acids 68 and 69 of a PB1-F2 protein consisting of an amino acid sequence of SEQ ID NO: 1.
In yet another exemplary embodiment of the present invention, it was confirmed that the inhibitory response of IFNI3 induction by the PB1-F2 protein of the 1918 strain occurs by inhibiting the function of DDX3 through the binding between the PB1-F2 protein and the intracellular DDX3 protein (refer to Example 9), and even in the presence of the PB1-F2 protein of the 1918 strain, the inhibition of the IF1\113 induction is restored by treatment of a recombinant DDX3 protein, resulting in the induction of viral clearance (refer to Example 10).
Therefore, like the 1918 strain, by inhibiting the binding between the PB1-F2 protein prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively, and intracellular DDX3, proliferation of highly pathogenic IAV may be inhibited.
Accordingly, in another aspect of the present invention, the present invention provides an antiviral composition against IAV, which includes an inhibitor of binding between DDX3 and a PB1-F2 protein as an active ingredient, and the PB1-F2 protein may be prepared by substituting the amino acids 68 and 69 of an amino acid sequence of SEQ ID NO: 1.
In the present invention, the PB1-F2 protein is prepared by substituting the amino acids 68 and 69 with threonine and proline, respectively, and may consist of an amino acid sequence of SEQ ID NO: 2.
The term “antiviral” used herein refers to weakening or dissipating the action of a virus having invaded a body by inhibiting viral proliferation in the body, and more specifically, by inhibiting viral proliferation by suppressing nucleic acid synthesis of a virus, gene expression of a virus, or viral replication, and in the present invention, this term is used for IAV, and more preferably, the 1918 strain of IAV (A/Brevig Mission/1/1918(H1N1)).
The DDX3, serving as a DEAD box family RNA helicase having various functions in cells, is involved in various stages of gene expression, that is, transcription, maturation of nucleic and mitochondrial mRNA, initiation of translation, and rearrangement of ribosomes and spliceosomes, and also involved in replication of hepatitis C virus (HCV) RNA, and it has been reported that the expression of DDX3 is reduced when liver cancer occurs due to HBV infection, and DDX3 is known to serve as a tumor-inhibitory protein. In addition, DDX3 is known to be involved in IFNI3 induction caused by TANK-binding kinase 1 (TBK1) and Iκ-B kinase-epsilon (fκBKε)-dependent IRF3 activation. The DDX3 protein may consist of an amino acid sequence of SEQ ID NO: 3.
In the present invention, the binding inhibitor may be any one selected from the group consisting of a nucleic acid, a compound, a microbial culture medium or extract, a natural substance extract, a peptide, a substrate analog, an aptamer, and an antibody, but the present invention is not limited thereto.
In still another aspect of the present invention, the present invention provides a method for screening an antiviral substance against IAV, which includes:
(a) in vitro treating cells with a candidate substance;
(b) measuring binding between DDX3 and a PB1-F2 protein in the cells; and
(c) selecting a substance decreasing the binding between the DDX3 and the PB1-F2 protein as an antiviral substance against IAV, compared to a group which is not treated with a candidate substance, and the PB1-F2 protein may be prepared by substituting the amino acids 68 and 69 on an amino acid sequence of SEQ ID NO: 1.
In the present invention, the candidate substance may be selected from the group consisting of a nucleic acid, a compound, a microbial culture medium or extract, a natural substance extract, a peptide, a substrate analog, an aptamer, and an antibody, and the nucleic acid may be selected from the group consisting of siRNA, shRNA, microRNA, antisense RNA, an aptamer, LNA, PNA, and a morpholino, but the present invention is not limited thereto.
In step (b), the measurement of the binding between DDX3 and the PB1-F2 protein may be carried out using a method selected from the group consisting of western blotting, immunoprecipitation, immunohistochemistry and immunofluorescence, but the present invention is not limited thereto.
Hereinafter, exemplary embodiments will be provided to help in understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the scope of the present invention is not limited to the following examples.
1-1. Cell culture
A549 and 293T cells were incubated in a Dulbecco's modified Eagle's medium (DMEM, Gibco BRL, Gaithersburg, Md.) containing 10% fetal bovine serum (FBS, Gibco-BRL, Gaithersburg, Md.) inactivated by thermal treatment and 1% penicillin/streptomycin (Gibco-BRL, Gaithersburg, Md.) at 37° C. with 5% CO2. U937 cells were incubated in an RPMI medium (Gibco-BRL, Gaithersburg, Md.) containing 10% FBS and 1% penicillin/streptomycin under the same conditions as used for the above cells. Transfection was carried out using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocols.
1-2. Preparation of plasmids
PR8 PB1-F2 and 1918 PB1-F2 expression plasmids were cloned using pcDNA3.1 (+) vectors (Invitrogen) at EcoR I and Xho I restriction sites by PCR. Chimeric mutants, that is, mutants of an N-terminal domain of PR8 strain-derived PB1-F2 and a C-terminal domain of a 1918 strain; and an N-terminal of 1918 strain-derived PB1-F2 and a C-terminal domain of a PR8 strain, were amplified by PCR and then cloned in pcDNA3.1(+) vectors. In addition, PR8-derived PB1-F2 mutants prepared by amino acid substitution (R59K, R60Q, R59K/R60Q, R59K/R60Q/N66S, R59K/R60Q/N66S/I68T, and R59K/R60Q/N66S/I68T/L69P) were amplified by PCR and then cloned in pcDNA3.1(+) vectors. Primer sequences used in the experiment are shown in Table 1 below. In addition, a DDX3 expression plasmid was cloned in a pcDNA3.1(+) vector with Hind III and Xho I restriction sites, and IRF3 and TLR3 expression vectors were provided from a different research team of Yonsei University.
1-3. Antibodies and reagents
An anti-FLAG M2 monoclonal antibody, anti-HA, and an anti-β-actin antibody were purchased from Sigma (St. Louis, Mo.), and a Lamin A/C antibody was purchased from Cell Signaling Technology (Beverly, Mass.). Mouse polyclonal antibodies for detecting viral PB1-F2 proteins were prepared using a full sequence of recombinant PB1-F2 protein expressed in E. coli. A DDX3 antibody, and anti-mouse and anti-rabbit IgG horseradish peroxidase (HRP) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, Calif.), and an anti-NP antibody was obtained from rabbits immunized with an NP protein (LabFrontier). MG132 and Poly(I:C) used in this example were purchased from Calbiochem (Germany) and InvivoGen, respectively.
1-4. Influenza viruses
Influenza A/Puerto Rico/8/34(H1N1) virus (IAV (PR8)), PB1-F2 protein-depleted virus (IAV PB1-F2(−)), or a virus in which the amino acid sequence was substituted with a PB1-F2 protein of A/Brevig Mission/1/1918(H1N1) virus (IAV(1918)) in a PR8 virus backbone were used for in vitro and in vivo experiments. To prepare a PB1-F2 mutant virus using site-specific mutation, the 68I1e(ATC) and 69Leu(CTG) residues in a PBI-F2 protein of the A/Puerto Rico/8/34(H1N1) were substituted with Thr(ACC) and Pro(CCG), respectively. To obtain a recombinant virus expressing a mutated PB1-F2 protein, reverse genetics technology was used. Simply, seven cDNAs encoding a wild-type gene part and one mutated PB1 part were cloned in pHW2000 vectors and then transfected together into 293T cells. After 3 days, a supernatant was recovered to perform a plaque assay. The purified plaque was inoculated into MDCK cells to amplify viruses.
1-5. Influenza virus infection
6- to 8-week old female Balb/c mice were anesthetized and then infected with influenza viruses intranasally at 50 μL. The animal experiment was carried out by obtaining the approval of the Animal Experiment Ethics Committee of Konkuk University. For influenza virus infection into cells, A549 and U937 cells were washed with PBS and infected with influenza viruses at MOI 1. After 24 hours, the cells were recovered to perform RT-PCR and western blotting.
1-6. Real-time PCR
Cells and mouse tissue were lysed with TRIzol to extract total RNA. Using 2 μg of the extracted RNA and M-MLV reverse transcriptase (iNtRON, Seoul, Korea), a reaction solution was prepared to have a final volume of 20 μL, thereby synthesizing cDNA, and then PCR was carried out using the cDNA as a template. The PCR was carried out under conditions of primary denaturation at 94° C. for 5 minutes, and 25 to 30 cycles of 94° C. (30 sec), 55 to 60° C. (30 sec) and 72° C. (30 sec), and final elongation at 72° C. for 5 minutes. Primer sequences used in the experiment are shown in Table 2 below. Quantitative real-time PCR was carried out using a SYBR Green PCR Master Mix (Applied Biosystems), and PCR amplification was performed using a real-time PCR apparatus manufactured by Applied Biosystems (ABI7500). Quantitative analysis of relative mRNA expression levels was performed using a ΔΔCt method, and the result is represented as a relative n-fold difference with respect to a calibrator (RQ=2−ΔΔct).
1-7. Western blotting
Cells were treated with a lysis buffer (25 mmol/L Tris-HCl, pH 7.5, 1% NP40, and protease cocktail) and centrifuged, thereby obtaining a supernatant from which intracellular proteins were eluted. 50 μg of proteins were loaded on a 12 to 15% acrylamide gel to perform SDS-PAGE, thereby separating the proteins by size, and then western blotting was performed. Protein detection using chemical fluorescence was carried out using ECL detection reagents (GE Healthcare, Buckinghamshire, UK), and expression levels of a target protein were determined using a Bio-Imaging Analyzer (LAS-4000, Fuji, Tokyo, Japan).
1-8. Luciferase reporter assay
Cells were transfected using Lipofectamine 2000, and after 48 hours, luciferase activity measured using a luciferase assay system (Promega, Madison, Wis., USA). β-galactosidase activity was measured for all samples, and the results were calibrated. The experiment was performed independently three times, and data were represented as mean±standard deviation (SD).
1-9. Measurement of IFNβ content
A mouse lung tissue lysate was subjected to centrifugation at 10,000×g for 5 minutes, thereby obtaining a supernatant, and the supernatant was used to measure an IFNβ protein level using an IFNβ ELISA kit (R&D) according to the manufacturer's protocols.
1-10. Preparation of protein expression plasmids
A pGE-LysRS-R9-DDX3 expression plasmid encoding LysRS-R9-DDX3 was manufactured using a pGE-LysRS-4 vector consisting of T7 promoter-LysRS-TEV protease recognition sequence-multicloning sites (Kpnl-BamHI-EcoRV-SalI-HindIII) and a histidine tag. The LysRS-R9-DDX3 gene was amplified by PCR using a primer sequence of Table 3 below, and an amplification product was cleaved with KpnI/SalI and introduced into the KpnI/SalI site of pGE-LysRS-4.
According to various studies, it has been known that the PB1-F2 protein of influenza virus has various functions, and recently, it has been reported that high morbidity of the 1918 pandemic influenza is associated with the PB1-F2 protein of a 1918 strain. Therefore, in this example, in order to examine molecular and functional characteristics of the 1918 influenza virus PB1-F2 protein, first, the PB1-F2 proteins of A/Brevig Mission/1/1918 (H1N1) (hereinafter, 1918 strain) and A/Puerto Rico/8/1934 (H1N1) (hereinafter, PR8 strain) influenza viruses were comparatively analyzed.
To this end, A549 and U937 cells were infected with the influenza viruses, that is, a PR8 strain (PR8), a virus of the PR8 strain in which the amino acid sequence was mutated with the PB1-F2 protein of a 1918 strain (PR8-PB1-F2 (1918)), and a PB1-F2 protein-depleted PR8 strain (PR8-PB1-F2(−)) at MOI 1 or 5 for 24 hours, and then subjected to western blotting to observe an expression pattern of the PB1-F2 proteins. As a result, as shown in
Based on the result of Example 2, in order to see whether different PB1-F2 protein expression patterns between the PR8 strain and the 1918 strain are caused by degradation of a proteasome-mediated protein, the expression patterns of the PB1-F2 proteins were observed under a condition in which proteasome inhibitor MG132 was treated.
More specifically, A549 cells were transfected with each of Flag-tagged PB1-F2 expression plasmids of the PR8 strain and the 1918 strain, and treated with MG132 for 6 hours, and then the cells were collected. PB1-F2 mRNA and protein expression levels were analyzed through RT-PCR and western blotting. As a result, as shown in
A ubiquitin-proteasome system is known to induce protein degradation and regulate functions of various proteins. To confirm whether the PB1-F2 protein is degraded by the ubiquitin-proteasome system, a ubiquitination assay was carried out. As a result, as shown in
Based on the results of Examples 2 and 3, in order to identify a molecular determinant determining stability of the PB1-F2 protein, a variety of PR8 and 1918 PB1-F2 mutant plasmids were manufactured and are shown in
More specifically, A549 cells were transfected with each of PB1-F2 chimeric mutants PR8-N+1918-C and 1918-N+PR8-C as shown in
Afterward, in order to more specifically examine a stability determining part of the PB1-F2 protein, C-terminal point mutants were manufactured using a method of substituting some amino acids of the PR8 PB1-F2 sequence with those of 1918 PB1-F2, and then RT-PCR and western blotting were performed. As a result, as shown in
Further, to reconfirm that the amino acids 68 and 69 of the PB1-F2 protein are factors that determine instability of the protein, a plasmid was cloned after the amino acids 68 and 69 on the PR8 strain-derived PB1-F2 protein were substituted with those on the 1918 strain-derived PB1-F2 protein, and vice versa, and then each plasmid was transfected into cells, followed by RT-PCR and western blotting. As a result, as shown in
Moreover, by the analysis of an intracellular position of each PB1-F2 clone, the PR8 PB1-F2 protein was primarily located in the mitochondria, but the 1918 PB1-F2 protein was dispersed in the cytoplasm or present in the nucleus. Therefore, it can be known that the amino acids 68 and 69 of the PB1-F2 protein are important for determining the intracellular position of the PB1-F2 protein. Such results indicate that Ile68 and Leu69 are molecular factors that determine the stability of the PB1-F2 protein.
To examine the influence of instability of the 1918 PB1-F2 protein on a host, mRNA expression and NF-kB luciferase activity of a pro-inflammatory cytokine were analyzed. As a result, as shown in
A type I IFN response which is a main component of the innate immunity system is known to be very important in defense against viral pathogens. For example, according to various studies, it has been reported that the type I IFN plays a very important role in a host defense system against influenza infection. Therefore, to verify whether INFβ induction is influenced by the PB1-F2 protein, the inventors carried out semi-quantitative PCR and real-time PCR after A549 and U937 cells were transfected with plasmids expressing the PB1-F2 protein of each of the PR8 or 1918 strain.
As a result, as shown in
Based on the above result, in order to investigate whether expression of the 1918 PB1-F2 protein in influenza virus-infected cells substantially affects expression of an IFNβ gene, A549 and U937 cells were inflected with IAV, that is, PR8 and 1918 strains at MOI 1, and then RT-PCR and western blotting were performed to observe a change in IFNβ mRNA and protein expression in cells.
As a result, as shown in
Such results indicate that the type I IFN response is inhibited by the 1918 PB1-F2 protein in virus-infected cells.
From the results of Examples 2 and 3, it was confirmed that the 1918 PB1-F2 protein has significantly low stability, and based on this, it was intended to examine if there is a correlation between the stability of 1918 PB1-F2 and the inhibitory performance by the protein on IFNβ induction. To this end, A549 and U937 cells were transfected with PR8 and 1918 PB1-F2 expression plasmids, and after 18 hours, treated with a proteasome inhibitor such as MG132 for 6 hours, and then IFNβ expression was observed by semi-quantitative RT-PCR and western blotting.
As a result, as shown in
Further, to verify if the amino acids 68 and 69 of 1918 PB1-F2 identified as the molecular factors determining stability of the PB1-F2 protein affect inhibition of the IFNβ expression, after mutants in which the amino acids 68 and 69 of PB1-F2 were transfected into the A549 cells, IFNβ expression was observed by semi-quantitative RT-PCR and western blotting.
As a result, as shown in
Such results indicate that there is a correlation between the proteasome-dependent degradation of the 1918 PB1-F2 protein and the strong expression inhibitory performance of the type I IFN.
To examine the influence of the PB1-F2 protein on viral pathogenicity when a host is infected with the 1918 strain of IAV, a change in body weight and a survival rate of a mouse were observed for 14 days after influenza viruses of PR8 or 1918 strains were intranasally administered into the mouse at 5×102PFU or 1×103PFU.
As a result, as shown in
Further, from the results of Examples 4 and 6, it was confirmed that the amino acids 68 and 69 of the PB1-F2 protein are factors that determine instability of the protein and IFNβ induction, and based on this, it was intended to verify if the amino acid position has an important effect on the pathogenicity of influenza viruses. To this end, it was observed that mice were infected with mutated influenza viruses prepared by substituting the amino acids 68 and 69 of the PR8 PB1-F2 protein with those of the 1918 PB1-F2, and then changes in body weight and survival rate were observed.
As a result, as shown in
Furthermore, in order to investigate the influence of the amino acids located at the above positions on the virulence of 1918 PB1-F2, mice were infected with I68T, L69P, and I68T/L69P mutant viruses at various contents (6×102,8×102, and 1×103PFU), and then body weights and survival rates were measured. As a result, as shown in
From the above results, it can be known that the amino acids 68 and 69 of the PB1-F2 protein contribute to high pathogenicity of the 1918 strain of IAV.
To verify if the 1918 PB1-F2 protein substantially inhibits the IFNβ induction in an influenza virus-infected model, mice were infected with each type of influenza viruses such as PR8, 1918, or PB1-F2-depleted 1918 (PB1-F2(−)) at 5×102PFU, and after two days, expression levels of viral proteins such as PB1-F2,NP, and HA in mouse lung tissue were analyzed by westem blotting. As a result, as shown in
To examine whether the expression level of such a viral protein is associated with virus replication, a virus titer was measured on a lung tissue lysate through plaque assay. As a result, as shown in
Therefore, based on the result, to verify if infection with the 1918 strain virus inhibits the IFNβ induction in the lung tissue of mice infected with each type of virus, the expression level of IFNβ mRNA was measured by performing RT-PCR. As a result, as shown in
In addition, when an amount of the IFNβ protein secreted from the lung of a mouse infected with each type of virus was measured through ELISA, as shown in
The results indicate that PB1-F2 inhibits the IFNβ induction in the mouse infected with the 1918 strain of virus.
To identify a molecular mechanism for inhibiting IFNβ induction by 1918 PB1-F2, proteins interacting with 1918 PB1-F2 were analyzed by IP. As a result, it was seen through LC-MS/MS analyses that a total of 134 types of proteins interacted with 1918 PB1-F2. Further, biological functions of the proteins interacting with PB1-F2 were analyzed using the ingenuity pathway analysis (IPA) program, and the analysis focused on viral infection-related proteins. As a result, as shown in
Therefore, in order to assess the interaction between 1918 PB1-F2 and DDX3 by focusing on DDX3 deduced from the above result, A549 cells were transfected with a plasmid expressing DDX3 (HA-tagged DDX3) and a PR8 or 1918 PB1-F2 expression plasmid (Flag-tagged PB1-F2), and then subjected to IP under the condition of MG132 treatment. As a result, as shown in
Subsequently, to verify whether DDX3 was inhibited by the 1918 PB1-F2 protein, A549 cells were infected with each influenza virus. As a result, as shown in
Further, since IRF3 phosphorylation and nuclear translocation occur in the IFNβ induction, the inventors assessed nuclear translocation of IRF3 to investigate whether the nuclear translocation of IRF3 was inhibited by 1918 PB1-F2. As a result, as shown in
To verify the result again, A549 cells were transfected with the PR8 and 1918 PB1-F2 expression plasmids and the DDX3 expression plasmid, and then a change in expression level of IFNβ mRNA was analyzed by trans-complementation assay, and as a result, as shown in
The results indicate that IFNβ induction was inhibited by binding the 1918 PB1-F2 protein to DDX3.
To prove a mechanism of inhibiting IFNβ secretion by the interaction between 1918 PB1-F2 and DDX3 identified by the results of the above examples, the role of DDX3 in IFNβ induction was verified. To this end, an in vivo experiment was carried out to verify whether the inhibition of the IFNβ induction can be repaired by the administration of the recombinant DDX3 protein into a mouse model infected with the 1918 influenza virus, and an experimental process is illustrated in
As a result, as shown in
Through the above results, it was seen that DDX3 protects the mouse from 1918 PB1-F2 viral infection. In addition, in
It would be understood by those of ordinary skill in the art that the above description of the present invention is exemplary, and the exemplary embodiments disclosed herein can be easily modified into other specific forms without departing from the technical spirit or essential features of the present invention. Therefore, the exemplary embodiments described above should be interpreted as illustrative and not limited in any aspect.
The viral mechanism of the evasion of innate immunity by the PB1-F2 protein mutants newly identified in the present invention can provide a new understanding for developing an antiviral agent, and an antiviral composition according to the present invention can be effectively used in the development of an antiviral agent.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0159926 | Nov 2016 | KR | national |
This application is a 371 of PCT/KR2017/013843, filed Nov. 29, 2017, which claims the benefit of priority from Korean Patent Application No. 10-2016-0159926, filed Nov. 29, 2016, the contents of each of which are incorporated herein by reference in its entirety.
The present invention was undertaken with the support of 1) Control of cytokine storm based on the mechanism of pathogenicity of influenza PB1-F2 derived from 1918 spanish strain No. A103001 grant funded by the Ministry of Health & Welfare and 2) Needle-free Vaccine Delivery Development No. HI13C0826 grant funded by the Ministry of Health & Welfare.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/013843 | 11/29/2017 | WO | 00 |