The present invention is related in general to the field of semiconductor devices and processes, and more specifically to the structure and fabrication process of metallic leadframes in semiconductor packages having low-cost mask-less selective plating, while oxidizing the un-plated leadframe portions to provide improved adhesion to the polymeric compounds.
In semiconductor devices, the chips are encapsulated in packages to protect the enclosed parts against mechanical damage and environmental influences, particularly against moisture and light, while providing trouble-free electrical connections. Based on their functions, the semiconductor packages include a variety of different materials; metals are employed for electrical and thermal conductance, and insulators, such as polymeric molding compounds, are used for encapsulations and form factors. To ensure the unity and coherence of the package, these different materials are expected to adhere to each other during the lifetime of the package while tolerating mechanical vibrations, temperature swings, and moisture variations. Failing adhesion allows moisture ingress into the package, causing device failure by electrical leakage and chemical corrosion.
Leadframes for semiconductor devices provide a stable support pad for firmly positioning the semiconductor chip, usually an integrated circuit (IC) chip, within a package. The chips have to be attached to the pad with reliable adhesion. It has been common practice to manufacture single piece leadframes from thin (about 120 to 250 μm) sheets of metal. For reasons of easy manufacturing, the commonly selected starting metals are copper, copper alloys, iron-nickel alloys (for instance the so-called “Alloy 42”), and aluminum. The desired shape of the leadframe is stamped or etched from the original sheet.
In addition to the chip pad, the leadframe offers a plurality of conductive leads to bring various electrical conductors into close proximity of the chip. The remaining gaps between the inner end of the leads and the contact pads on the IC surface are bridged by connectors, typically thin metal wires of gold or copper, individually bonded to the IC contact pads and the leads. Consequently, the surface of the inner lead ends has to be metallurgically suitable for Mitch-attaching the connectors.
The end of the leads remote from the IC chip (“outer” ends) need to be electrically and mechanically connected to external circuitry such as printed circuit boards. This attachment is customarily performed by soldering, conventionally with a tin alloy solder at a reflow temperature above 200° C. Consequently, the surface of the outer lead ends needs to have a metallurgical configuration suitable for reflow attachment to external parts.
Finally, the leadframe provides the framework for encapsulating the sensitive chip and fragile connecting wires. Encapsulation using plastic materials, rather than metal cans or ceramic, has been the preferred method due to low cost. The transfer molding process for epoxy-based thermoset compounds at 175° C. has been practiced for many years. The temperature of 175° C. for molding and mold curing (polymerization) is compatible with the temperature of >200° C. for eutectic solder reflow. The encapsulation compound has to adhere reliably to leadframe, chip and wires.
Today's semiconductor technology employs a number of methods to raise the level of adhesion between the diversified materials so that the package passes accelerated tests and use conditions without delamination. As an example, the adhesion between copper-based leadframes and epoxy based molding compounds and chip-attach compounds can be improved by adding design features such as indentations, grooves or protrusions to the leadframe surface. A widely used technique is the mechanical “dimpling” of the underside of the chip attach pad by producing patterns of indentations in the leadframe metal, sized between about 500 and 1000 μm. Another example to improve adhesion is the method to chemically modify the leadframe surface by oxidizing the metal surface, for instance creating copper oxide. Copper oxide is known to adhere well to epoxy-based molding compounds.
Another example of known technology to increase adhesion between leadframe, chip, and encapsulation compound in semiconductor packages, is the roughening of the whole leadframe surface by chemically etching the leadframe surface after stamping or etching the pattern from a metal sheet. Chemical etching is a subtractive process using an etchant. When, for some device types, the roughening of the metal has to be selective, protective masks have to be applied to restrict the chemical roughening to the selected leadframe areas; the application of masks is material-intensive and thus expensive. Chemical etching creates a micro-crystalline metal surface with a roughness on the order of 1 μm or less.
Yet another known method to achieve a rough surface is the use of a specialized nickel plating bath to deposit a rough nickel layer. This method is an additive process; it has to employ a protective photomask when the deposition has to be restricted to selected leadframe portions. The created surface roughness is on the order of 1 to 10 μm.
Applicant recognized that two major contributors to good adhesion are the chemical affinity between the molding compound and the metal finish of the leadframe, and the surface roughness of the leadframe. In recent years, a number of technical trends have made it more and more complicated to find a satisfactory solution for the diverse requirements, First of all, package dimensions are shrinking, offering less surface area for adhesion. Then, the requirement to use lead-free solders pushes the reflow temperature range into the neighborhood of about 260° C., making it more difficult to maintain mold compound adhesion to the leadframes. This is especially true for the very small leadframe surface available in QFN (Quad Flat No-lead) and SON (Small Outline No-lead) devices.
Applicant further recognized that it is counterproductive when contemporary leadframes have metal layers plated for enhanced wire bonding or solderabililty and use flood plating as a low cost plating method, resulting in plated metals in areas which are superfluous for bonding or soldering but rather should be utilized for enhancing adhesion. Improved definition of leadframe functions calls for selective metal layer plating. Applicant saw that for selective plating, traditional masks which just protect and are otherwise inactive, are not practical because reusable rubber masks are not suitable for slow plating processes or precision multilayer plating, and photoimagible resist masks are too expensive, especially for multilayer plating.
Applicant solved the problem of moisture-induced device failures caused by insufficient adhesion by introducing the concept of selective active marking. The marker, in contact with selected areas of a first metal, actively oxidizes the areas so that a layer of a second metal, deposited by a subsequent plating step, will barely adhere and can thus be peeled away easily; the second metal may not even deposit in the first place. As a result, the first metal of the leadframe is plated only in un-marked areas with a layer of a second metal, while the un-plated oxidized areas are greatly improved for adhering to polymeric compounds.
In one method, the leadframe is contacted with a rubber stamp patterned by mesas, which have been dipped in a strongly oxidizing chemical agent such as sodium hypochlorite (NaOCl), which can be easily cleaned away. Alternatively, any suitable bleach may be used.
In an alternative method, applicant used an apparatus of heated probes to locally contact and oxidize the leadframe. The apparatus carrying the probes, patterned to match the leadframe areas to be oxidized, may include electrically heated probes, where the time needed for locally reaching elevated temperatures is short; the spreading of thermal energy into adjacent leadframe regions is thus short, causing only minor oxidation, which can be removed by acid treatment before dipping the leadframe into the plating station.
The preferred plating method is the low-cost flood plating. The areas of plated metal may have diffuse or uneven edges, which, however, do not affect functionality. Any traces of second metal loosely deposited on the oxidized areas are easily peeled off.
It is a technical advantage that the methods of the invention can be applied even to the fine geometries QFN/SON-type leadframes (Quad Flat No-Lead, Small Outline No-Lead). It is another advantage that the methods are low-cost and the employed tools can be re-used.
The first metal may be copper or a copper alloy; alternatively, the first metal may be aluminum, an iron-nickel ahoy (such as Alloy 42), or Kovar™. The second metal may be nickel; alternatively, the second metal may include a layer of nickel in contact with the first metal, a layer of palladium in contact with the nickel, and a layer of gold in contact with the palladium.
As an example, in
Among the popular methods to achieve surface constitutions for reliable welding and soldering are the plating techniques for depositing metal layers. However, when a plating technique involves the use of masks, the ongoing trend to miniaturize semiconductor devices and scale leadframes makes masking expensive, especially when photomasks and alignments are employed. Repeated mask applications, often required for consecutive plating baths, are uneconomical. An example are the consecutive depositions of a nickel layer on the first metal, followed by a palladium layer on the nickel layer, followed by a gold layer on the palladium layer.
Adhesion is the tendency due to intermolecular forces for matter to cling to other matter. Among successful metal surface constitutions for reliable adhesion to polymeric compounds are metal oxides. Incidental exposure to ambient and operations, such as clean-ups under environmental conditions, allows the interaction of oxygen with surface-near metal atoms to form oxides, creating thin and usually incomplete metal-oxide films. The readiness for oxide-formation (release of electrons) increases with the electronegative potential of the metal; for example, aluminum has an electrochemical potential of −1.66 V (relative to a hydrogen electrode), nickel—0.25 V, copper of +0.34 V, gold +1.5 V. The more electronegative an element is, the stronger is its reducing force, or the easier it can be oxidized.
In contrast to the observation that polymeric compounds adhere well to metal oxides is the fact that it is difficult to make a deposited layer of a second metal stick to an oxidized first metal. After a layer of a second metal is deposited on an oxidized first metal substrate, it is mechanically easy to peel or scratch it off due to its lack of adherence to the oxidized first metal. As stated, the second metal is chosen to promote welding of wire stitch bonds and soldering to external parts.
Based on these facts, applicant reversed the conventional way of selective plating. Rather than using masks to selectively deposit a second metal layer on a first metal substrate, the new method uses simple tools to selectively oxidize the first metal. A layer of second metal is then deposited by a low-cost flood plating technique, and followed by a peeling of those layer portions, which do not adhere to the oxidized first metal areas. The result is a substrate made of a first metal, which exhibits a second metal layer in certain areas for promoting stitch bonding and solder attaching, and further exhibits intentionally oxidized surfaces for promoting adhesion to polymeric compounds.
Shown in
The arrows 330 in
The result of the leadframe oxidation step using the stamp in
It should be noted that other techniques, related to but different from stamping, can produce similar oxidation results. As an example, one such technique uses the movable jet of an oxidizing liquid (technique related to ink jet).
The exemplary tool of
The bottom tool half 511 also has probes, which may be elongated and heatable. In the example of
The result of the leadframe oxidation step using the stamp in
It should be noted that other heating techniques can produce similar oxidation results. As an example, one such technique employs movable focused laser beams.
Of the plurality of leads 102, each lead has an oxidized area 702a and left-over un-oxidized portions 702b displaying the first metal of the leadframe. Due to their selectively oxidized areas 702a, leads 102 offer greatly enhanced adhesion for polymeric encapsulation compounds.
After the selective oxidation step of the invention, it is advisable to clean the leadframe in a so-called reduction step. By this quick-time clean-up step, any thin, unintentional, or accidental oxide film can be removed from metal surfaces, which have not been oxidized by the selective techniques described above. Metal surface designated 701b and 702b in
Subsequent to the selective oxidation step of the invention, a layer of a second metal is deposited on leadframe. The preferred deposition method is a low-cost plating technique such as flood plating. Alternatively, other deposition methods such as sputtering or evaporation may be used. The deposited second metal adheres well to the un-oxidized areas, but only poorly or not at all to the oxidized areas. The resulting leadframe is shown in
If the leadframe had been selectively oxidized by the stamp technique of
As an example for leadframes with copper as first metal a frequently used plating step includes nickel as second metal; the thickness of layer 901 may vary from submicron to several μm. It is a technical advantage of the invention to provide a patterned layer of the relatively slowly deposited nickel without the help of re-usable rubber masks, which are known to be cumbersome for metals with slow plating rates.
Another frequently employed second metal includes a nickel layer in the thickness range from about 0.5 to 2.0 μm in contact with the first metal copper, followed by a palladium layer in the thickness range from about 0.01 to 0.1 μm in contact with the nickel layer, followed by a gold layer in the thickness range from about 0.003 to 0.009 μm in contact with the palladium layer. It is a technical advantage of the selective oxidation approach that these stacks of metal layers can be deposited, and are inherently precisely aligned, without photomasks and without alignment; the sequence of layers can be deposited just by moving from one plating bath to the next. In contrast, it is known that conventional selective plating of multilayer structures (NiPd, NiAu, NiPdAu, etc.), which include nickel, is time consuming and costly because of the need for photoimagible plating resist.
Yet another example of second metal is in; the thickness of layer 901 may vary over a wide range.
The fact that any second metal deposited on selectively oxidized first metal areas adheres poorly or not at all to the surface of the oxidized first metal, allows an easy process step of removing any such deposited second metal from those oxidized areas. For example, any second metal layer 901 plated on oxidized areas can peeled by mechanical means from the oxidized metal Preferred methods include removing by air knife, water jet, bead blast, and tape. It has been found that peeling can be promoted by briefly heating the leadframe after the plating step. Further, it has been found that the thickness of the metal oxide layer can be optimized so that in the plating process, no or extremely low deposition occurs on the oxidized metal surface. This phenomenon makes an additional step of removing any plated second metal superfluous.
Of the plurality of leads 102, each lead has an oxidized area 702a and portions 1102 displaying the deposited second metal Due to their selectively oxidized areas 702a, leads 102 offer greatly enhanced adhesion for polymeric encapsulation compounds, and due to their deposited second metal 1102, leads 102 offer greatly enhanced bondability for wire bonds and metal bumps, and solderability for solder attachment.
The cutaway line marked 12,13 in
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. As an example, the invention applies to products using any type of semiconductor chip, discrete or integrated circuit, and the material of the semiconductor chip may comprise silicon, silicon germanium, gallium arsenide, or any other semiconductor or compound material used in integrated circuit manufacturing.
As another example, the invention applies to all leadframe-based semiconductor packages.
As another example, the oxidation process steps described can be combined with other techniques to improve adhesion such as surface roughening, forming dimples and other features for enhanced grasping, and partial etching, including so-called half-etched leadframes.
It is therefore intended that the appended claims encompass any such modifications or embodiment.
This divisional application claims priority to and the benefit of U.S. patent application Ser. No. 13/191,731 (TI-68593), filed on Jul. 27, 2011, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13191731 | Jul 2011 | US |
Child | 15346688 | US |