1. Field of the Invention
This invention relates to the delivery of respiratory gases, and in particular to patient interfaces for providing gases to patients requiring respiratory therapy.
2. Summary of the Prior Art
In the art of respiration devices, there are well known a variety of respiratory masks which cover the nose and/or mouth of a human user in order to provide a continuous seal around the nasal and/or oral areas of the face such that gas may be provided at positive pressure within the mask for consumption by the user. The uses for such masks range from high altitude breathing (i.e., aviation applications) to mining and fire fighting applications, to various medical diagnostic and therapeutic applications.
One requisite of such respiratory devices has been that they provide an effective seal against the user'face to prevent leakage of the gas being supplied. Commonly, in prior mask configurations, a good mask-to-face seal has been attained in many instances only with considerable discomfort for the user. This problem is most crucial in those applications, especially medical applications, which require the user to wear such a mask continuously for hours or perhaps even days. In such situations, the user will not tolerate the mask for long durations and optimum therapeutic or diagnostic objectives thus will not be achieved, or will be achieved with great difficulty and considerable user discomfort.
Where such masks as those used above are used in respiratory therapy, in particular treatment of obstructive sleep apnea (OSA) using Continuous Positive Airway Pressure (CPAP) therapy, there is generally provided in the art a vent for washout of the bias flow or expired gases to the atmosphere. Such a vent may be provided for example, as part of the mask, or in the case of some respirators where a further conduit carries the expiratory gases, at the respirator. The washout of gas from the mask is essential to ensure that carbon dioxide build up does not occur over the range of flow rates. In the typical flow rates in CPAP treatment, usually between 4 cm H2O to 20 cm H2O, prior art attempts at such vents have resulted in excessive noise causing irritation to the user and concentrated flows of gases irritating any bed partners.
Various approaches have been developed in the prior art to attempt to reduce the noise by using slots to disperse the escaping gases when CPAP therapy is provided. For example, U.S. Pat. Nos. 6,460,539 and 3,890,966. However, these prior art methods are not entirely satisfactory in eliminating the extra noise created by a vent at the mask.
It is an object of the present invention to attempt to provide a mask which goes some way to overcoming the abovementioned disadvantages in the prior art or which will at least provide the industry with a useful choice.
Accordingly in a first aspect the invention consists in a device for delivering a supply of gases to a user comprising:
a patient interface, in use in fluid communication with said supply of gases and supplying said gases to said user,
at least one outlet member integrated with or attached to said patient interface, wherein the boundary between said outlet member and said interface forms at least one narrow outlet vent that in use passes a substantial portion of the expired gases of said user.
Preferably said outlet vent comprises a slot formed in said interface and a cover extending over said slot and attached to said interface, such that the separation between said interface and said cover increases to the edge of said cover in order to diffuse said exhaled gases.
Preferably said outlet member is removable.
Preferably said at least one outlet vent is a substantially long tapered slot.
Alternately said at least one outlet vent is a substantially circular hole.
Preferably said at least one outlet vent extends between the top and bottom of said patient interface.
Preferably said patient interface is a mask.
Preferably said patient interface is a nasal mask.
Preferably said patient interface is a full face mask.
In a third aspect the present invention consists in a CPAP system for delivering gases to a user including a pressurised source of gases, tranpsort means in fluid communication with said pressurised source adapted to convey said gases, and a patient interface in fluid communication with said transport means in use delivering said gases to said user,
said patient interface including:
at least one outlet member integrated with or attached to said patient interface,
wherein the boundary between said outlet member and said interface forms at least one long narrow tapered slot that in use passes a substantial portion of the expired gases of said user.
Preferably said outlet member is removable.
In a fourth aspect the present invention consists in an outlet member for a gases delivery patient interface,
said patient interface including at least one said outlet member, the boundary between said outlet member and said interface forms at least one narrow outlet vent that in use passes a substantial portion of expired gases from a user.
In a fifth aspect the present invention consists in a device for delivering a supply of gases to a user comprising:
a patient interface, in use in fluid communication with said supply of gases and supply said gases to said user, said patient interface including a hollow body and a cushion where said cushion extends below said user'chin.
The preferred form of the present invention will now be described with reference to the accompanying drawings.
The present invention provides improvements in the field of CPAP therapy. In particular to a mask with a gas outlet is described which is quieter and has a more diffused outlet flow. In addition the manufacture of the gas outlet on a mask is simpler; it does not suffer to the same extent from excessive manufacturing faults. It will be appreciated that the mask as described in the preferred embodiment of the present invention can be used in respiratory care generally or with a ventilator but will now be described below with reference to use in a humidified CPAP system. It will also be appreciated that the outlet vent described is equally applicable to all forms of patent interface. It will also be appreciated that the outlet vent described can be used with various forms of mask, it is not limited to use with full face masks, but is described below with reference to full face masks.
The full face mask of the present invention also has the added benefit of extending under the chin of the patient in use, and as such patients do not require a chin strap, as is the case with some prior art masks.
With reference to
Controller 9 receives input from sources such as user input means or dial 10 through which a user of the device may, for example, set a predetermined required value (preset value) of humidity or temperature of the gases supplied to patient 1. The controller may also receive input from other sources, for example temperature and/or flow velocity sensors 11 and 12 through connector 13 and heater plate temperature sensor 14. In response to the user set humidity or temperature value input via dial 10 and the other inputs, controller 9 determines when (or to what level) to energise heater plate 7 to heat the water 6 within humidification chamber 5. As the volume of water 6 within humidification chamber 5 is heated, water vapour begins to fill the volume of the chamber above the water's surface and is passed out of the humidification chamber 5 outlet 4 with the flow of gases (for example air) provided from a gases supply means or blower 15 which enters the chamber through inlet 16. Exhaled gases from the patient'mouth exit through vents in the mask and are passed to ambient surroundings, as shown in
Blower 15 is provided with variable pressure regulating means or variable speed fan 21 which draws air or other gases through blower inlet 17. The speed of variable speed fan 21 is controlled by electronic controller 18 (or alternatively the function of controller 18 could carried out by controller 9) in response to inputs from controller 9 and a user set predetermined required value (preset value) of pressure or fan speed via dial 19.
Referring to
The hollow body 30 has an integrally formed recess 31. The recess 31 preferably extends longitudinally along and over the width of the mask body 30 but may not extend the ftull width of the mask as shown in
The hollow body 30 and insert 32 are injection moulded in a relatively inflexible material, for example, polycarbonate plastic. Such a material would provide the requisite rigidity for the mask as well as being transparent and a relatively good insulator.
Referring to
In some forms of the mask of the present invention the insert 32 is removable, but in other forms the insert is welded in place to prevent removal.
The insert 32 and narrow slots or outlet vents 37, 38 will now be described in more detail. Referring to FIGS. 2 to 5, the insert 32 is curved to follow the contours of the mask shell 30 and has upper and lower sides 39,40 that taper down towards the left and right sides 41, 42. Two elongated recesses 53, 54 are formed on the insert's upper and lower sides 39, 40. The recesses 53, 54 are shown as being formed in the middle section of the insert 32 near to the inspiratory aperture 34 and do not extend over the full length of the upper and lower sides 39, 40. In other forms the recesses (that form the expiratory vents) may extend along the full length of the upper and lower sides of the insert. Thus when the insert 32 attached or connected to the mask shell into the recess 31, formed at the boundary between the insert 32 and mask shell 30 are narrow outlet vents 37, 38.
To provide support to the insert 32, within the recess a number of walls are provided that the insert rests against. In particular, as shown in
The insert 32 may be permanently fixed in the mask shell 30 by gluing, ultrasonic welding or other appropriate fastening methods. In other forms, and particularly that shown in
FIGS. 3 to 5 show the mask of the present invention in an in use form where the insert 32 is attached to the mask shell 30 and a conduit 3 that is inserted and held within the inspiratory inlet 36 and aperture formed in the insert 32 and through the mask shell 30. The conduit 3 may be connected to an elbow connector 44, which may also be capable of swivelling within the aperture.
To ensure a proper seal around the outlet vents 37, 38 and between the insert 32 and mask shell 30 a plastics gasket, for example, one made of elastomer, such as silicon, may be provided between the insert 32 and mask shell 30. The gasket (not shown) would ensure sealing between these parts and reduce the noise of gases exiting the vents 37,38.
It will be appreciated that by providing expiratory vents in the mask of the present invention effectively allows for minimising of the noise generated by the outward flow of expiratory gases form the mask, as well as reducing the noise level, the flow through the outlet vents is more diffused.
An alternative form of the mask of the present invention is shown in
This form of the mask of the present invention would have the advantage that the plurality of holes 105 produces less noise but there is difficulty in moulding the sections 106, 107, 108.
A further alternative form of the mask of the present invention is illustrated in FIGS. 8 to 12. The mask 200 is similar to that described above and has a hollow body 201 and a cushion (not shown). The mask 200 is preferably a full face mask but may be a nasal mask or oronasal mask. The mask 200 has a gases inlet 202 that is capable of being connected to a conduit (such as inspiratory conduit 3, in
This mask 200 has an alternative diffuser system where a narrow air gap 208 is formed between the outlet member 205 and the body 201, such that gases exhaled by the patient are forced through the air gap and diffused as they move out into the ambient air. In particular, a slot 204 (or series of holes, or any other means of allowing exhaled gases to exit the hollow body 201) are formed in the hollow body 201 and the outlet member 205, in the form of a cover is fitted about the slit 204. The cover 205 is substantially trapezoidal in shape and its bottom and side edges are fixed to the hollow body 201 of the mask 200. The bottom edge is substantially shorter in length than its top edges such that the width of the cover 203 increases from it's bottom to top edges. The cover 205 may be permanently fixed to the mask body (for example, by being welded, clipped or glued to the mask body 201) or may be able to be removed (for example, if the cover 205 was removably clipped to the mask body 201).
Referring to
Referring now to
Number | Date | Country | Kind |
---|---|---|---|
528029 | Sep 2003 | NZ | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NZ04/00194 | 8/20/2004 | WO | 11/1/2006 |