The present invention relates to a mass spectrometer and a method of operating the same.
An ion trap is a widely used mass spectrometer, accumulates ions, and thereafter ejects the ions mass-selectively. A configuration of the ion trap and a measurement method are described in Patent Documents 2 to 5. In the ion trap, ions introduced from an ion source are released while a mass spectrometry is being performed, which leads to a loss. Thus, there is a problem of low duty cycle. If the ions introduced from the ion source while the mass spectrometry is being performed with the ion trap can be used for the mass spectrometry, the sensitivity of the ion trap can be enhanced. Patent Document 1 describes a method by which the duty cycle is enhanced in the following manner. Specifically, while the mass spectrometry is performed with an ion trap, ions introduced from an ion source are accumulated in a two dimensional multipole electric field formed with multipole rods. Then, the ions are introduced into the ion trap in a step of accumulating the ions in the ion trap. In addition, Patent Document 2 describes a method by which the duty cycle is enhanced by mass-selectively ejecting ions at the same time while accumulating the ions in an ion trap.
One of objects of the present invention is to measure both cations and anions in turn by using an ion-trap-type mass spectrometer and to enhance duty cycle at that time.
When which one of a positive polarity and a negative polarity has higher efficiency of ionization of a measurement target is unknown, both of a cation measurement and an anion measurement need to be performed. In a case such as a separated specimen measurement using a liquid chromatography or a gas chromatography, chromatogram measurement is required only once to obtain data of the cation measurement and the anion measurement, if the measurement is carried out while performing switching between the cation measurement and the anion measurement in turn with the mass spectrometer. However, there is a problem that a long polarity switching time leads to too few measurement points to perform a quantitative analysis using a mass chromatogram and thus deteriorated measurement accuracy.
The method described in Patent Document 1 describes use of the cations in a measurement sequence using pretrapping, but does not describe a case of alternately measuring ions having mutually reversed polarities. With this method, ions of a reverse polarity to that of ions being measured with the ion trap cannot be accumulated in the multipole electric field. In addition, with the method described in Patent Document 2, the ions with kinetic energy introduced into the ion trap are not sufficiently cooled, and the ions having high kinetic energy at the introduction are ejected regardless of the mass, which causes a noise, resulting in a low S/N. With methods described in Patent Documents 3 to 5, ions introduced from an ion source are released while a mass spectrometry is being performed with an ion trap, which leads to a loss. Thus, the duty cycle is low.
By using a mass spectrometer including an ion source configured to generate ions, an ion guide part configured to transport the ions introduced from the ion source, and an ion trap part configured to trap and then mass-selectively eject the ions, ions having a polarity reverse to that of the ions trapped in the ion trap are trapped in the ion guide part in a time period when the ions are mass-selectively ejected from the ion trap part.
An example of a mass spectrometry method includes a mass spectrometer comprising: an ion source configured to generate ions; an ion guide part configured to transport the ions introduced from the ion source; an ion trap part configured to trap and mass-selectively eject the ions introduced from the ion guide part; a detector configured to detect the ions ejected from the ion trap part; and a controller, and based on voltage control performed on the ion guide part and the ion trap part, the controller introduces ions having a polarity reverse to that of the ions trapped in the ion trap part into the ion guide part in a time period when the ions are mass-selectively ejected from the ion trap part.
An example of a mass spectrometry method includes a mass spectrometry method comprising: a step of introducing first ions into the ion guide from the ion source; a step of introducing the first ions into the ion trap from the ion guide; an analyzing step of ejecting the first ions from the ion trap and analyzing the first ions; and a step of accumulating second ions having a reverse polarity to that of the first ions, in the ion guide in the analyzing step.
In order to introduce the ions into the ion trap from the ion guide, an electrode for controlling ion passage may be provided between the ion guide part and the ion trap part, and polarities of an offset potential of the multipole rod electrode of the ion guide part and an offset potential of the ion trap part may be set reverse to each other with respect to a potential of the electrode for controlling the ion passage. Thereby, the ions are introduced into the ion trap from the ion guide. Alternatively, an alternating voltage may be applied to the electrode for controlling the ion passage so that the magnitude of a pseudo-potential generated due to the alternating voltage is set to be lower than an offset potential of the ion guide part and higher than an offset potential of the ion trap part. Thereby, the ions are introduced into the ion trap from the ion guide. Still alternatively, mutually reversed voltages may be respectively applied to a first electrode adjacent to the ion guide part and a second electrode adjacent to the ion trap part which are provided between the ion guide part and the ion trap part, and thereby the ions are introduced into the ion trap part from the ion guide part.
According to the present invention, high duty cycle can be obtained when both of cations and anions are measured in turn with an ion trap mass spectrometer.
A high-vacuum chamber 7 is evacuated with a pump 42, maintained at 10−4 Torr or lower, and has an ion trap part 32 and a detector 33 installed therein.
Measurements are carried out, while four sequences of an accumulating step, a cooling step, a mass scanning step, and a releasing step are repeated for each polarity ions.
In the accumulating step, ions accumulated in the ion guide part 31 in a previous sequence and ions introduced from the ion source in the accumulating step are accumulated in the ion trap. A potential of the exit-end electrode 4 of the ion guide part is set to be lower than an offset potential of the ion guide part 31 to eject the ions from the ion guide part 31 toward the ion trap part. The entrance-end electrode 27 of the ion trap part 32 is set to have a lower offset potential than that of the ion guide part 31. In an example of voltage application to the other electrodes, the vane electrodes 11 are set at approximately 0 V; the trap wire electrode 24, 20 V; the extraction wire electrode 25, 20 V; and the exit-end electrode 28, 20 V. A pseudo-potential is generated in a radial direction of the quadrupoles due to the trapping RF voltage. In addition, a DC potential is generated in a direction of the center axis of the quadrupole electric field by the entrance-end electrode 27 and the trap wire electrode 24. For this reason, the ions introduced into the ion trap part 32 are trapped in a region 100 surrounded by the entrance-end electrode 27, the quadrupole rod electrodes 20, the vane electrodes 21, and the trap wire electrode 24. A time of the accumulating step depends on an amount of ions, but in general is approximately 10 ms to 1000 ms.
As in Part (A) of
In the cooling step, the ions trapped in the ion trap part 32 are cooled by collision with the buffer gas. This can prevent ions having a large kinetic energy from being ejected regardless of the mass in the mass scanning step. In an example of voltage application to the ion trap part 32, the entrance-end electrode 27 is set at approximately 10 V; the vane electrodes 21, 0 V; the trap electrode 24, 20 V; the extraction electrode 25, 20 V; and the exit-end electrode 28, 20 V. The amplitude of the RF voltage applied to the quadrupole rod electrodes of the ion guide part 31 is changed to zero to release all the ions trapped in the ion guide part 31. This can prevent the ions introduced into the ion guide part 31 in the previous sequence from staying in the ion guide part 31. The polarity of the ion source 1 and the electrodes from the ion source to the entrance of the ion guide part 31 is inverted. The switching of the polarity of the ion source may be performed in the mass scanning step. However, 1 ms to 10 ms is required for stabilization of the ion source after the switching of the polarity of a power source, and the ions cannot be accumulated in this period. Thus, a loss occurs. The loss can be reduced by switching the polarity of the ion source in the cooling step in which the ions are released from the ion guide part 31.
In the mass scanning step, an auxiliary alternating voltage (having amplitude of 0.01 V to 100 V and a frequency of 10 kHz to 500 kHz) is applied between the vane electrodes 21. In addition, a voltage of approximately 1 V to 30 V is applied to the trap wire electrode 24. By changing the trapping RF voltage amplitude, the ions are resonantly and mass-selectively ejected.
Herein, e denotes a charge quanta; ro, a distance between each of the rod electrodes 20 and the center of the quadrupoles; and Ω, an angular frequency of the trapping RF voltage. In addition, qej is a numerical value uniquely calculable from a ratio between the angular frequency Ω of the trapping RF voltage and an angular frequency ω of the auxiliary alternating voltage.
The ions mass-selectively ejected from the ion trap part 32 are detected by the detector 33. In the meantime, ions having a reverse polarity to that of the ions under the mass spectrometry in the ion trap part 32 are introduced into the ion guide part 31. The ions introduced into the ion guide part 31 are trapped in the axial direction due to the DC potential between the exit-end electrode 4 and the entrance-end electrode 3 and in the radial direction due to the pseudo-potential generated by the quadrupole rod electrodes 10. By setting the RF voltage amplitude of the ion guide part 31 at a value causing a q value of 0.9 or larger of ions having a smaller m/z than an analysis target can be released, and thus an influence of a space charge can be reduced. Alternatively, to prevent the space charge in the ion trap part 32, feedback may be performed in a period when the ions are accumulated in the ion guide part 31, based on the total amount of the ions detected by the detector 33.
In the releasing step, the trapping RF voltage of the ion trap part 32 is changed to zero to eject all the ions to outside the trap. A time of the releasing step is approximately 0.1 ms to 10 ms. Thereafter, the polarity of the electrodes of the ion trap part 32 and the detector 33 is switched. The voltages applied to the electrodes from the ion source 1 and the ion guide part 31 are the same as those in the mass scanning step. Ions introduced during a releasing time are also trapped in the ion guide part 31.
A description is given of the effect of the present invention. Firstly, duty cycle without pretrapping in the ion guide part 31 is calculated. The mass scanning step is represented by s; the releasing time, e; the cooling step, c; and an accumulation time, t. Assume that a time required for stabilizing the ion source is 0 ms. Also assume that a certain amount of ions are always introduced from the ion source. The duty cycle is as follows.
Since ions introduced from the ion source in periods except the mass scanning step, the releasing time, the cooling step, and the time of accumulating ions in the ion trap are released, the duty cycle is expressed as in (Formula 2). On the assumption that the scanning step is 200 ms long, the releasing time is 5 ms, the cooling step is 10 ms long, and the accumulating time is 50 ms, the duty cycle is 19%.
Next, ion usage efficiency in a case of application of the present invention will be shown. Any ion introduced from the ion source in periods except the cooling step can be used for the analysis.
The duty cycle is expressed as in (Formula 3). On the assumption that the scanning step is 200 ms long, the releasing time is 5 ms, the cooling step is 10 ms long, and the accumulating time is 50 ms, the duty cycle is 96%. When the ions trapped in the ion guide part 31 are not released in the cooling step, any introduced ions in the cooling step can be used for the analysis. Thus, the duty cycle is 100% in principle. However, some ions introduced from the ion source 1 might still stay in the ion guide part 31, and thus information on fluctuation over time of the ions generated in the ion source is lost, for example, information on a holding time of LC-MS.
The apparatus configuration is simpler than in Embodiment 1 and has an advantage that a smaller number of electrodes are required. On the other hand, the measurement sequences are complicated to some extent.
Embodiment 3 shows an example of a sequence operation in a case of using the same apparatus as in Embodiment 2.
When an alternating voltage of 100 kHz to 4 MHz is applied to the exit-end electrode 4 of the ion guide part, a pseudo-potential expressed with (Formula 4) is formed near the exit-end electrode.
Herein, e denotes an electric quanta; m, an m/z of ions; Ω, a frequency of the alternating voltage; Ē, an electric field averaged in time.
In a mass scanning step, a releasing step, and a cooling step, the magnitude of the pseudo-potential of the exit-end electrode 4 is set to be higher than an offset potential of the ion guide part 31, so that ions introduced into the ion guide part 31 from the ion source 1 are trapped in the ion guide part 31. In an accumulating step, the magnitude of the pseudo-potential of the exit-end electrode 4 of the ion guide part is set to be lower than the offset potential of the ion guide part 31 and higher than an offset potential of the ion trap part 32, and thereby ions are introduced into the ion trap part 32 from the ion guide part 31 to be accumulated in the ion trap. The magnitude of the pseudo-potential depends on the m/z of the ions. Thus, adjusting alternating voltage amplitude in accordance with a range of the m/z of the measured ions makes it possible to trap the ions in a wider m/z range with high efficiency. In the accumulating step, introducing a neutral gas (helium, nitrogen, argon, or the like) into the ion trap part 32 from a pulse valve makes it possible to enhance trapping efficiency in accumulating the ions in the trap.
The apparatus configuration is simpler than in Embodiment 1 and has an advantage that a smaller number of electrodes are required. On the other hand, the measurement sequences are complicated to some extent.
An apparatus configuration and measurement sequences are the same as in Embodiment 1, and thus a description thereof is omitted. In a mass scanning step, a releasing step, and an accumulating step, in which ions are introduced into the ion guide part from the ion source 1, quadrupole DC voltages are applied to the quadrupole rod electrodes 10 in the ion guide part 31 so that mutually opposed rod electrodes can have the same phase and mutually adjacent rod electrodes can have mutually reversed phases. At this time, a range of an m/z of ions accumulated in the ion guide part 31 is limited to within a stability diagram in
By controlling trapping RF voltage amplitude and quadrupole DC voltage amplitude of the ion guide part 31, the range of the m/z of the ions to be accumulated in the ion guide part 31 can be limited to only a range including ions to be analyzed. Alternatively, instead of applying the quadrupole DC voltage, applying an alternating voltage of a specific frequency to mutually opposed ones of the quadrupole rod electrodes 10 or vane electrodes 11 makes it possible to selectively release, from the ion guide part 31, ions having an m/z causing resonance with the frequency of the applied voltage. Still alternatively, applying voltages of waveforms of overlapped resonance frequencies of ions outside the m/z range of the analysis target to the mutually opposed ones of the quadrupole rod electrodes 10 or the vane electrodes 11 makes it possible to release ions outside the m/z range of the analysis target and thus accumulating only ions in the m/z range of the analysis target, in the ion guide.
Too much amount of ions accumulated in the ion trap part 32 causes a problem such as shifting of a mass axis of a mass spectrum due to an influence of a space charge. However, the method in this embodiment can avoid the influence of the space charge, because the range of ions to be accumulated in the ion guide part is limited.
An apparatus configuration except the ion trap part 32 and measurement sequences are the same as in Embodiment 1, and thus a description thereof is omitted. The ion trap part 32 is arranged in the high vacuum chamber 7 and maintained at 10−4 Torr to 10−2 Torr (1.3×10−2 Pa to 1.3 Pa).
In an accumulating step, a trapping RF voltage (having amplitude of 100 V to 5000 V and a frequency of 500 kHz to 2 MHz) is applied to the quadrupole rod electrodes 20. In an example of voltage application to the other electrodes, the entrance-end electrode 27 is set at 5 V to 20 V, and the exit-end electrode 28 is set at 10 V to 50 V. A pseudo-potential is generated in the radial direction of a quadrupole electric field due to the trapping RF voltage, and a DC potential is generated between the entrance-end electrode 27 and the exit-end electrode 28 in the direction of the center axis of the quadrupole electric field. For this reason, ions introduced from the ion guide part 31 are trapped in a region 100 surrounded by the entrance-end electrode 27, the quadrupole rod electrodes 20, and the exit-end electrode 28. Next, in a mass scanning step, an auxiliary alternating voltage (having amplitude of 0.01 V to 1 V and a frequency of 10 kHz to 500 kHz) is applied between mutually opposed ones (a, c) of the quadrupole rod electrodes 20.
In an example of voltage application to the other electrodes, the entrance-end electrode 27 is set at 10 V to 50 V. Ions excited in the radial direction due to the auxiliary alternating voltage are ejected in the axial direction due to a fringing field between ends of the quadrupole rod electrodes 20 and the exit-end electrode 28.
The configuration in Embodiment 5 has advantages that the structure is made simpler and the number of parts is reduced as compared with Embodiment 1. On the other hand, the ratio (ejection efficiency) of ions mass-selectively ejected in the trapped ions is higher in Embodiment 1.
An apparatus configuration except the ion trap part 32 and measurement sequences are the same as in Embodiment 1, and thus a description thereof is omitted. The ion trap part 32 is arranged in the high-vacuum chamber 7, has a buffer gas introduced therein, and is maintained at 10−6 Torr to 10−2 Torr (1.3×10−4 Pa to 1.3 Pa).
In an accumulating step, a trapping RF voltage (having amplitude of 100 V to 5000 V and a frequency of 500 kHz to 2 MHz) is applied to the quadrupole rod electrodes 20. In an example of voltage application to the other electrodes, the entrance-end electrode 27 is set at 5 V to 20 V, and the exit-end electrode 28 is set at 10 V to 50 V. A pseudo-potential is generated in the radial direction of a quadrupole electric field due to the trapping RF voltage, and a DC potential is generated between the entrance-end electrode 27 and the exit-end electrode 28 in the direction of the center axis of the quadrupole electric field. For this reason, introduced ions are trapped in a region 100 surrounded by the entrance-end electrode 27, the quadrupole rod electrodes 20, and the exit-end electrode 28 in Embodiment 5 as shown in
The configuration in Embodiment 6 has an advantage of high ejection efficiency as compared with Embodiment 1. On the other hand, since Embodiment 1 has smaller energy distribution of ions mass-selectively ejected, Embodiment 1 has higher efficiency of introduction to an ion optical system for a subsequent stage.
In an accumulating step, a trapping RF voltage (having amplitude of 100 V to 5000 V and a frequency of 500 kHz to 2 MHz) is applied to the quadrupole rod electrodes 20. In addition, a direct voltage of 10 V to 100 V is applied to the vane electrodes 200. In an example of voltage application to the other electrodes, the entrance-end electrode 27 is set at 5 V to 20 V, and the exit-end electrode 28 is set at 10 V to 100 V. A pseudo-potential is generated in the radial direction of a quadrupole electric field due to the trapping RF voltage, and a harmonic potential is generated in the direction of the center axis of the quadrupole electric field due to a DC bias between the vane electrodes 200 and the quadrupole rod electrodes 20. For this reason, introduced ions are trapped in a region 100 surrounded by the vane electrodes 200 and the quadrupole rod electrodes 20 in Embodiment 7. Next, in a mass scanning step, an auxiliary alternating voltage (having amplitude of 0.01 V to 1 V and a frequency of 10 kHz to 500 kHz) in addition to the direct voltage (20 V to 300 V) is applied to the vane electrodes 200 so that the phase of the auxiliary alternating voltage can be the same phase in the vane electrodes ((200a, 200b, 200c, and 200d) and (200e, 200f, 200g, and 200h) in the drawing) which are mutually adjacent and opposed in the radial direction and can be mutually reversed phases in the vane electrodes ((200a and 200e), (200b and 200f), (200c and 200g) and (200d and 200h)) which are mutually opposed in the axial direction. In an example of voltage application to the other electrodes, the exit-end electrode 28 is set at approximately 0 V to 10 V, and the entrance-end electrode 27 is set at approximately 10 V to 100 V. Ions mass-selectively excited due to the auxiliary alternating voltage are ejected in the axial direction.
The configuration in Embodiment 7 has an advantage of higher ejection efficiency than in Embodiment 1. On the other hand, the number of ions that can be trapped at a time is larger in Embodiment 1.
The configuration in Embodiment 8 has an advantage that ions in a larger mass range can be efficiently accumulated and transmitted than in the configuration in Embodiment 1. On the other hand, the structure is simpler and the number of parts is smaller in Embodiment 1.
An apparatus configuration from the ion source 1 to the ion trap part 32 and measurement sequences are the same as in Embodiment 1, and thus a description thereof is omitted. In Embodiment 9, ions mass-selectively ejected from the ion trap part 32 are introduced into a collision dissociation part 74. The collision dissociation part 74 is formed by an entrance-end electrode 71, multipole rod electrodes 75, an exit-end electrode 72 and has nitrogen, Ar or the like of approximately 1 mTorr to 30 mTorr (0.13 Pa to 4 Pa) introduced therein. Ions introduced from an orifice 70 are dissociated in the collision dissociation part 74. At this time, setting a potential difference between an offset potential of the ion guide part 32 and an offset potential of the multipole rod electrodes 75 at approximately 20 V to 100 V allows the collision dissociation to proceed efficiently. Fragment ions generated by the dissociation are introduced into a time-of-flight mass spectrometer part 85. The time-of-flight mass spectrometer part is maintained at 10−6 Torr or lower (1.3×10−4 Pa or lower). Note that a collision dissociation chamber formed by four rod-shaped electrodes is illustrated in this embodiment, but the number of the rod electrodes may be six, eight, ten or more. Alternatively, a configuration may be employed in which a number of lens-shaped electrodes are arranged and RF voltages having different phases are respectively applied to the electrodes.
The time-of-flight mass spectrometer part 85 includes ion lenses 300, a repeller electrode 301, an extraction electrode 302, reflection lenses 303, and a detector 304. Ions introduced into the time-of-flight spectrometer part result in ion conversion due to the ion lenses 300 including multiple electrodes, and then are introduced into an acceleration section of the time-of-flight spectrometer part, the acceleration section including the repeller electrode 301 and the lead-in electrode 302. By applying a voltage of several hundred volts to several kilovolts between the repeller electrode 301 and the extraction electrode 302 by a power source of the acceleration section, the ions are accelerated in an ion introducing direction and a straight direction. The ions accelerated in the straight direction straightly reach the detector, or are deflected through the reflection lenses called reflectrons and thereafter reach the detector 304 formed of MCPs or the like. The mass number of ions can be measured from a relation between a start time of the acceleration in the acceleration section and an ion detection time.
Although the quadrupole ion guide is used as the ion guide part 31 in Embodiments 1 to 9, a multipole electrode other than the quadrupole, for example, a hexapole, an octpole, a tripole, or the like may be used. In addition, the ion trap part 32 may be a three-dimensional quadrupole ion trap. It is apparent that the present invention can be carried out in a mode other than ones particularly described in the aforementioned descriptions and embodiments. Thus, a lot of changes and modifications can be made to the present invention, and thus are within the scope of claims attached to the present case.
1 . . . ion source, 2 . . . first orifice, 3 . . . entrance-end electrode of ion guide part, 4 . . . exit-end electrode of ion guide part, 5 . . . first differential exhaust unit, 6 . . . second differential exhaust unit, 7 . . . high-vacuum chamber, 30 . . . controller, 31 . . . ion guide part, 32 . . . ion trap part, 33 . . . detector, 40 . . . vacuum pump, 41 . . . vacuum pump, 42 . . . vacuum pump, 10 . . . quadrupole rod electrode of ion guide part, 11 . . . vane electrode, 27 . . . entrance-end electrode of ion trap part, 28 . . . exit-end electrode of ion trap part, 21 . . . vane electrode, 24 . . . trap wire electrode, 25 . . . extraction wire electrode, 100 . . . region where ions are trapped, 101 . . . trajectory of mass-selectively ejected ions, 60 . . . slot, 61 . . . fringing field, 200 . . . vane electrode, 400 . . . ring electrode, 70 . . . orifice, 71 . . . entrance-end electrode, 72 . . . exit-end electrode, 74 . . . collision dissociation part, 75 . . . quadrupole rod electrode, 300 . . . ion lens, 301 . . . repeller electrode, 302 . . . extraction electrode, 303 . . . reflector, 304 . . . detector
Number | Date | Country | Kind |
---|---|---|---|
2009-166279 | Jul 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/004464 | 7/9/2010 | WO | 00 | 1/10/2012 |