MASS SPECTROMETRY-BASED KIT FOR ERYTHROCYTE BLOOD GROUP GENOTYPING

Information

  • Patent Application
  • 20230235396
  • Publication Number
    20230235396
  • Date Filed
    January 19, 2023
    a year ago
  • Date Published
    July 27, 2023
    11 months ago
Abstract
The present invention provides a mass spectrometry-based method and kit for erythrocyte blood group genotyping. By taking nucleic acid mass spectrometry as a platform and by designing primer combinations and improving amplification reaction conditions, 61 blood group genetic sites in 21 erythrocyte blood group systems can be simultaneously detected in one reaction, rapid typing of the 21 erythrocyte blood group systems can be realized, and identified phenotypes are all clinically significant erythrocyte antigen phenotypes. The present invention has the characteristics of high sensitivity, strong specificity, simple operation, and rapid and high throughput. The present invention can be applied to difficult blood group identification, blood matching, rare blood group screening, scientific research, routine business development and the like in clinical practice. A
Description

The present application claims the priority of the Chinese application with the application number of 202210098021.6 applied on 2022-01-26, and all the recorded contents serve as a part of the present invention


REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (2023-01-19-SequenceListing.xml; Size: 165,952 bytes; and Date of Creation: Jan. 9, 2023) is herein incorporated by reference in its entirety.


TECHNICAL FIELD

The present invention relates to the field of biomedicine, in particular to a mass spectrometry-based method and kit for erythrocyte blood group genotyping.


BACKGROUND

Blood transfusion has a wide range of application in the medical field and is one of the effective life-saving support measures. However, currently, 43 blood group systems and more than 350 blood group antigens have been reported for erythrocytes, but in China, only D antigens of ABO blood group and Rh blood group systems are routinely detected before erythrocyte transfusion. Therefore, if there are incompatible blood group antigens between blood transfusion donors and recipients, it is possible to produce antibodies through iso-immunization, and re-transfusion of incompatible erythrocyte products may cause hemolytic transfusion reaction, etc., and may endanger life in severe cases. Especially for patients who need long-term erythrocyte transfusion, the probability of producing single or various antibodies is further increased, and it is difficult to find compatible blood products. According to statistics, the probability of erythrocyte sensitization caused by single transfusion is about 3%, and this number may be as high as 60% in patients with long-term blood transfusion. From 2013 to 2017, 17% of blood transfusion deaths reported by the US FDA were caused by iso-immunization-induced hemolytic transfusion reaction. In addition, erythrocyte antibodies produced by immunization are also associated with diseases such as hemolytic disease of the newborn. Therefore, clinically significant comprehensive identification of erythrocyte blood group antigens for blood transfusion patients, blood donors, pregnant and lying-in women, etc. is an effective way to solve the problem of difficult blood groups and to improve the efficacy of blood transfusion. Through rapid and high-throughput blood group screening and identification, rare blood group donors can also be screened and reserved in advance to deal with emergencies, etc.


At present, serological methods are routinely used in identification of erythrocyte blood group antigens in China. However, commercial serological detection reagents are not available for most blood group antigens, or the reagents are too expensive to routinely perform serological detection. Therefore, genotyping methods complement and replace the serological methods. Current erythrocyte blood group antigen genotyping kits in China are mainly based on low-throughput technologies, such as PCR-SSP. Some laboratories also use self-built methods for detection, such as PCR-RFLP, sequencing, etc. Internationally, there have been some blood group genotyping products based on medium and high-throughput technologies, such as gene chip technology, suspension array technology, mass spectrometry technology and so on. However, existing medium and high-throughput blood group genotyping products are mainly aimed at Caucasian populations and blacks, etc., and are not suitable for Chinese population due to differences in genetic backgrounds of different populations. At present, in China, there is still a large gap in medium and high-throughput methods and kits for blood group genotyping with independent intellectual property rights. Therefore, in order to improve the accuracy and breadth of blood group antigen genetic diagnosis and improve the detection throughput, it is necessary to develop a high-throughput blood group genotyping method suitable for the Chinese population. A nucleic acid mass spectrometry technology has the characteristics of being accurate, rapid and capable of detecting common mutation types such as SNP and In/Del, and is suitable for genotyping of blood group antigens.


CN110079590A provides a detection method for genotyping of rare erythrocyte antigens, but it can only detect 29 SNP sites, and does not specify blood group antigens, genotypes and phenotypes corresponding to the detected sites, so blood group genotyping that can be used for clinical practice cannot be proved. Blood group genotypes of erythrocytes are very complex. There are many blood groups in different site combinations of different antigens. The same blood group also has multiple genotypes. Therefore, it is necessary to detect more sites simultaneously in order to achieve higher-throughput blood group screening and identification, and it is urgent to find detection methods and products that can detect more erythrocyte blood groups simultaneously.


SUMMARY OF THE INVENTION

For the problems in the prior art, the present invention provides a mass spectrometry-based method and kit for erythrocyte blood group genotyping. By designing primer combinations and improving amplification reaction conditions, 61 blood group genetic sites in 21 erythrocyte blood group systems can be simultaneously detected in one reaction, rapid typing of the 21 erythrocyte blood group systems can be realized, and identified phenotypes are all clinically significant erythrocyte antigen phenotypes. The present invention has the characteristics of high sensitivity, strong specificity, simple operation, and rapid and high throughput. The present invention can be applied to difficult blood group identification, blood matching, rare blood group screening, scientific research, routine business development and the like in clinical practice.


Blood group genotypes of erythrocytes are very complex. There are many blood groups in different site combinations of different antigens. The same blood group also has multiple genotypes. Therefore, it is necessary to detect more sites simultaneously in order to achieve higher-throughput blood group screening and identification. However, the more sites are detected simultaneously, the low conversion rate of PCR multiplex reaction is likely to occur. Moreover, due to the problems that genes of erythrocyte antigens have genes with very high homology and sequences where some SNP sites are located are rich in GC, etc., and genes where some SNP sites are located have highly homologous sequences, resulting in that when the SNP sites of these genes are detected simultaneously based on mass spectrometry, the situations are prone to occurring that some sites do not have peaks and are not detected, or it is easy to amplify to homologous sequences to generate erroneous results, etc., and there is a problem that it is difficult to detect all sites one time. In the present invention, by screening a large number of primer combinations and adjusting reaction conditions, simultaneous detection of 61 blood group genetic sites in 21 erythrocyte blood group systems can be finally realized, so that rapid typing of the 21 erythrocyte blood group systems can be realized. Moreover, the present invention has high specificity and sensitivity, and rapid and high throughput.


On the one hand, the present invention provides a primer combination for erythrocyte blood group genotyping, including amplification primers and extension primers. The amplification primers include forward primers and reverse primers, and sequences of amplification primer combinations are shown in Table 1. All these amplification primers can be placed in one amplification tube to expand a target gene one time, and a difference of SNP sites can be distinguished one time. The sites distinguished are 61 different SNP sites.









TABLE 1







List of amplification primer combinations for erythrocyte blood group genotyping (for


different SNP sites)











Blood group
Phenotype (SNP serial

Forward
Reverse


systems
number)
SNP sites
primers
primers





Augustine
At(a+)/At(a−) (SNP1)
rs775471940
SEQ ID NO: 1
SEQ ID NO: 2


(AUG)
At(a+)/At(a−) (SNP2)
rs45458701
SEQ ID NO: 4
SEQ ID NO: 5



At(a+)/At(a−) (SNP3)
rs759118384
SEQ ID NO: 7
SEQ ID NO: 8


Rh (RH)
C/c
rs586178
SEQ ID NO: 10
SEQ ID NO: 11



E/e
rs609320
SEQ ID NO: 13
SEQ ID NO: 14


CD59 (CD59)
CD59: +1/CD59: −1 (SNP1)
CD59_c_361delG (see
SEQ ID NO: 16
SEQ ID NO: 17




C. Weinstock, CD59: A






long-known






complement inhibitor






has advanced to a blood






group system)





CD59: +1/ CD59: −1 (SNP2)
CD59_c_123delC (see
SEQ ID NO: 19
SEQ ID NO: 20




C. Weinstock, CD59: A






long-known






complement inhibitor






has advanced to a blood






group system)




Colton (CO)
Co+/Co(a−b−) (SNP1)
rs749625062
SEQ ID NO: 22
SEQ ID NO: 23



Co+/Co(a−b−) (SNP2)
rs777730687
SEQ ID NO: 25
SEQ ID NO: 26



Coa/Cob
rs28362692
SEQ ID NO: 28
SEQ ID NO: 29


Cromer
Crom+/Cromernull (SNP1)
rs1131690771
SEQ ID NO: 31
SEQ ID NO: 32


(CROM)
Crom+/Cromernull (SNP2)
rs121909603
SEQ ID NO: 34
SEQ ID NO: 35



Crom+/Cromernull (SNP3)
rs762195469
SEQ ID NO: 37
SEQ ID NO: 38



Cr(a+)/Cr(a−)
rs60822373
SEQ ID NO: 40
SEQ ID NO: 41


Diego (DI)
Dia/Dib
rs2285644
SEQ ID NO: 43
SEQ ID NO: 44


Duffy (FY)
Fya/Fyb
rs12075
SEQ ID NO: 46
SEQ ID NO: 47


Gerbich (GE)
GE+/Leach
GYPC_c_134delC (see
SEQ ID NO: 49
SEQ ID NO: 50




The Blood Group






Antigen FactsBook






(Third Edition)






p506-507)





GE+/GEIS+
GYPC_c_95C_A (see
SEQ ID NO: 52
SEQ ID NO: 53




The Blood Group






Antigen FactsBook






(Third Edition)






p506-507)




I (I)
I+/I− (SNP1)
rs1177742207
SEQ ID NO: 55
SEQ ID NO: 56



I+/I− (SNP2)
rs56141211
SEQ ID NO: 58
SEQ ID NO: 59



I+/I− (SNP3)
rs755228157
SEQ ID NO: 61
SEQ ID NO: 62



I+/I− (SNP4)
rs774740944
SEQ ID NO: 64
SEQ ID NO: 65



I+/I− (SNP5)
rs201291494
SEQ ID NO: 67
SEQ ID NO: 68



I+/I− (SNP6)
rs55940927
SEQ ID NO: 70
SEQ ID NO: 71


Indian (IN)
Ina/Inb
rs369473842
SEQ ID NO: 73
SEQ ID NO: 74


Kidd (JK)
Jk+/Jk(a−b−) (SNP1)
rs538368217
SEQ ID NO: 76
SEQ ID NO: 77



Jk+/Jk(a−b−) (SNP2)
rs78937798
SEQ ID NO: 79
SEQ ID NO: 80



Jka/Jkb
rs1058396
SEQ ID NO: 82
SEQ ID NO: 83


JR (JR)
Jr(a+)/Jr(a−) (SNP1)
rs140207606
SEQ ID NO: 85
SEQ ID NO: 86



Jr(a+)/Jr(a−) (SNP2)
rs548254708
SEQ ID NO: 88
SEQ ID NO: 89



Jr(a+)/Jr(a−) (SNP3)
rs72552713
SEQ ID NO: 91
SEQ ID NO: 92


Kell (KEL)
K/k
rs8176058
SEQ ID NO: 94
SEQ ID NO: 95


Knops (KN)
Kna/Knb
rs41274768
SEQ ID NO: 97
SEQ ID NO: 98


LAN (LAN)
Lan+/Lan− (SNP1)
rs769584110
SEQ ID NO: 100
SEQ ID NO: 101



Lan+/Lan− (SNP2)
rs202232534
SEQ ID NO: 103
SEQ ID NO: 104



Lan+/Lan− (SNP3)
rs755723161
SEQ ID NO: 106
SEQ ID NO: 107


Lutheran (LU)
Lu+/Lu(a−b−) (SNP1)
KLF1_19-12996560-T-
SEQ ID NO: 109
SEQ ID NO: 110




TG (see






https://gnomad.broadinstitute.org website)





Lu+/Lu(a−b−) (SNP2-P1)
rs483352838
SEQ ID NO: 112
SEQ ID NO: 113



Lu+/Lu(a−b−) (SNP2-P2)
rs483352838
SEQ ID NO: 115
SEQ ID NO: 116



Lua/Lub
rs28399653
SEQ ID NO: 118
SEQ ID NO: 119


P1PK (P1PK)
Pk+/p (SNP1)
rs1398859071
SEQ ID NO: 121
SEQ ID NO: 122



Pk+/p (SNP2)
rs387906280
SEQ ID NO: 124
SEQ ID NO: 125



Pk+/p (SNP3)
A4GALT_c_418 (see
SEQ ID NO: 127
SEQ ID NO: 128




Y.-C. Wang, Functional






chaaracterisation of a






complex mutation in






the






α(1,4)galactosyltransferase






gene in Taiwanese






individuals with p






phenotype)





Pk+/p (SNP4)
A4GALT_MG812384
SEQ ID NO: 130
SEQ ID NO: 131




(see GenBank







Homo sapiens truncated







alpha






1,4-galactosyltransferase






gene, complete cds






GenBank:






MG812384.1)





Pk+/p (SNP5)
rs1189809232
SEQ ID NO: 133
SEQ ID NO: 134



Pk+/p (SNP6)
rs755279796
SEQ ID NO: 136
SEQ ID NO: 137



Pk+/p (SNP7)
rs778387354
SEQ ID NO: 139
SEQ ID NO: 140


H(H)
H+/Para-Bombay (SNP1)
rs777455020
SEQ ID NO: 142
SEQ ID NO: 143



H+/Para-Bombay (SNP2)
rs573412368
SEQ ID NO: 145
SEQ ID NO: 146



H+/Para-Bombay (SNP3)
rs574691621
SEQ ID NO: 148
SEQ ID NO: 149


MNS (MNS)
S/s
rs7683365
SEQ ID NO: 151
SEQ ID NO: 152


Vel (VEL)
Vel+/Vel− (SNP1)
rs1169340827
SEQ ID NO: 154
SEQ ID NO: 155



Vel+/Vel− (SNP2)
rs554492306
SEQ ID NO: 157
SEQ ID NO: 158



Vel+/Vel− (SNP3)
rs566629828
SEQ ID NO: 160
SEQ ID NO: 161



Vel+/Vel− (SNP4)
rs899095555
SEQ ID NO: 163
SEQ ID NO: 164



Vel+/Vel− (SNP5)
rs1182690110
SEQ ID NO: 166
SEQ ID NO: 167



Vel+/Vel− (SNP6)
rs1207554936
SEQ ID NO: 169
SEQ ID NO: 170


Yt (YT)
Yt+/Yt(a−b−) (SNP1)
rs772244054
SEQ ID NO: 172
SEQ ID NO: 173



Yt+/Yt(a−b−) (SNP2)
rs114782198
SEQ ID NO: 175
SEQ ID NO: 176



Yt+/Yt(a−b−) (SNP3)
rs771039143
SEQ ID NO: 178
SEQ ID NO: 179



Yt+/Yt(a−b−) (SNP4)
ACHE (see
SEQ ID NO: 181
SEQ ID NO: 182




https://gnomad.broadinstitute.org website)





Yt/Yt
rs1799805
SEQ ID NO: 184
SEQ ID NO: 185





Notes:


1) The names of the blood group systems are named according to the International Society of Blood Transfusion (ISBT), and system names (system symbols) are listed in Table of blood group systems v. 10.0.


2) In the phenotype, “blood group system symbol +”, for example, Co+, I+, etc., indicates that a protein corresponding to a gene encoded by the blood group system is in a wild type.


3) For the expression of other phenotypes and blood group antigens in the phenotype, refer to The Blood Group Antigen FactsBook (Third Edition).






Further, the above primer combination is characterized in that sequences of extension primer combinations are shown in Table 2.









TABLE 2







List of extension primer combinations for erythrocyte blood group genotyping










Blood group
Phenotype (SNP serial




systems
number)
SNP sites
Extension primers





Augustine
At(a+)/At(a−) (SNP1)
rs775471940
SEQ ID NO: 3


(AUG)
At(a+)/At(a−) (SNP2)
rs45458701
SEQ ID NO: 6



At(a+)/At(a−) (SNP3)
rs759118384
SEQ ID NO: 9


Rh (RH)
C/c
rs586178
SEQ ID NO: 12



E/e
rs609320
SEQ ID NO: 15


CD59 (CD59)
CD59: +1/CD59: −1 (SNP1)
CD59_c_361delG
SEQ ID NO: 18



CD59: +1/ CD59: −1 (SNP2)
CD59_c_123delC
SEQ ID NO: 21


Colton (CO)
Co+/Co(a−b−) (SNP1)
rs749625062
SEQ ID NO: 24



Co+/Co(a−b−) (SNP2)
rs777730687
SEQ ID NO: 27



Coa/Cob
rs28362692
SEQ ID NO: 30


Cromer
Crom+/Cromernull (SNP1)
rs1131690771
SEQ ID NO: 33


(CROM)
Crom+/Cromernull (SNP2)
rs121909603
SEQ ID NO: 36



Crom+/Cromernull (SNP3)
rs762195469
SEQ ID NO: 39



Cr(a+)/Cr(a−)
rs60822373
SEQ ID NO: 42


Diego (DI)
Dia/Dib
rs2285644
SEQ ID NO: 45


Duffy (FY)
Fya/Fyb
rs12075
SEQ ID NO: 48


Gerbich (GE)
GE+/Leach
GYPC_c_134delC
SEQ ID NO: 51



GE+/GEIS+
GYPC_c_95C_A
SEQ ID NO: 54


I (I)
I+/I− (SNP1)
rs1177742207
SEQ ID NO: 57



I+/I− (SNP2)
rs56141211
SEQ ID NO: 60



I+/I− (SNP3)
rs755228157
SEQ ID NO: 63



I+/I− (SNP4)
rs774740944
SEQ ID NO: 66



I+/I− (SNP5)
rs201291494
SEQ ID NO: 69



I+/I− (SNP6)
rs55940927
SEQ ID NO: 72


Indian (IN)
Ina/Inb
rs369473842
SEQ ID NO: 75


Kidd (JK)
Jk+/Jk(a−b−) (SNP1)
rs538368217
SEQ ID NO: 78



Jk+/Jk(a−b−) (SNP2)
rs78937798
SEQ ID NO: 81



Jka/Jkb
rs1058396
SEQ ID NO: 84


JR (JR)
Jr(a+)/Jr(a−) (SNP1)
rs140207606
SEQ ID NO: 87



Jr(a+)/Jr(a−) (SNP2)
rs548254708
SEQ ID NO: 90



Jr(a+)/Jr(a−) (SNP3)
rs72552713
SEQ ID NO: 93


Kell (KEL)
K/k
rs8176058
SEQ ID NO: 96


Knops (KN)
Kna/Knb
rs41274768
SEQ ID NO: 99


LAN (LAN)
Lan+/Lan− (SNP1)
rs769584110
SEQ ID NO: 102



Lan+/Lan− (SNP2)
rs202232534
SEQ ID NO: 105



Lan+/Lan− (SNP3)
rs755723161
SEQ ID NO: 108


Lutheran (LU)
Lu+/Lu(a−b−) (SNP1)
KLF1_19-12996560-
SEQ ID NO: 111




T-TG




Lu+/Lu(a−b−) (SNP2-P1)
rs483352838
SEQ ID NO: 114



Lu+/Lu(a−b−) (SNP2-P2)
rs483352838
SEQ ID NO: 117



Lua/Lub
rs28399653
SEQ ID NO: 120


P1PK (P1PK)
Pk+/p (SNP1)
rs1398859071
SEQ ID NO: 123



Pk+/p (SNP2)
rs387906280
SEQ ID NO: 126



Pk+/p (SNP3)
A4GALTc418
SEQ ID NO: 129



Pk+/p (SNP4)
A4GALT_MG812384
SEQ ID NO: 132



Pk+/p (SNP5)
rs1189809232
SEQ ID NO: 135



Pk+/p (SNP6)
rs755279796
SEQ ID NO: 138



Pk+/p (SNP7)
rs778387354
SEQ ID NO: 141


H(H)
H+/Para-Bombay (SNP1)
rs777455020
SEQ ID NO: 144



H+/Para-Bombay (SNP2)
rs573412368
SEQ ID NO: 147



H+/Para-Bombay (SNP3)
rs574691621
SEQ ID NO: 150


MNS (MNS)
S/s
rs7683365
SEQ ID NO: 153


Vel (VEL)
Vel+/Vel− (SNP1)
rs1169340827
SEQ ID NO: 156



Vel+/Vel− (SNP2)
rs554492306
SEQ ID NO: 159



Vel+/Vel− (SNP3)
rs566629828
SEQ ID NO: 162



Vel+/Vel− (SNP4)
rs899095555
SEQ ID NO: 165



Vel+/Vel− (SNP5)
rs1182690110
SEQ ID NO: 168



Vel+/Vel− (SNP6)
rs1207554936
SEQ ID NO: 171


Yt(YT)
Yt+/Yt(a−b−) (SNP1)
rs772244054
SEQ ID NO: 174



Yt+/Yt(a−b−) (SNP2)
rs114782198
SEQ ID NO: 177



Yt+/Yt(a−b−) (SNP3)
rs771039143
SEQ ID NO: 180



Yt+/Yt(a−b−) (SNP4)
ACHE
SEQ ID NO: 183



Yta/Ytb
rs1799805
SEQ ID NO: 186









Blood group genotype and phenotype information of the 61 blood group genetic sites of the present invention are shown in Table 3 and Table 4, wherein for sequences in Table 4, sequences in parentheses are polymorphic sites.









TABLE 3







Blood group genotype information of 61 blood group genetic sites













Blood








group
Phenotype (SNP

Poly-














systems
serial number)
SNP sites
morphism
Genotype→phenotype
















Augustine
At(a+)/At(a-)
rs775471940
AGTCC
ins/ins→At(a+)
del/del→At(a-)
ins/del→At(a+)


(AUG)
(SNP1)

AGCAT








>-






At(a+)/At(a-)
rs45458701
G>A,C
GG→At(a+)
AA→At(a-)
GA→At(a+)



(SNP2)








At(a+)/At(a-)
rs759118384
AGG>-
ins/ins→At(a+)
del/del→At(a-)
ins/del→At(a+)



(SNP3)










Rh (RH)
C/c
rs586178
G>A,C
GG→C+c-
CC→C-c+
GC→C+c+



E/e
rs609320
C>A,G,
CC→E-e+
GG→E+e-
GC→E+e+





T








CD59
CD59:+1/
CD59_c_361delG
G>-
ins/ins→CD59:
del/del→CD59:
ins/del→CD59:


(CD59)
CD59:-1 (SNP1)
(see C. Weinstock,

+1
-1
+1




CD59: A long-known








complement inhibitor








has advanced to a








blood group system)







CD59:+1/
CD59_c_123delC (see
C>-
ins/ins→CD59:
del/del→CD59:
ins/del→CD59:



CD59:-1 (SNP2)
C. Weinstock, CD59:

+1
-1
+1




A long-known








complement inhibitor








has advanced to a








blood group system)









Colton
Co+/Co(a-b-)
rs749625062
CT>-
ins/ins→Co+
del/del→Co
ins/del→Co+


(CO)
(SNP1)



(a-b-)




Co+/Co(a-b-)
rs777730687
C>-
ins/ins→Co+
del/del→Co
ins/del→Co+



(SNP2)



(a-b-)




Coª/Cob
rs28362692
C>A,T
CC→Co(a+b-)
TT→Co(a-b+)
CT→Co(a+b+)





Cromer
Crom+/Cromernull
rs1131690771
C>A
CC→Crom+
AA→Cromernull
CA→Crom+


(CROM)
(SNP1)








Crom+/Cromernull
rs121909603
G>A
GG→Crom+
AA→Cromernull
GA→Crom+



(SNP2)








Crom+/Cromernull
rs762195469
C>T
CC→Crom+
TT→Cromernull
CT→Crom+



(SNP3)








Cr(a+)/Cr(a-)
rs60822373
G>C,T
GG→Cr(a+)
CC→Cr(a-)
GC→Cr(a+)





Diego (DI)
Diª/Dib
rs2285644
G>A,T
GG→Di(a-b+)
AA→Di(a+b-)
GA→Di(a+b+)





Duffy (FY)
Fyª/Fyb
rs12075
G>A
GG→Fy(a+b-)
AA→Fy(a-b+)
GA→Fy(a+b+)





Gerbich
GE+/Leach
GYPC_c_134delC
C>-
ins/ins→GE+
del/del→Leach
ins/del→GE+


(GE)

(see The Blood Group








Antigen FactsBook








(Third Edition)








p506-507)







GE+/GEIS+
GYPC_c_95C_A (see
C>A
CC→GE+
AA→GEIS+
CA→GE+




The Blood Group








Antigen FactsBook








(Third Edition)








p506-507)









I (I)
I+/I- (SNP1)
rs1177742207
G>A
GG→I+
AA→I-
GA→I+



I+/I- (SNP2)
rs56141211
G>A
GG→I+
AA→I-
GA→I+



I+/I- (SNP3)
rs755228157
G>A
GG→I+
AA→I-
GA→I+



I+/I- (SNP4)
rs774740944
G>A
GG→I+
AA→I-
GA→I+



I+/I- (SNP5)
rs201291494
T>A
TT→I+
AA→I-
TA→I+



I+/I- (SNP6)
rs55940927
G>A
GG→I+
AA→I-
GA→I+





Indian (IN)
Inª/Inb
rs369473842
G>A,C
GG→In(a-b+)
CC→In(a+b-)
GC→In(a+b+)





Kidd (JK)
Jk+/Jk(a-b-)
rs538368217
G>A
GG>Jk+
AA→Jk(a-b-)
GA→Jk+



(SNP1)








Jk+/Jk(a-b-)
rs78937798
G>A
GG>Jk+
AA→Jk(a-b-)
GA→Jk+



(SNP2)








Jka/Jkb
rs1058396
G>A,C,
GG→Jk(a+b-)
AA→Jk(a-b+)
GA→Jk(a+b+)





T








JR (JR)
Jr(a+)/Jr(a-)
rs140207606
G>A,T
GG→Jr(a+)
AA→Jr(a-)
GA→Jr(a+)



(SNP1)








Jr(a+)/Jr(a-)
rs548254708
G>A,T
GG→Jr(a+)
AA→Jr(a-)
GA→Jr(a+)



(SNP2)








Jr(a+)/Jr(a-)
rs72552713
G>A
GG→Jr(a+)
AA→Jr(a-)
GA→Jr(a+)



(SNP3)










Kell (KEL)
K/k
rs8176058
G>A,C
GG→K-k+
AA→K+k-
GA→K+k+





Knops (KN)
Knª/Knb
rs41274768
G>A
GG→Kn(a+b-)
AA→Kn(a-b+)
GA→Kn(a+b+)





LAN
Lan+/Lan-
rs769584110
C>-
ins/ins→Lan+
del/del→Lan-
ins/del→Lan+


(LAN)
(SNP1)








Lan+/Lan-
rs202232534
G>A,T
GG→Lan+
TT→Lan
GT→Lan+



(SNP2)



weak




Lan+/Lan-
rs755723161
G>-
ins/ins→Lan+
del/del→Lan-
ins/del→Lan+



(SNP3)










Lutheran
Lu+/Lu(a-b-)
KLF1_19-12996560-T-
→C
del/del→Lu+
ins/ins→ND
del/ins→Lu


(LU)
(SNP1)
TG (see https://



(a-b-)




gnomad.broadinstitute.








org website)







Lu+/Lu(a-b-)
rs483352838
→GCCG
del/del→Lu+
ins/ins→ND
del/ins→Lu



(SNP2-P1)

GGC


(a-b-)



Luª/Lub
rs28399653
G>A,C
GG→Lu(a-b+)
AA→Lu(a+b-)
GA→Lu(a+b+)





P1PK
pk+/p (SNP1)
rs1398859071
A>-
ins/ins→pk+
del/del→p
ins/del→pk+


(P1PK)
pk+/p (SNP2)
rs387906280
->G
del/de1→p+
ins/ins→p
del/ins→pk+



pk+/p (SNP3)
A4GALT_c_418 (see
CAGAT
InsShort/
InsLong/
InsShort/InsLong→




Y. -C. Wang,
GCTCC
InsShort→pk+
InsLong→p
pk+




Functional
C>TGG







chaaracterisation of a
ACCTG







complex mutation in
CTGGA







the
CCTGC







α(1,4)galactosyl-
TGGAC







transferase gene in
CTGCT







Taiwanese individuals
GGAAC







with p phenotype)
A






pk+/p (SNP4)
A4GALT_MG812384
→CACA
del/del→pk+
ins/ins→p
del/ins→pk+




(see GenBank
CCC








Homo sapiens









truncated alpha








1,4-galactosyl-








transferase gene,








complete cds








GenBank: MG812384.1)







pk+/p (SNP5)
rs1189809232
C>-
ins/ins→pk+
del/del→p
ins/del→pk+



pk+/p (SNP6)
rs755279796
T>A
TT→pk+
AA→p
TA→pk+



pk+/p (SNP7)
rs778387354
ACGTG
ins/ins→p+
del/del→p
ins/del→pk+





GCCTC








GAACC








GCGTG








CCCTG








G>-








H (H)
H+/Para-Bombay
rs777455020
AA>-
ins/ins→H+
del/del→Para-
ins/del→H+



(SNP1)



Bombay




H+/Para-Bombay
rs573412368
CT>-
ins/ins→H+
del/del→Para-
ins/del→H+



(SNP2)



Bombay




H+/Para-Bombay
rs574691621
G>A,T
GG→H+
AA→Para-Bombay
GA→H+



(SNP3)










MNS
S/s
rs7683365
G>A,C,
AA→S+s-
GG→S-s+
AG→S+s+


(MNS)


T








Vel (VEL)
Vel+/Vel- (SNP1)
rs1169340827
G>A,T
GG→Vel+
AA→Vel-
GA→Vel+



Vel+/Vel- (SNP2)
rs554492306
G>A
GG >Vel+
AA→NA
GA→Vel+



Vel+/Vel- (SNP3)
rs566629828
AGCCT
ins/ins→Vel+
del/del→Vel-
ins/del→Vel+





AGGGG








CTGTG








TC>-






Vel+/Vel- (SNP4)
rs899095555
C>T
CC→Vel+
TT→NA
CT→Vel+



Vel+/Vel- (SNP5)
rs1182690110
T>A,G
TT→Vel+
AA,GG,AG→
TA,TG→Vel+







Vel








weak/Vel-




Vel+/Vel- (SNP6)
rs1207554936
CAGCA
ins/ins→Vel+
del/del→Vel-
ins/del→Vel+





TGC>-








Yt (YT)
Yt+/Yt(a-b-)
rs772244054
GAG>-
ins/ins→Yt+
del/del→Yt(a
ins/del→Yt+



(SNP1)



-b-)




Yt+/Yt(a-b-)
rs114782198
G>A
GG→Yt+
AA→NA
GA→Yt+



(SNP2)








Yt+/Yt(a-b-)
rs771039143
→C
del/del→Yt+
ins/ins→Yt(a-b-)
del/ins→Yt+



(SNP3)








Yt+/Yt(a-b-)
ACHE (see https://
TTGCT
ins/ins→Yt+
del/del→Yt(a-b-)
ins/del→Yt+



(SNP4)
gnomad.broadinstitute.
C>C







org website)







Yta/Ytb
rs1799805
G>T
GG→Yt(a+b-)
TT→Yt(a-b+)
GT→Yt(a+b+)





Notes:


1. Some gene polymorphisms are not listed in genotype to phenotype correspondence because no reports about the corresponding phenotypes of the gene polymorphisms have been retrieved.


2. ND, not detected; NA, no information available.













TABLE 4







Sequences before and after SNP sites of 61 blood group genetic sites











Phenotype




Blood
(SNP




group
serial
SNP
Sequences before and after SNP sites([ ]with


systems
number)
sites
underline is the SNP site)





Augustine
At(a+)/
rs775471940
GACTCTACCCCTTCTATCTAGATCTCAGTCCTGGCTTTC


(AUG)
At(a−)

TCTGTCTGCTTCATCTTCACTATCACCATTGGGATGTTT



(SNP1)

CCAGCCGTGACTGTTGAGGTCA[AGTCCAGCAT/-]CGC





AGGCAGCAGCACCTGGGGTGAGGATGCCACAGGTTTC





CAGGATGGGAACAGACAGGATCTTGAGTTGGGCTGGA





AGTGGGGAAGGGAGGGAGCCTGG



At(a+)/
rs45458701
CAGCCGCTGGCTGCCAAGCCTGGTGCTGGCCCGGCTG



At(a−)

GTGTTTGTGCCACTGCTGCTGCTGTGCAACATTAAGCC



(SNP2)

CCGCCGCTACCTGACTGTGGTCTTC[G/A/C]AGCACGAT





GCCTGGTTCATCTTCTTCATGGCTGCCTTTGCCTTCTCC





AACGGCTACCTCGCCAGCCTCTGCATGTGCTTCGGGCC





CAAGTGAGTAGGGCT



At(a+)/
rs759118384
CACTGGCCTGTTCTGTCAGCCCTGCCCCCTCTCCCCCT



At(a−)

AAGAGCCTGAGGAGGCCTATGGCAGGGCCAAGACAG



(SNP3)

GGCCTCACACTGTTCCTGCCCCCAGC[AGG/-]CCCCTG





AGGGAGGGAGCTGTCAGCCAGGGAAAACCGAGAACA





CCATCACCATGACAACCAGTCACCAGCCTCAGGACAG





GTAAGGGGTAAGGGGCTGGGC





Rh(RH)
C/c
rs586178
CTTGATAGGATGCCACGAGCCCCTTTTGATCCTCTAAG





GAAGCGTCATAGTGGGTAAAAAAATAGAAGAGGAGAA





TGAGAGCTGCTTCCAGTGTTAGGGC[G/A/C]CAGAGGG





GCAGGCAGCGCCGGACAGACCGCGGGTACTTAGAGCT





CATCCTGTGTCCGTCTCTGTGCAGGGGTTCCACCAGCA





CCAGGCATCACCCCTCTC



E/e
rs609320
GCCAAGGATGACCCTGAGATGGCTGTCACCACACTGA





CTGCTAGAGCATAGTAGGTGTTGAACATGGCATTCTTC





CTTTGGATTGGACTTCTCAGCAGAG[C/A/G/T]AGAGTT





GACACTTGGCCAGAACATCCACAAGAAGAGGGCGCCT





GGGGGCCAGAGAGGGTGGTTGGCCAGAATCACACTCC





TGCTCCAAAGGTCTGAGCCT





CD59
CD59: +1/
CD59_c_
CAAGTGTATAACAAGTGTTGGAAGTTTGAGCATTGCAA


(CD59)
CD59: −1
361delG
TTTCAACGACGTCACAACCCGCTTGAGGGAAAATGAG



(SNP1)

CTAACGTACTACTGCTGCAAGAAGGACCTGTGTAACTT





TAACGAACAGCTTGAAAATGGTGGGACATCCTTATCAG





AGAAAACAGTTCTTCTGCTGGTGACTCCATTTCTG[G/-]





CAGCAGCCTGGAGCCTTCATCCCTAAGTCAACACCAG





GAGAGCTTCTCCCAAACTCCCCGTTCCTGCGTAGTCCG





CTTTCTCTTGCTGCCACATTCTAAAGGCTTGATATTTTC





CAAATGGATCCTGTTGGGAAAGAATAAAATTAGCTTGA





GCAACCTGGCTAAGATAGAGG



CD59: +1/
CD59_c_
ACATTTGTGCGGGAGTGGAAGTATACCACAAGTTGCTG



CD59: −1
123delC
ACTTTGGGCCCATATTAATGGAGATGGTGGGCTGCCAG



(SNP2)

GGGACAAGTCAGTGCTGCTTTAAGAGATCCTGACTTTC





TTCCTGATTCTAGGTCATAGCCTGCAGTGCTACAACTGT





CCTAACCCAACTGCTGACTGCAAAACAGC[C/-]GTCAA





TTGTTCATCTGATTTTGATGCGTGTCTCATTACCAAAGC





TGGTAAGAGCCTCCCCTGTCTGTCTCCTAAATGTAATG





GGGTAATAAGTGCCTGGGAAAAAAATTGTGCCACTGTA





ATCCTCATTAGGCTTGCATCAAGTAAT





Colton
Co+/Co(a−
rs749625062
GGCAGCGGTCTCAGGCCAAGCCCCCTGCCAGCATGGC


(CO)
b−)

CAGCGAGTTCAAGAAGAAGCTCTTCTGGAGGGCAGTG



(SNP1)

GTGGCCGAGTTCCTGGCCACGACCCT[CT/-]TTGTCTTC





ATCAGCATCGGTTCTGCCCTGGGCTTCAAATACCCGGT





GGGGAACAACCAGACGGCGGTCCAGGACAACGTGAA





GGTGTCGCTGGCCTTCGG



Co+/Co(a−
rs777730687
GCTGACCTCAGGGTGAGTGCAGGGCCCTGGGTGACAT



b−)

GTGTGTGCCTCTCTCCTCCTTCCCAGACACCACCCAAA



(SNP2)

CCATCTCTGAGGACACAGACAACGA[C/-]CTTGTCCCA





CCCCTCGAGCTCTGCATCAGAACCAAGTGAGTCAAGC





CCCTCTCTGGCTTTGAGCCTCACCCTGAATAGCTTTGA





GGAGCCATGGTTGGGG



Coa/Cob
rs28362692
AGGGCAGTGGTGGCCGAGTTCCTGGCCACGACCCTCT





TTGTCTTCATCAGCATCGGTTCTGCCCTGGGCTTCAAAT





ACCCGGTGGGGAACAACCAGACGG[C/A/T]GGTCCAGG





ACAACGTGAAGGTGTCGCTGGCCTTCGGGCTGAGCAT





CGCCACGCTGGCGCAGAGTGTGGGCCACATCAGCGGC





GCCCACCTCAACCCGGCT





Cromer
Crom+/
rs1131690771
TTTCCCGAGGATACTGTAATAACGTACAAATGTGAAGA


(CROM)
Cromernull

AAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAGTG



(SNP1)

ATCTGCCTTAAGGGCAGTCAATGGT[C/A]AGATATTGAA





GAGTTCTGCAATCGTAAGTTCTTCATCTTTTTAGAAAA





GTTCTGGGAATGGAATGTATCTTAAATTTATTTTTATATA





CCTTTGGAGTGA



Crom+/
rs121909603
GTTTTCCCGAGGATACTGTAATAACGTACAAATGTGAA



Cromernull

GAAAGCTTTGTGAAAATTCCTGGCGAGAAGGACTCAG



(SNP2)

TGATCTGCCTTAAGGGCAGTCAATG[G/A]TCAGATATTG





AAGAGTTCTGCAATCGTAAGTTCTTCATCTTTTTAGAA





AAGTTCTGGGAATGGAATGTATCTTAAATTTATTTTTATA





TACCTTTGGAGT



Crom+/Cr
rs762195469
CACATAGTTACCTTCTTTGTGTGTATGCCTGATAATTTAA



Cromernull

TTTTAAAAAATCAATTTGTATTCTATTCTAGAGAAATCA



(SNP3)

TGCCCTAATCCGGGAGAAATA[C/T]GAAATGGTCAGAT





TGATGTACCAGGTGGCATATTATTTGGTGCAACCATCTC





CTTCTCATGTAACACAGGGTAAGTTTGGGCATACTAAA





ACCCTGTATT



Cr(a+)/
rs60822373
TATAATCTTTAACATGTTTTGATCTTATTTGTAAAAATAC



Cr(a−)

TTTACTAGTTTTATTTATTTAAAAGATGTTGGAATTGTTT





TTTAAGAAATTTATTGTCCA[G/C/T]CACCACCACAAAT





TGACAATGGAATAATTCAAGGGGAACGTGACCATTATG





GATATAGACAGTCTGTAACGTATGCATGTAATAAAGGAT





TCACCATGAT





Diego
Dia/Dib
rs2285644
ACTCACACACTGAAGCTCCACGTTCCTGAAGATGAGC


(DI)


GGCAGCAGGACGCGCCGCAGCGGCACAGTGAGGATG





AGGACGAAGGGCAGGGCCAGGGAGGCC[G/A/T]GCGT





GGACTTCACCACCCACAGCACTGCCAGGCAGATGATC





TGGATGCCCGTGAATAAGTGCATGCGCCAGGTCTTCAC





CTGCAGGCGGAGGCTGGGGTC





Duffy
Fya/Fyb
rs12075
GAGCTCTCCCCCTCAACTGAGAACTCAAGTCAGCTGG


(FY)


ACTTCGAAGATGTATGGAATTCTTCCTATGGTGTGAATG





ATTCCTTCCCAGATGGAGACTATG[G/A]TGCCAACCTG





GAAGCAGCTGCCCCCTGCCACTCCTGTAACCTGCTGGA





TGACTCTGCACTGCCCTTCTTCATCCTCACCAGTGTCCT





GGGTATCCTAGCT





Gerbich
GE+/Leach
GYPC_c_
AGCTTGGGCCAAGGTGCTGCTAGGCATGGAGAATCTTC


(GE)

134delC
CTCTCTGACCTCAGATTCTTGTCCTCTGTTCACAGAGC





CTGATCCAGGGATGTCTGGATGGC[C/-]GGATGGCAGAA





TGGAGACCTCCACCCCCACCATAATGGACATTGTCGTC





ATTGCAGGTGAGCTCTCATCACAGAGCCCTTCAAGCAG





CCAGGGTGGGGGG



GE+/GEIS+
GYPC_c_95C_
GCTAGGCATGGAGAGTCTTCCTCTCTGACCTCAGATTC




A
TTGTCCTCTGTTCACAGAGCCTGATCCGGGGATGGCCT





CTGCCTCCACCACAATGCATACTA[C/A]CACCATTGCAG





GTGAGTTCTCATCACAGAGCCTCACCATAATGGAAACT





GCCGTGACTTCAGATGAGCTCTCATCACAGAGCCCTTT





AAGCAGCCAGGGT





I(I)
I+/I−
rs1177742207
CATGACTCTCATCTCTACGCTTCTTCTTTATCAACATTG



(SNP1)

CAGGTGTTCCTGGCTCTATGCCAAATGCATCCTGGACT





GGAAACCTCAGAGCTATAAAGTG[G/A]AGTGACATGGA





AGACAGACACGGAGGCTGCCACGGTGAGGCTCTCGTT





CCATGCTTCTAGGCCACTGCCTGTTGGTGTTAGCAGGA





AGGTAGCTGTGGAA



I+/I−
rs56141211
ATTCTGTAAGTTCATCACCCTTTTGAAAGCAAGCATGT



(SNP2)

TTTGACTCTGTTTCTTGTTCTTTCTTTTGCAGGCCACTA





TGTACATGGTATTTGTATCTATG[G/A]AAACGGAGACTT





AAAGTGGCTGGTTAATTCACCAAGCCTGTTTGCTAACA





AGTTTGAGCTTAATACCTACCCCCTTACTGTGGAATGCC





TAGAACTGAGG



I+/I−
rs755228157
TTCCCCCTGAAAACCAACCGGGAGATAGTTCAGCATCT



(SNP3)

GAAAGGATTTAAAGGGAAAAATATCACCCCAGGGGTG





CTGCCTCCTGACCATGCAATTAAGC[G/A]AACTAAATAT





GTCCACCAAGAGCATACAGATAAAGGTGGCTTTTTTGT





GAAAAATACTAATATTTTGAAAACTTCACCTCCACATC





AGCTGACCATCTAC



I+/I−
rs774740944
CTTCTTTATCAACATTGCAGGTGTTCCTGGCTCTATGCC



(SNP4)

AAATGCATCCTGGACTGGAAACCTCAGAGCTATAAAGT





GGAGTGACATGGAAGACAGACAC[G/A]GAGGCTGCCA





CGGTGAGGCTCTCGTTCCATGCTTCTAGGCCACTGCCT





GTTGGTGTTAGCAGGAAGGTAGCTGTGGAATCCAGGG





TTCTCATGGAGAGAG



I+/I−
rs201291494
CCTGTAATCACGCCTTAGAGAAAATGCCAGTCTTTTTG



(SNP5)

TGGGAAAATATATTACCATCACCTTTGCGAAGTGTCCCT





TGCAAGGATTACCTGACCCAGAA[T/A]CACTACATCAC





AAGTCCCCTGTCGGAAGAAGAGGCTGCATTCCCTTTG





GCCTATGTCATGGTCATCCATAAGGACTTTGACACCTTT





GAAAGGCTCTTTA



I+/I−
rs55940927
GGAGACTTAAAGTGGCTGGTTAATTCACCAAGCCTGTT



(SNP6)

TGCTAACAAGTTTGAGCTTAATACCTACCCCCTTACTGT





GGAATGCCTAGAACTGAGGCATC[G/A]CGAAAGAACC





CTCAATCAGAGTGAAACTGCGATACAACCCAGCTGGTA





TTTTTGAGCTATTCATGAGCTACTCATGACTGAAGGGA





AACTGCAGCTGGGA





Indian
Ina/Inb
rs369473842
AAGAATCTAACATTTCTATTTCTTCCCATAGATTTGAATA


(IN)


TAACCTGCCGCTTTGCAGGTGTATTCCACGTGGAGAAA





AATGGTCGCTACAGCATCTCTC[G/A/C]GACGGAGGCC





GCTGACCTCTGCAAGGCTTTCAATAGCACCTTGCCCAC





AATGGCCCAGATGGAGAAAGCTCTGAGCATCGGATTTG





AGACCTGCAGGTAA





Kidd (JK)
Jk+/Jk(a−
rs538368217
CCTCCTGTCTTAACAGGACTCAGTCTTTCAGCCCCATT



b−)

TGAGGACATCTACTTTGGACTCTGGGGTTTCAACAGCT



(SNP1)

CTCTGGCCTGCATTGCAATGGGAG[G/A]AATGTTCATG





GCGCTCACCTGGCAAACCCACCTCCTGGCTCTTGGCTG





TGGTGAGTCTCCCACGCCCCTGGGGGAGGGCTGCTCA





TGACTACAGGATCTC



Jk+/Jk(a−
rs78937798
TTTTAATATGAATATGATCTGGAAGTTACTAGTGTTATTT



b−)

ATGTGCAAGTGCAACCAAAGCTCACCCAGGAAATGTC



(SNP2)

CGTGCTGTGTCTCTTGCCCCACA[G/A]GTCATTAATAGC





ATCTGGGCTCTATGGCTACAATGCCACCCTGGTGGGAG





TACTCATGGCTGTCTTTTCGGACAAGGGAGACTATTTC





TGGTGGCTGTTA



Jka/Jkb
rs1058396
TCAATCCCACCCTCAGTTTCCTTCCAGAACATCCTGCC





TTTAGTCCTGAGTTCTGACCCCTCCTGTCTTAACAGGA





CTCAGTCTTTCAGCCCCATTTGAG[G/A/C/T]ACATCTAC





TTTGGACTCTGGGGTTTCAACAGCTCTCTGGCCTGCAT





TGCAATGGGAGGAATGTTCATGGCGCTCACCTGGCAA





ACCCACCTCCTGGCTCT





JR (JR)
Jr(a+)/Jr
rs140207606
GGCCCGTGGAACATAAGTCTTCCTGAGGCCAATAAGGT



(a−)

GAGGCTATCAAACAACTTGAAGATGGAATATCGAGGCT



(SNP1)

GATGAATGGAGAAGATGATTGTTC[G/A/T]TCCCTGCTT





AGACATCCTAAGTTAAAAGTGAGACAATACTAAGTCAT





TAAATATCTGAAACTTGTATTTCTCAGTAAAATACTCTA





TTCTTGCCTTTAGA



Jr(a+)/Jr
rs548254708
TGGTCAGGGAAATGAGATGAGGACACTTGATTTCCATT



(a−)

GTTCCTAGCTTGGGAATGCAGTCACAGTGACAGACAA



(SNP2)

GGAAGACATACCGTAAATCCATATC[G/A/T]TGGAATGC





TGAAGTACTGAAGCCATGACAGCCAAGATGCAATGGT





TGTGAGATTGACCAACAGACCTGAAAAAATCTACAAA





AAGCAAATACTAAAAGTC



Jr(a+)/Jr
rs72552713
TGTCACATAATCAACTGGAAGCACATTGAACTATCAGC



(a−)

CAAAGCACTTACCCATATAGAAACAGAGGAAACAGAA



(SNP3)

AATGCAAACCCACTAATACTTACTT[G/A]TACCACGTAA





CCTGAATTACATTTGAAATTGGCAGGTCGCGGTGCTCC





ATTTATCAGAACATCTCCAGATAATCCACTTGGATCTTT





CCTTGCAGCTAAG





Kell
K/k
rs8176058
CCTCACCTGGATGACTGGTGTGTGTGGAGAGGCAGGA


(KEL)


TGAGGTCCTAGGTAGGCTCTGAAGAAAGGGAAATGGC





CATACTGACTCATCAGAAGTCTCAGC[G/A/C]TTCGGTT





AAAGTTTAAGGAAGTCCATTTACCAGAGATGCGCCAG





CCTCCAAGCTTTAAAGGAGAGAGAGGGGGCTGAGCAT





AAGGATCCGTGGAGCCCAT





Knops
Kna/Knb
rs41274768
TGGAGACTTCTACAGCAACAATAGAACATCTTTTCACA


(KN)


ATGGAACGGTGGTAACTTACCAGTGCCACACTGGACC





AGATGGAGAACAGCTGTTTGAGCTT[G/A]TGGGAGAA





CGGTCAATATATTGCACCAGCAAAGATGATCAAGTTGG





TGTTTGGAGCAGCCCTCCCCCTCGGTGTATTTCTACTAA





TAAATGCACAGCTCC





LAN
Lan+/Lan−
rs769584110
TCTCTGAGTAGCCAGGAAATAATAATGTGCCCTGGACA


(LAN)
(SNP1)

GGTGAGGGCCAGGGCTCAGATTACCTGTAGTAGGTGC





CAAACCAATTGAGGGGCATGTACAG[C/-]TGGATAATGT





AGGTGCCAAAGAGCACATAGTCCCCAACCTGTGGCAA





TCAAGGAAGCAGAGCATGTCACGGGGGGCCTGCAGGC





CGCTCTTCTTGTGTCA



Lan+/Lan−
rs202232534
CAAGACACCAGGGCCAAGTTCTCAGCTGCAAACGCCA



(SNP2)

CAGTCCAGAGGAGCAGGAGACCAGGGCTGTGCCTGA





ACTTGATCCAGATGCCCATTGCCAGAC[G/A/T]CTGCCG





TGCCTGGCTCCGCTCCACGACAAGCAGCCACAGGCCA





CAGGCGCCGGCCAGACTCTCCAGCACGGAGGCCAGA





AGTAGATAGCTTGGCAGTGGG



Lan+/Lan−
rs755723161
AGTCCCTCACCTGCTGGCCCAAGTCTGCCCTTGCCCAC



(SNP3)

CACCACTGTGGGCTGTTCCAAGACACCAGGGCCAAGT





TCTCAGCTGCAAACGCCACAGTCCA[G/-]AGGAGCAGG





AGACCAGGGCTGTGCCTGAACTTGATCCAGATGCCCAT





TGCCAGACGCTGCCGTGCCTGGCTCCGCTCCACGACA





AGCAGCCACAGGCCAC





Lutheran
Lu+/Lu(a−
KLF1_19-
TTCGGAGGATCACTCGGGTTGGGTGCGCCCTGCCCTGC


(LU)
b−)
12996560-T-
GAGCCCGGGCTCCCGACGCCTTCGTGGGCCCAGCCCT



(SNP1)
TG
GGCTCCAGCCCCGGCCCCCGAGCCC[-/C]AAGGCGCTG





GCGCTGCAACCGGTGTACCCGGGGCCCGGCGCCGGCT





CCTCGGGTGGCTACTTCCCGCGGACCGGGCTTTCAGTG





CCTGCGGCGTCGGGCG



Lu+/Lu(a−
rs483352838
CCGGGTACATCGCGGGGTACCCGGACAGTAGCCCGTA



b−)

GGGGGCGCCCGACGCCGCAGGCACTGAAAGCCCGGT



(SNP2-P1)

CCGCGGGAAGTAGCCACCCGAGGAGCC[-/GCCGGGC]





CCCGGGTACACCGGTTGCAGCGCCAGCGCCTTGGGCT





CGGGGGCCGGGGCTGGAGCCAGGGCTGGGCCCACGA





AGGCGTCGGGAGCCCGGGCTCGCAGGG



Lua/Lub
rs28399653
GAGAAAGGACCCAGAGAGAGAGAGACTGAGGAGCGC





TGGGACACCCGGAGCTGAGAGCCTGCCCCGCGCCCAC





AGACCGACCGCTCGGGAGCTCGCCCCC[G/A/C]CCTAG





CCTCGGCTGAGATGCAGGGCTCTGAGCTCCAGGTCAC





AATGCACGACACCCGGGGCCGCAGTCCCCCATACCAG





CTGGACTCCCAGGGGCGCCTG





P1PK
Pk+/p
rs1398859071
GGACAGCATAGGTGGCACTGAGCAGCCGCGGCAGCTC


(P1PK)
(SNP1)

CTCGGGGTTGATGTCCTCAAAGTACTTCTTCCAGTCCT





GCCAGGGGATGGGGTAGAAGGCCTC[A/-]GGGGGCAGG





GTGGTGACGCCGCGGCAGGCGCGGCTCTCGGCCAGGC





TGCGGATGGAACACCACTTCTTGAAGACCCGCGTGAG





CAGCTGCGGGCCCTGGT



Pk+/p
rs387906280
GCCTCCCCGGGAAGGGCGGCCCAGTGCCCCATCAGGA



(SNP2)

GCAGGTTGGGGAGGTGACCTGGCGGGCCCCTCACAAG





TACATTTTCATGGCCTCGTGCGTCGT[-/G]CAGTAGCGG





GCATGCAGCTGGGCCAGCAGTGCCCTGGACGTGGCCT





CGAACCGCGTGCCCTGGCTCTTCTTGTTCCACACGTGG





ACAGCATAGGTGGCAC



Pk+/p
A4GALT_c__
CGAATCCCACGTGCTGGTCCTGATGAAAGGGCTTCCGG



(SNP3)
418
GTGGCAACGCCTCTCTGCCCCGGCACCTGGGCATCTCA





CTTCTGAGCTGCTTCCCGAATGTC[CAGATGCTCCC/T






GGACCTGCTGGACCTGCTGGACCTGCTGGAACA]G






CTGGACCTGCGGGAGCTGTTCCGGGACACACCCCTGG





CCGACTGGTACGCGGCCGTGCAGGGGCGCTGGGAGCC





CTACCTGCTGCCCGTGCTCTCCGAC



Pk+/p
A4GALT_MG
GTGGCAACGCCTCTCTGCCCCGGCACCTGGGCATCTCA



(SNP4)
812384
CTTCTGAGCTGCTTCCCGAATGTCCAGATGCTCCCGCT





GGACCTGCGGGAGCTGTTCCGGGA[-/CACACCC]CACA





CCCCTGGCCGACTGGTACGCGGCCGTGCAGGGGCGCT





GGGAGCCCTACCTGCTGCCCGTGCTCTCCGACGCCTCC





AGGATCGCACTCATGTGGAAG



Pk+/p
rs1189809232
CTCAGAAGTGAGATGCCCAGGTGCCGGGGCAGAGAGG



(SNP5)

CGTTGCCACCCGGAAGCCCTTTCATCAGGACCAGCAC





GTGGGATTCGGGGTGAGTTCTGGCGG[C/-]CGACTCCA





CCGAGCACATGAACAGGAAGTTGGGGTTGGTCCGGTC





TGAAGTCTCCAGGAAGAAGATGTTGCCTGGAGTGGGG





CCGTGGGAGGGTGGGGTG



Pk+/p
rs755279796
TCCCGCAGGTCCAGCGGGAGCATCTGGACATTCGGGA



(SNP6)

AGCAGCTCAGAAGTGAGATGCCCAGGTGCCGGGGCAG





AGAGGCGTTGCCACCCGGAAGCCCTT[T/A]CATCAGGA





CCAGCACGTGGGATTCGGGGTGAGTTCTGGCGGCCGA





CTCCACCGAGCACATGAACAGGAAGTTGGGGTTGGTC





CGGTCTGAAGTCTCCAGG



Pk+/p
rs778387354
GTTGGGGAGGTGACCTGGCGGGCCCCTCACAAGTACA



(SNP7)

TTTTCATGGCCTCGTGCGTCGTGGGGCAGTAGCGGGCA





TGCAGCTGGGCCAGCAGTGCCCTGG[ACGTGGCCTCG






AACCGCGTGCCCTGG/-]CTCTTCTTGTTCCACACGTG






GACAGCATAGGTGGCACTGAGCAGCCGCGGCAGCTCC





TCGGGGTTGATGTCCTCAAAGTACTTCTTCCAGTCCTG





CCAGG





H(H)
H+/Para-
rs777455020
GTTGGCCAGGTAGACAGTGTCTCCGCCAGCCAGGTAG



Bombay

GCAGCCCAGAAGCCGAAGGTGCCAATGGTCATAATGG



(SNP1)

TGTGGTTGCACTGTGTGAGCAGGGCA[AA/-]GTCTTTCC





ACGGTGTAGCCTCCTGTCCATCGCCAGCAAACGTCACA





TCGCCCTGGGAGGTGTCGATGTTTTCTTTACACCACTC





CATGCCGTTGCTGGTG



H+/Para-
rs573412368
GCCGACAAAGGTGCGCGGGCGGTCCCCTGTGCGGCCC



Bombay

AGGCGGAGCTGACCCAGCACACTCTGCGCCTCTTCCC



(SNP2)

GAAGGTGGTCGTGCAGGGTGAACTCT[CT/-]GCGGATC





TGTTCCCGGAGATGGTGGAAGAAAGTCCAAGAGCAGG





GGAAGCCAGAGAGCTTCAGGAAAGGATCTCTCAAGTC





CGCGTACTCCTCCGACATC



H+/Para-
rs574691621
TGCCGTGCCCGGAACCAGTCCATGGCCTGCCGGAGGT



Bombay

AGGCGCTGTCGCCCACCACACCCTTCCAGCGCTGAGG



(SNP3)

CATAACCTGCAGATAGTCCCCACGGC[G/A/T]CACGTGG





ACGCCGACAAAGGTGCGCGGGCGGTCCCCTGTGCGGC





CCAGGCGGAGCTGACCCAGCACACTCTGCGCCTCTTC





CCGAAGGTGGTCGTGCAGG





MNS
S/s
rs7683365
GCATTTGAAACAAGCAATGGATAGTTTAAAATGGAATG


(MNS)


ACTTTTATTCTTTGTCAAATATTAACATACCTGGTACAG





TGAAACGATGGACAAGTTGTCCC[G/A/C/T]TTTCTCCTA





TAAAGCAAAATTTCAATGTAAGTCCAAATAAGAAAGAC





ATGTGCAAAGAAAAAAATCATTTTGGAATCAAACTGTT





CTGCGGGTTTCCTTT





Vel
Vel+/Vel−
rs1169340827
CTGGCCACCTGTCTTGATCTCCCCACCGAGAAGGCCCC


(VEL)
(SNP1)

GCCCCTCCCGCTGCAGCCCCACAGCATGCAGCCCCAG





GAGAGCCACGTCCACTATAGTAGGT[G/A/T]GGAGGAC





GGCAGCAGGGACGGAGTCAGCCTAGGGGCTGTGTCCA





GCACAGAAGAGGCCTCACGCTGCCGCAGGTGAGGGG





CCTGAGGGCAGCCTGCCAGC



Vel+/Vel−
rs554492306
ACAGTGAAGCCACAGCCTGGCCACCTGTCTTGATCTCC



(SNP2)

CCACCGAGAAGGCCCCGCCCCTCCCGCTGCAGCCCCA





CAGCATGCAGCCCCAGGAGAGCCAC[G/A]TCCACTATA





GTAGGTGGGAGGACGGCAGCAGGGACGGAGTCAGCC





TAGGGGCTGTGTCCAGCACAGAAGAGGCCTCACGCTG





CCGCAGGTGAGGGGCCTG



Vel+/Vel−
rs566629828
CGAGAAGGCCCCGCCCCTCCCGCTGCAGCCCCACAGC



(SNP3)

ATGCAGCCCCAGGAGAGCCACGTCCACTATAGTAGGTG





GGAGGACGGCAGCAGGGACGGAGTC[AGCCTAGGGG






CTGTGTC/-]CAGCACAGAAGAGGCCTCACGCTGCCGC






AGGTGAGGGGCCTGAGGGCAGCCTGCCAGCCATAGCA





GGCTGGTGTCTCCCTCCAGAGACGCCTGCCCTAAC



Vel+/Vel−
rs899095555
GCCCCAGGAGAGCCACGTCCACTATAGTAGGTGGGAG



(SNP4)

GACGGCAGCAGGGACGGAGTCAGCCTAGGGGCTGTGT





CCAGCACAGAAGAGGCCTCACGCTGC[C/T]GCAGGTG





AGGGGCCTGAGGGCAGCCTGCCAGCCATAGCAGGCTG





GTGTCTCCCTCCAGAGACGCCTGCCCTAACCCCTGCTA





CCGGCCCCATCACCCTCC



Vel+/Vel−
rs1182690110
TAGGGGGCCCCTCATGCGGCCCTGGCCTGGGGCTCAC



(SNP5)

CTCCAGTTGGTTCTCACCCCAGGATCTCCCAGAGGCTG





TGCACGGGCAAGCTGGGCATCGCCA[T/A/G]GAAGGTG





CTGGGCGGCGTGGCCCTCTTCTGGATCATCTTCATCCT





GGGCTACCTCACAGGCTACTATGTGCACAAGTGCAAAT





AAATGCTGCCCCGCATG



Vel+/Vel−
rs1207554936
CTGCCGCCCTCCATCCGCTTGTTTTACAGTGAAGCCAC



(SNP6)

AGCCTGGCCACCTGTCTTGATCTCCCCACCGAGAAGG





CCCCGCCCCTCCCGCTGCAGCCCCA[CAGCATGC/-]AG





CCCCAGGAGAGCCACGTCCACTATAGTAGGTGGGAGG





ACGGCAGCAGGGACGGAGTCAGCCTAGGGGCTGTGTC





CAGCACAGAAGAGGCCTCACGCTG





Yt (YT)
Yt+/Yt(a−
rs772244054
CCCTTCCCCACGGTCCGACCACTCATTAGAGGAGGGG



b−)

CCCCTGTGGCCGTAGGGGAAGAGGCCGTGTTCACAGC



(SNP1)

CGCCGGAGGTGGGAGAGGAAGAGGAG[GAG/-]AAGCT





GGTGGAGGAGGAGGAGGGGCAGGGGGAGGCCGGGCC





TCGGAGCAGCCTCCCCATGGGTGAAGCCTGGGCAGGT





GCTGGGAGCCTCCGAGGCTAGG



Yt+/Yt(a−
rs114782198
CCCTGACCAAGGCTGCTTGGGCTCCGGTGGCAGAAAG



b−)

CGACGGGGTCCCATGGGTGGCTCCGCAAAGGGGATGC



(SNP2)

CCAGGAAAGCAGAGACAGGGCCCCCG[G/A]GGGTCTT





CAGGCGAATGCCCCGCAGCCGGCCCCCACGCACCGTC





ACCAGCAGCTCTGCATCCTCCCGGCCCTCAGCCCCCAC





TCCTCCACCCAGGAGCCA



Yt+/Yt(a−
rs771039143
GTGGGAGAGGAAGAGGAGGAGAAGCTGGTGGAGGAG



b−)

GAGGAGGGGCAGGGGGAGGCCGGGCCTCGGAGCAGC



(SNP3)

CTCCCCATGGGTGAAGCCTGGGCAGGTG[-/C]TGGGAG





CCTCCGAGGCTAGGGGGAGAAGAGAGGGGTTACACCT





GGCGGGCTCCCACTCCCCTCCTCCCAGCCGCTGCCCGC





TGGCCCCTGCATACCGGTG



Yt+/Yt(a−
ACHE
GGGGGCTCAGCAGTACGTTAGTCTGGACCTGCGGCCG



b−)

CTGGAGGTGCGGCGGGGGCTGCGCGCCCAGGCCTGCG



(SNP4)

CCTTCTGGAACCGCTTCCTCCCCAAA[TTGCTC/C]AGC





GCCACCGGTATGCAGGGGCCAGCGGGCAGCGGCTGGG





AGGAGGGGAGTGGGAGCCCGCCAGGTGTAACCCCTCT





CTTCTCCCCCTAGCCTCGGAGGC



Yta/Ytb
rsl799805
AGAAGCCCTCATGCCTGGGTCCCTGCAGGGAGGGGAG





GGACCGTTGGGACCCAGAGGAGCCAGCTTCACGCCAG





CTAGCCACTAGTTACCTGCAGGCCGT[G/T]GAAGTCTC





CCGCGTTGATGAGGGCCTCTGGGGTGTCACTGAGGAA





GTCTCCATCTACCACAGGCACGAAGGAGAACCGGAAG





ACGCTTTCTTGAGGCAGC









On another hand, the present invention provides a kit for genotyping, including primer combinations shown in Table 1 and Table 2.


On yet another hand, the present invention provides a mass spectrometry chip for genotyping, including primer combinations shown in Table 1 and Table 2.


On yet another hand, the present invention provides a method for genotyping by mass spectrometry detection, including the following steps:


(1) by using an amplification primer mix in primer combinations as claimed in claim 1, amplifying genes to be detected by multiplex PCR;


(2) purifying an amplification product obtained in Step (1) by an alkaline phosphatase;


(3) by using an extension primer mix in the primer combinations as claimed in claim 1, extending and amplifying a purified product in Step (2) by a single base; and


(4) conducting sample application on a single-base extended product obtained in Step (3) onto a chip for mass spectrometry detection.


Further, during multiplex PCR reaction in Step (1), a concentration of the amplification primer mix used is 0.04 to 0.4 μM (final concentration).


Further, during multiplex PCR reaction in Step (1), an amplification reaction system used is shown in Table 5.









TABLE 5







Multiplex PCR amplification reaction system










Components
Volume (μL)














Water, HPLC grade
0.8



10 × PCR Buffer with 20 mM MgCl2
0.5



25 mM MgCl2
0.4



25 mM dNTP Mix
0.1



0.2-2.0 uM Primer Mix
1



5 U/μl PCR Enzyme
0.2



5-20 ng/μL DNA
2



Total volume
5










Further, during multiplex PCR reaction in Step (1), cycle conditions of amplification reaction are as follows: 95° C., 2 minutes; 45 cycles: 95° C., 30 seconds, 56° C., 30 seconds, 72° C., 60 seconds, 72° C., 5 minutes; keeping a temperature of 4° C.


Further, the alkaline phosphatase in Step (2) is a shrimp alkaline phosphatase, and a premixed solution system for purification treatment with the alkaline phosphatase in Step (2) is shown in









TABLE 6







SAP premixed solution system










Components
Volume (μL)














Nanopure Water, Autoclaved
1.53



SAP Buffer
0.17



SAP Enzyme (1.7 U/ul)
0.30



Total volume
2










Further, a single-base extension and amplification system in Step (3) is shown in Table 7.









TABLE 7







Single-base extension premixed solution system










Components
Volume (μL)














Nanopure Water, Autoclaved
0.619



iPLEX Buffer
0.200



iPLEX Termination Mix
0.200



Extend Primer Mix
0.94



iPLEX Enzyme
0.041



Total volume
2










On yet another hand, the present invention provides the primer combinations shown in Table 1 and Table 2 or the above kit or the above mass spectrometry chip for use in simultaneous detection of genotyping detection of 61 SNP sites of erythrocyte blood groups.


A mass spectrometry-based method and kit for erythrocyte blood group genotyping provided by the present invention have the following beneficial effects.


1. 61 Blood group genetic sites in 21 erythrocyte blood group systems can be simultaneously detected in two reactions.


2. Rapid typing of the 21 erythrocyte blood group systems is realized, and identified phenotypes are all clinically significant erythrocyte antigen phenotypes.


3. High sensitivity, strong specificity, simple operation, and rapid and high throughput are realized.


4. The present invention can be applied to difficult blood group identification, blood matching, rare blood group screening, scientific research, routine business development and the like in clinical practice.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a representative detection mass spectrogram provided by Embodiment 1;



FIG. 2 is a detection mass spectrogram of an rs548254708 site provided by Embodiment 1;



FIG. 3 is a detection mass spectrogram of an rs676785 site by using initial amplification primers provided by Embodiment 2;



FIG. 4 is a detection mass spectrogram of amplifying homozygous GG→C+c− by amplification primers after the rs676785 site is replaced provided by Embodiment 2;



FIG. 5 is a detection mass spectrogram of amplifying heterozygous GC→C+c+by amplification primers after the rs676785 site is replaced provided by Embodiment 2;



FIG. 6 is a detection mass spectrogram of amplifying homozygous CC→C−c+by amplification primers after the rs676785 site is replaced provided by Embodiment 2;



FIG. 7 is a detection mass spectrogram of KLF1_19-12996560-T-TG before replacement with rs586178 provided by Embodiment 3;



FIG. 8 is a detection mass spectrogram of KLF1_19-12996560-T-TG after replacement with rs586178 provided by Embodiment 3;



FIG. 9 is a detection mass spectrogram of KLF1_19-12996560-T-TG after replacement with rs586178 at a corresponding amplification primer concentration adjusted to 3 times the concentration provided by Embodiment 3;



FIG. 10 is a detection mass spectrogram of rs483352838 before replacement with rs586178 provided by Embodiment 3;



FIG. 11 is a detection mass spectrogram of rs483352838 after replacement with rs586178 provided by Embodiment 3;



FIG. 12 is a detection mass spectrogram of rs483352838 after replacement with rs586178 at an amplification primer concentration adjusted to 2 times the concentration provided by Embodiment 3;



FIG. 13 is a detection mass spectrogram of rs7683365 before amplification primers are replaced provided by Embodiment 4;



FIG. 14 is a detection mass spectrogram of rs7683365 after the amplification primers are replaced provided by Embodiment 4;



FIG. 15 is a detection mass spectrogram of rs778387354 before amplification primers are replaced provided by Embodiment 5;



FIG. 16 is a detection mass spectrogram of rs778387354 after the amplification primers are replaced provided by Embodiment 5;



FIG. 17 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v1 provided by Embodiment 6;



FIG. 18 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v2 provided by Embodiment 6;



FIG. 19 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v3 provided by Embodiment 6; and



FIG. 20 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v4 provided by Embodiment 6.





DETAILED DESCRIPTION OF EMBODIMENTS

The present invention will be further described in detail below in combination with embodiments. It should be pointed out that the following embodiments are intended to facilitate the understanding of the present invention, but do not have any limiting effect on it. Reagents used in the embodiments are all known products, and are obtained by purchasing commercially available products.


Embodiment 1 Methods and Steps for Erythrocyte Blood Group Gene Detection

In this embodiment, 155 cases of blood gene DNAs are used for simultaneously detecting 61 blood group genetic sites in 21 erythrocyte blood group systems, so as to perform rapid blood group genotyping.


Genotyping detection of this embodiment includes the following steps.


1. Sample Preparation:


Genes (DNA) of 155 cases of blood samples are extracted, and concentrations thereof are normalized to 5 to 20 ng/μL for subsequent detection experiments.


2. Primer Design


In this embodiment, PCR amplification primers and single-base extension probes are designed for clinically significant blood group antigens, especially difficult blood groups that may appear in clinical practice in China, in combination with their genetic backgrounds in the Chinese population. Primer sequences are shown in Table 8.









TABLE 8







List of primer combinations












Blood group
Phenotype (SNP serial


Reverse
Extension


systems
number)
SNP sites
Forward primers
primers
primers





Augustine
At(a+)/At(a−) (SNP1)
rs775471940
SEQ ID NO: 1
SEQ ID NO: 2
SEQ ID NO: 3


(AUG)
At(a+)/At(a−) (SNP2)
rs45458701
SEQ ID NO: 4
SEQ ID NO: 5
SEQ ID NO: 6



At(a+)/At(a−) (SNP3)
rs759118384
SEQ ID NO: 7
SEQ ID NO: 8
SEQ ID NO: 9


Rh(RH)
C/c
rs586178
SEQ ID NO: 10
SEQ ID NO: 11
SEQ ID NO: 12



E/e
rs609320
SEQ ID NO: 13
SEQ ID NO: 14
SEQ ID NO: 15


CD59 (CD59)
CD59: +1/CD59: −1
CD59_c_361delG
SEQ ID NO: 16
SEQ ID NO: 17
SEQ ID NO: 18



(SNP1)







CD59: +1/CD59: −1
CD59_c_123delC
SEQ ID NO: 19
SEQ ID NO: 20
SEQ ID NO: 21



(SNP2)






Colton (CO)
Co+/Co(a−b−) (SNP1)
rs749625062
SEQ ID NO: 22
SEQ ID NO: 23
SEQ ID NO: 24



Co+/Co(a−b−) (SNP2)
rs777730687
SEQ ID NO: 25
SEQ ID NO: 26
SEQ ID NO: 27



Coa/Cob
rs28362692
SEQ ID NO: 28
SEQ ID NO: 29
SEQ ID NO: 30


Cromer
Crom+/Cromernull
rs1131690771
SEQ ID NO: 31
SEQ ID NO: 32
SEQ ID NO: 33



(SNP1)






(CROM)
Crom+/Cromernull
rs121909603
SEQ ID NO: 34
SEQ ID NO: 35
SEQ ID NO: 36



(SNP2)







Crom+/Cromernull
rs762195469
SEQ ID NO: 37
SEQ ID NO: 38
SEQ ID NO: 39



(SNP3)







Cr(a+)/Cr(a−)
rs60822373
SEQ ID NO: 40
SEQ ID NO: 41
SEQ ID NO: 42


Diego (DI)
Dia/Dib
rs2285644
SEQ ID NO: 43
SEQ ID NO: 44
SEQ ID NO: 45


Duffy (FY)
Fya/Fyb
rs12075
SEQ ID NO: 46
SEQ ID NO: 47
SEQ ID NO: 48


Gerbich (GE)
GE+/Leach
GYPC_c_134delC
SEQ ID NO: 49
SEQ ID NO: 50
SEQ ID NO: 51



GE+/GEIS+
GYPC_c_95C_A
SEQ ID NO: 52
SEQ ID NO: 53
SEQ ID NO: 54


I (I)
I+/I− (SNP1)
rs1177742207
SEQ ID NO: 55
SEQ ID NO: 56
SEQ ID NO: 57



I+/I− (SNP2)
rs56141211
SEQ ID NO: 58
SEQ ID NO: 59
SEQ ID NO: 60



I+/I− (SNP3)
rs755228157
SEQ ID NO: 61
SEQ ID NO: 62
SEQ ID NO: 63



I+/I− (SNP4)
rs774740944
SEQ ID NO: 64
SEQ ID NO: 65
SEQ ID NO: 66



I+/I− (SNP5)
rs201291494
SEQ ID NO: 67
SEQ ID NO: 68
SEQ ID NO: 69



I+/I− (SNP6)
rs55940927
SEQ ID NO: 70
SEQ ID NO: 71
SEQ ID NO: 72


Indian (IN)
Ina/Inb
rs369473842
SEQ ID NO: 73
SEQ ID NO: 74
SEQ ID NO: 75


Kidd (JK)
Jk+/Jk(a−b−) (SNP1)
rs538368217
SEQ ID NO: 76
SEQ ID NO: 77
SEQ ID NO: 78



Jk+/Jk(a−b−) (SNP2)
rs78937798
SEQ ID NO: 79
SEQ ID NO: 80
SEQ ID NO: 81



Jka/Jkb
rs1058396
SEQ ID NO: 82
SEQ ID NO: 83
SEQ ID NO: 84


JR (JR)
Jr(a+)/Jr(a−) (SNP1)
rs140207606
SEQ ID NO: 85
SEQ ID NO: 86
SEQ ID NO: 87



Jr(a+)/Jr(a−) (SNP2)
rs548254708
SEQ ID NO: 88
SEQ ID NO: 89
SEQ ID NO: 90



Jr(a+)/Jr(a−) (SNP3)
rs72552713
SEQ ID NO: 91
SEQ ID NO: 92
SEQ ID NO: 93


Kell (KEL)
K/k
rs8176058
SEQ ID NO: 94
SEQ ID NO: 95
SEQ ID NO: 96


Knops (KN)
Kna/Knb
rs41274768
SEQ ID NO: 97
SEQ ID NO: 98
SEQ ID NO: 99


LAN (LAN)
Lan+/Lan− (SNP1)
rs769584110
SEQ ID NO: 100
SEQ ID NO:
SEQ ID NO:






101
102



Lan+/Lan− (SNP2)
rs202232534
SEQ ID NO: 103
SEQ ID NO:
SEQ ID NO:






104
105



Lan+/Lan− (SNP3)
rs755723161
SEQ ID NO: 106
SEQ ID NO:
SEQ ID NO:






107
108


Lutheran (LU)
Lu+/Lu(a−b−) (SNP1)
KLF1_19-12996560-
SEQ ID NO: 109
SEQ ID NO:
SEQ ID NO:




T-TG

110
111



Lu+/Lu(a−b−)
rs483352838
SEQ ID NO: 112
SEQ ID NO:
SEQ ID NO:



(SNP2-P1)


113
114



Lu+/Lu(a−b−)
rs483352838
SEQ ID NO: 115
SEQ ID NO:
SEQ ID NO:



(SNP2-P2)


116
117



Lua/Lub
rs28399653
SEQ ID NO: 118
SEQ ID NO:
SEQ ID NO:






119
120


P1PK (P1PK)
Pk+/p (SNP1)
rs1398859071
SEQ ID NO: 121
SEQ ID NO:
SEQ ID NO:






122
123



Pk+/p (SNP2)
rs387906280
SEQ ID NO: 124
SEQ ID NO:
SEQ ID NO:






125
126



Pk+/p (SNP3)
A4GALT_c_418
SEQ ID NO: 127
SEQ ID NO:
SEQ ID NO:






128
129



Pk+/p (SNP4)
A4GALT_
SEQ ID NO: 130
SEQ ID NO:
SEQ ID NO:




MG812384

131
132



Pk+/p (SNP5)
rs1189809232
SEQ ID NO: 133
SEQ ID NO:
SEQ ID NO:






134
135



Pk+/p (SNP6)
rs755279796
SEQ ID NO: 136
SEQ ID NO:
SEQ ID NO:






137
138



Pk+/p (SNP7)
rs778387354
SEQ ID NO: 139
SEQ ID NO:
SEQ ID NO:






140
141


H(H)
H+/Para-Bombay
rs777455020
SEQ ID NO: 142
SEQ ID NO:
SEQ ID NO:



(SNP1)


143
144



H+/Para-Bombay
rs573412368
SEQ ID NO: 145
SEQ ID NO:
SEQ ID NO:



(SNP2)


146
147



H+/Para-Bombay
rs574691621
SEQ ID NO: 148
SEQ ID NO:
SEQ ID NO:



(SNP3)


149
150


MNS (MNS)
S/s
rs7683365
SEQ ID NO: 151
SEQ ID NO:
SEQ ID NO:






152
153


Vel (VEL)
Vel+/Vel− (SNP1)
rs1169340827
SEQ ID NO: 154
SEQ ID NO:
SEQ ID NO:






155
156



Vel+/Vel− (SNP2)
rs554492306
SEQ ID NO: 157
SEQ ID NO:
SEQ ID NO:






158
159



Vel+/Vel− (SNP3)
rs566629828
SEQ ID NO: 160
SEQ ID NO:
SEQ ID NO:






161
162



Vel+/Vel− (SNP4)
rs899095555
SEQ ID NO: 163
SEQ ID NO:
SEQ ID NO:






164
165



Vel+/Vel− (SNP5)
rs1182690110
SEQ ID NO: 166
SEQ ID NO:
SEQ ID NO:






167
168



Vel+/Vel− (SNP6)
rs1207554936
SEQ ID NO: 169
SEQ ID NO:
SEQ ID NO:






170
171


Yt(YT)
Yt+/Yt(a−b−) (SNP1)
rs772244054
SEQ ID NO: 172
SEQ ID NO:
SEQ ID NO:






173
174



Yt+/Yt(a−b−) (SNP2)
rs114782198
SEQ ID NO: 175
SEQ ID NO:
SEQ ID NO:






176
177



Yt+/Yt(a−b−) (SNP3)
rs771039143
SEQ ID NO: 178
SEQ ID NO:
SEQ ID NO:






179
180



Yt+/Yt(a−b−) (SNP4)
ACHE
SEQ ID NO: 181
SEQ ID NO:
SEQ ID NO:






182
183



Yta/Ytb
rs1799805
SEQ ID NO: 184
SEQ ID NO:
SEQ ID NO:






185
186





Notes:


1) The names of the blood group systems are named according to the International Society of Blood Transfusion (ISBT), and system names (system symbols) are listed in Table of blood group systems v. 10.0.


2) In the phenotype, “blood group system symbol +”, for example, Co+, I+, etc., indicates that a protein corresponding to a gene encoded by the blood group system is in a wild type.


3) For the expression of other phenotypes and blood group antigens in the phenotype, refer to The Blood Group Antigen FactsBook (Third Edition).






3. Detection Steps


1) PCR Amplification


By using all amplification primer combinations (including forward primers and reverse primers) shown in Table 8, samples to be detected obtained in Step 1 are amplified by multiplex PCR to obtain target sequence amplification products of the samples to be detected. Reagents in Table 9 and All primers in Table 8 are placed in one amplification tube (the amplification tube may be replaced with 96-well plates, each well corresponds to one sample, the reagents in each well are the same, and the conditions are the same) for amplification, and each amplification tube corresponds to one sample. In this embodiment, there are 155 amplification tubes for simultaneous amplification.


A PCR amplification reaction system is shown in Table 9.









TABLE 9







Multiplex PCR amplification reaction system










Components
Volume (μL)














Water, HPLC grade
0.8



10 × PCR Buffer with 20 mM MgCl2
0.5



25 mM MgCl2
0.4



25 mMdNTP Mix (dNTP mix)
0.1



0.2 to 2.0 uM Primer Mix (primer
1



combination, Table 8)




5 U/μl PCR Enzyme (PCR polymerase)
0.2



5 to 20 ng/μL DNA (DNA to be detected)
2



Total volume
5










Cycle conditions of PCR amplification reaction are as follows: 95° C., 2 minutes; 45 cycles: 95° C., 30 seconds, 56° C., 30 seconds, 72° C., 60 seconds, 72° C., 5 minutes; keeping a temperature of 4° C.


2) Treatment with a Shrimp Alkaline Phosphatase (SAP)


After amplification, remaining dNTPs are treated by the shrimp alkaline phosphatase (SAP) to prevent interference with subsequent base extension. An SAP premixed solution system is shown in Table 10.









TABLE 10







SAP premixed solution system










Components
Volume (μL)














Nanopure Water, Autoclaved (ultrapure
1.53



water)




SAP Buffer
0.17



SAP Enzyme (1.7 U/ul) (shrimp alkaline
0.30



phosphatase)




Total volume
2










In Step 1), 2 μl of an SAP premixed solution is added to each amplification tube after PCR amplification, a total volume after the mixed solution is added is 7 and then SAP reaction is conducted in an amplification instrument. Reaction programs are as follows: 37° C., 40 minutes; 85° C., 5 minutes; keeping a temperature of 4° C.


3) Base Extension


By using all extension primer combinations shown in Table 8, purified products in Step 2) are amplified by single-base extension. Through this amplification, a sequence-specific single base is extended at a 3′ end of an extension probe as a molecular weight marker. A single base extension premixed solution system is shown in Table 11.









TABLE 11







Extension premixed solution system










Components
Volume (μL)














Nanopure Water, Autoclaved (ultrapure
0.619



water)
0.200



iPLEX Buffer (extension buffer)




iPLEX Termination Mix (extension
0.200



termination mix)
0.94



Extend Primer Mix (extension primer




combination)
0.041



iPLEX Enzyme (single-base extension




reaction enzyme)




Total volume
2










In Step 2), 2 μl of an extension premixed solution is added to each amplification tube after treatment with the shrimp alkaline phosphatase (SAP), a total volume after the mixed solution is added is 9 and then extension reaction is conducted in an amplification instrument.


Single-base extension reaction programs are as follows: 95° C., 30 seconds; (95° C., 5 seconds; (52° C., 5 seconds, 80° C., 5 seconds; 5 cycles) 40 cycles); 72° C., 3 minutes; keeping a temperature of 4° C.


4) Desalination with Resin


41 μl of HPLC water is added to each amplification tube, resin is used for sample desalination, and extension reaction products are purified.


5) Mass spectrometry detection Samples are subjected to sample application onto a chip (Manufacturer: Agena Bioscience, Model: SpectroCHiP CPM96). Molecular weight detection is performed by a mass spectrometer to determine the species of specific bases and the type of samples to be detected.


6) Result Analysis


Mass spectrometry detection is performed on the 155 cases of samples, and all sites have good results in all the samples (mass spectrometry software is rated A (Conservative) or B (Mordarate)). An obtained representative detection mass spectrogram is shown in FIG. 1. Among them, a detection mass spectrogram of an rs548254708 site is shown in FIG. 2. For 36 cases of randomly selected samples, serological recheck is performed on antigen gene sites for which corresponding blood group antibodies can be obtained. Blood group antibodies used include: anti-C, -c, -E, -e, -S, -s, -K, -k, -Fya, -Fyb, -jka, -jkb, -Lua, -Lub and -CD59. Sequencing recheck is performed on antigen gene sites without blood group antibodies. Results of mass spectrometry-based erythrocyte blood groups are completely consistent with serological or sequencing results. Sensitivity=true positive results/(true positive results+false negative results)*100%=100%. Specificity=the number of true negatives/(the number of true negatives+the number of false positives)*100%=100%.









TABLE 12







Statistics of serological verification results











Blood






group
Pheno
SNP




systems
type
sites
Serological results
Mass spectrometry results


















Rh
C/c
rs586178
C+c-
C-c+
C+c+
GG→C+c-
CC→C-c
GC→C+c+


(RH)


→15
→6
→15
→15
+→6
→15



E/e
rs609320
E+e-
E-e+
E+e+
GG→E+e-
CC→E-e+
GC→E+e+





→3
→17
→16
→17
→3
→16





CD59
CD59:
CD59_c_
CD59:
CD59
/
ins/ins→C
del/del→
ins/del→C


(CD59)
+1/
361delG
+1→3
:-11→

D59:+1→36
CD59:-1
D59:+1→



CD59:

6
0


→0)
0



-1
CD59_c_



ins/ins→C
del/del→
ins/del→C




123delC



D59:+1→36
CD59:-1
D59:+1→









→0
0





Duffy
Fyª/Fyb
rs12075
Fy(a+
Fy(a-
Fy(a+
GG→Fy(a
AA→Fy(a
GA→Fy(a


(FY)


b-)→
b+)→
b+)→
+b-)→33
-b+)→0
+b+)→3





33
0
3








Kidd
Jk+/Jk
rs538368217
Jk+→
Jk(a-b-)
/
GG→Jk+
AA→Jk(a
GA→Jk+


(JK)
(a-b-)

36
→0

→36
-b-)→0
→0




rs78937798
Jk+>
Jk(a-b-)
/
GG→Jk+
AA→Jk(a
GA→Jk+





36
→0

→36
-b-)→0
→0



Jkª/Jkb
rs1058396
Jk(a+b
Jk(a-b+)
Jk(a+b+)
GG→Jk(a+b-)
AA→Jk(a
GA→Jk(a+b+)





-)→8
→11
→17
→8
-b+)→11
→17





Kell
K/k
rs8176058
K-k+
K+k-
K+k+
GG→K-k+
AA→K+k-
GA→K+k


(KEL)


→36
→0
→0
→36
→0
+→36





Lutheran
Lu+/
KLF1_19-12
Lu+→
Lu(a-
/
del/del→
ins/ins→
del/ins→L


(LU)
Lu(a-b-)
996560-T-
36
b-)→

Lu+→36
ND→0
u(a-b-)→0




TG

0








rs483352838
Lu+→
Lu(a-
/
del/del→
ins/ins→
del/ins→L





36
b-)→

Lu+→36
ND→0
u(a-b-)→0






0







Luª/Lub
rs28399653
Lu(a-b
Lu(a+
Lu(a+
GG→Lu(a
AA→Lu
GA→Lu





+)→36
b-)→
b+)→
-b+)→36
(a+b-)→0
(a+b+)→0






0
0








MNS
S/s
rs7683365
S+s-
S-s+
S+s+
AA→S+s-
GG→S-s+
AG→S+s


(MAS)


→0
→36
→0
→0
→36
+→0
















TABLE 13







Statistics of sequencing verification results















Blood










group
Pheno-
SNP

















systems
type
sites
Sequencing results
Mass spectrometry results


















Augustine
At(a+)/
rs775471940
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(AUG)
At(a-)

36
→0
0
36
→0
0




rs45458701
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs759118384
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0





Colton
Co+/
rs749625062
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(CO)
Co(a-b-)

36
→0
0
36
→0
0




rs777730687
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0



Coa/Cob
rs28362692
CC→36
TT→0
CT→0
CC→36
TT→0
CT→0





Cromer
Crom+/
rs1131690771
CC→36
AA→0
CA→0
CC→36
AA→0
CA→0


(CROM)
Cromernull
rs121909603
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs762195469
CC→36
TT→0
CT→0
CC→36
TT→0
CT→0



Cr(a+)/
rs60822373
GG→36
CC→0
GC→36
GG→36
CC→0
GC→36



Cr(a-)












Diego
Diª/Dib
rs2285644
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0


(DI)













Gerbich
GE+/
GYPC_
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(GE)
Leach
c_134delC
36
→0
0
36
→0
0



GE+/
GYPC
CC→36
AA→0
CA→0
CC→36
AA→0
CA-0



GEIS
c_95C_









+
A











I
I+/I-
rs1177742207
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0


(I)

rs56141211
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs755228157
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs774740944
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs201291494
TT→36
AA→0
TA→0
TT→36
AA→0
TA→0




rs55940927
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0





Indian
Inª/Inb
rs369473842
GG→36
CC→0
GC→0
GG→36
CC→0
GC→0


(IN)













JR
Jr(a+)/
rs140207606
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0


(JR)
Jr(a-)
rs548254708
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs72552713
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0





Knops
Knª/Knb
rs41274768
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0


(KN)













LAN
Lan+/
rs769584110
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(LAN)
Lan-

36
→0
0
36
→0
0




rs202232534
GG→36
TT→0
GT→0
GG→36
TT→0
GT→0




rs755723161
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0





P1PK
Pk+/p
rs1398859071
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(P1PK)


Pk+36
→p→0
Pk+→0
Pk+→36
→p→0
Pk+→0




rs387906280
del/del→
ins/ins→
del/ins→
del/del→
ins/ins→
del/ins→





Pk+→36
p→0
Pk+→0
Pk+→36
p→0
Pk+→0




A4GALT_
InsShort/
InsLong/
InsShort/
InsShort/
InsLong/
InsShort/




c_418
InsShort→
InsLong
InsLong→
InsShort→
InsLong
InsLong→





Pk+→36
→p→0
Pk+→0
Pk+→36
→p→0
Pk+→0




A4GALT_
del/del→
ins/ins→
del/ins→
del/del→
ins/ins→
del/ins→




MG812384
Pk+→36
p→0
Pk+→0
Pk+→36
→p→0
Pk+→0




rs1189809232
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





Pk+36
→p→0
Pk+→0
Pk+→36
→p→0
PK+→0




rs755279796
TT→Pk+
AA→p
TA→Pk+
TT→Pk+
AA→p
TA→Pk+





→36
→0
→0
→36
→0
→0




rs778387354
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





Pk+36
→p→0
Pk+→0
Pk+36
→p→0
Pk+→0





H
H+/Para-
rs777455020
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(H)
Bombay

36
→0
0
36
→0
0




rs573412368
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0




rs574691621
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0





Vel
Vel+/
rs1169340827
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0


(EL)
Vel-
rs554492306
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs566629828
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0




rs899095555
CC-+36
TT→0
CT→0
CC→36
TT→0
CT→0




rs1182690110
TT→36
AA,GG,
TA,TG→
TT→36
AA,GG,
TA,TG→






AG→0
0

AG→0
0




rs1207554936
ins/ins→
del/del
ins/del→
ins/ins→
del/del→
ins/del→





36
→36
36
36
36
36





Yt
Yt+/Yt
rs772244054
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→


(YT)
(a-b-)

36
→0
0
36
→0
0




rs114782198
GG→36
AA→0
GA→0
GG→36
AA→0
GA→0




rs771039143
del/del→
ins/ins→
del/ins→
del/del→
ins/ins→
del/ins→





350
0
0
36
0
0




ACHE
ins/ins→
del/del
ins/del→
ins/ins→
del/del
ins/del→





36
→0
0
36
→0
0



Yta/Ytb
rs1799805
GG→36
TT→0
GT→0
GG→36
TT→0
GT→0









Embodiment 2 Exploration of detection methods of blood group C site In this embodiment, an initially designed detection target for a blood group C/c is rs676785. During preliminary verification, it is found that rs676785 cannot get detection results very well. The reason may be that there are highly homologous sequences in a DNA region where the rs676785 site is located. After incorporation into an RBC panel (erythrocyte gene combination), while mass spectrometry-based detection is performed on rs676785, the situations are prone to occurring that some sites do not have peaks and are not detected, or it is easy to amplify to homologous sequences of the DNA region where the rs676785 site is located to generate erroneous results, etc., After a lot of experimental screening, rs586178 is finally selected as a detection target.


Initial amplification and extension primers for rs676785:











Upstream:



ACGTTGGATGCGAAACTCCGTCTCAAAAAA







Downstream:



ACGTTGGATGCTTGGGCTTCCTCACCTCAAA







UEP (extension primer):



CTGAGCCAGTTCCCT






rs676785 is amplified and extended by using the primers. Through mass spectrometry detection, results are shown in FIG. 3.


Amplification and extension primers after replacement with rs586178:











Upstream(forward):



(SEQ ID NO: 10)



ACGTTGGATGAGGCCAGCACAGCCAGCCTTG







Downstream(reverse):



(SEQ ID NO: 11)



ACGTTGGATGATTTGCTCCTGTGACCACTG







UEP(extension):



(SEQ ID NO: 12)



TaTGTCCGGCGCTGCCTGCCCCTCTG






rs586178 is amplified and extended by using the primers. Through mass spectrometry detection, results are shown in FIGS. 4, 5 and 6. FIG. 4 shows homozygous GG→C+c−, with a peak at 8113, FIG. 5 shows heterozygous GG→C+c−, with peaks at 8113 and 8153, and FIG. 6 shows homozygous CC→C−c+, with a peak at 8153.


It can be seen from FIG. 3 that for the blood group C/c, the rs676785 site is used as the detection target, and when it is incorporated into the RBC panel for multiplex (61) PCR, it does not have peaks and is not detected due to the presence of highly homologous sequences, however, after it is replaced with the rs586178 site, stable and correct detection results can be obtained. Before it is replaced with the rs586178 site, the inventor also tries many other sites. During incorporation into the RBC panel for multiplex PCR, they all have the problems such as unstable detection results, no peaks and being undetected, and until it is finally replaced with the rs586178 site, the problem of genotyping detection of the blood group C/c is solved finally.


Embodiment 3 Selection of Primer Concentrations and Determination of 61 Blood Group Genetic Sites

In this embodiment, an RBC panel is designed on the basis of detection by using the rs586178 site for the blood group C/c determined in Embodiment 2, and 62 sites are initially designed to be detected (in addition to 61 sites listed in the specification, rs75731670 is also included). Results show that after replacement with rs586178, detection of a blood group Lu(a-b-) is affected, making KLF1_19-12996560-T-TG and rs483352838 unstable peak appearance, and meanwhile, detection of an rs75731670 site is also affected. In this embodiment, concentrations of amplification primers of these three sites are adjusted (concentrations of the primers before adjustment are 0.04 to 0.4 μM (final concentration)). It is found that when a concentration of amplification primers of KLF1_19-12996560-T-TG is adjusted to 3 times its original concentration (0.04 to 0.4 μM), and a concentration of rs483352838 is adjusted to 2 times its original concentration (0.04 to 0.4 μM), detection results can be obtained. However, after a concentration of primers of rs75731670 is adjusted many times, stable detection results cannot be obtained. Therefore, the detection of rs75731670 is removed from a system, making the RBC panel become 61 sites.


Detection spectrograms of KLF1_19-12996560-T-TG before and after replacement with rs586178 are shown in FIG. 7 and FIG. 8 respectively. It can be seen that before replacement with rs586178, KLF1_19-12996560-T-TG has a higher peak value at 7782, and after replacement with rs586178, the peak value of KLF1_19-12996560-T-TG at 7782 is decreased significantly. A detection spectrogram after a concentration of amplification primers of KLF1_19-12996560-T-TG is adjusted to 3 times the original concentration is shown in FIG. 9. The peak value of KLF1_19-12996560-T-TG at 7782 is significantly increased, which can be used for genotyping detection.


Detection spectrograms of rs483352838 before and after replacement with rs586178 are shown in FIG. 10 and FIG. 11 respectively. It can be seen that before replacement with rs586178, rs483352838 has a higher peak value at 7076, and after replacement with rs586178, the peak value of rs483352838 at 7076 is decreased significantly. A detection spectrogram after a concentration of amplification primers of rs483352838 is adjusted to 2 times the original concentration (0.04 to 0.4 μM) is shown in FIG. 12. The peak value of rs483352838 at 7076 is significantly increased, which can be used for genotyping detection.


Embodiment 4 Influence of Adjustment of Amplification Primers of Rs7683365 Site of Blood Group S/s on Detection Results

On the basis of Embodiment 3, the RBC panel continues to be optimized. In a follow-up verification process, it is found that in detection results of an rs7683365 site of a blood group S/s, two peak values of heterozygous peaks are quite different, which easily leads to misjudgment. Multiple research experiments are performed on amplification primers, and the amplification primers are then replaced with a group of more appropriate primers:


Initial amplification primers for rs7683365:











Upstream(forward):



ACGTTGGATGGAAACCCGCAGAACAGTTTG







Downstream(reverse):



ACGTTGGATGACAGTGAAACGATGGACAAG






Finally replaced with:











Upstream(forward):



(SEQ ID NO: 151)



ACGTTGGATGTGATTAAGAAAAGGAAACCCG







Downstream(reverse):



(SEQ ID NO: 152)



ACGTTGGATGGGCTTGGCCTCCCAAAATTAT






Stable results can be obtained after replacement. Detection spectrograms are shown in FIG. 13 and FIG. 14. FIG. 13 is a detection spectrogram of rs7683365 before amplification primers are replaced, and FIG. 14 is a detection spectrogram of rs7683365 after the amplification primers are replaced. Although FIG. 17 shows that two peaks (at 4839 and 4855) of heterozygotes are still unequal in height, through position distribution of multiple specific samples in a result graph, angles of dividing lines for dividing respective regions are adjusted, so that true values of experiments can be defined, and correct results can be obtained.


Embodiment 5 Influence of Adjustment of Extension Primers of Rs778387354 Site of Blood Group Pk+/p on Detection Results

On the basis of Embodiment 4, accuracy of the system is further verified, the RBC panel continues to be designed, and it is found that detection results of an rs778387354 site of a blood group Pk+/p cannot be displayed correctly. From analysis of the detection results, it is found that extension primers of rs778387354 are prone to errors in existing RBC panels used. After multiple primer adjustments, the extension primers of rs778387354 are replaced.


Initial extension primers for rs778387354:











UEP(extension): cccagtCCACGTCCAGGGCAC






Finally replaced with:











(SEQ ID NO: 141)



UEP(extension): TGGAACAAGAAGAGCCAGGGCAC






Through verification, correct results can be obtained. Detection results are shown in FIG. 15 and FIG. 16. FIG. 15 is a detection spectrogram before the extension primers are replaced, and there is no peak at an expected peak appearance location 6624 (a non-specific peak appeared at 6664). FIG. 16 is a detection spectrogram after the extension primers are replaced, and there is a peak at 7428, which can be used for detection of genotyping of the rs778387354 site of the blood group Pk+/p.


Embodiment 6 Detection methods and primer selection of rs483352838 site On the basis of Embodiment 5, the accuracy of the system is further verified, and the RBC panel continues to be optimized After an rs483352838 site of a blood group Lu(a-b-) is analyzed, it is found that this detection site is a region rich in GC and containing repetitive sequences, as a result, UEP extension primers targeting this site will bind to sequences other than SNP sites to be detected. Subsequently, multiple UEPs are tried to detect this site, and it is found that all primers cannot show stable results.


UEP (Extension Primer) sequences of rs483352838:











(SEQ ID NO: 117)



rs483352838-v1: gCCCGAGGAGgCGGCGCCGGGC







rs483352838-v2: aGAGCCGGCGCCGGGCGCCGGG







rs483352838-v3: aaGTGTACCCGGGGCCCGGCGCC







(SEQ ID NO: 114)



rs483352838-v4: ttattGAGCCGGCGCCGGGCGCCGGG






When four extension primers are respectively used for single-base extension, obtained detection spectrograms are shown in FIGS. 17 to 20. FIG. 17 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v1; FIG. 18 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v2; FIG. 19 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v3; and FIG. 20 is a detection mass spectrogram obtained during single-base extension of an extension primer rs483352838-v4.


It can be seen from FIGS. 17 to 20 that rs483352838-v1 can correctly display results of all wild-type samples (there is a peak at 7076), meanwhile, rs483352838-v4 can correctly display results of all mutant samples (there is a peak at 8292), however, neither rs483352838-v2 nor rs483352838-v3 cannot obtain stable results. Therefore, the two primers are amplified and extended in two reaction wells, respectively, and detected, detection results of the two wells for the same site are combined to judge typing of the samples, and finally stable results enabling simultaneous detection of wild-type samples and mutant samples of the rs483352838 site can be obtained.


Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and amendments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be based on the scope defined by the claims.

Claims
  • 1. A method for genotyping blood group by mass spectrometry detection, including the following steps: (1) using amplification primers to multiplex PCR amplify an DNA from a blood sample, wherein the amplification primers include forward primers and reverse primers;(2) purifying an amplification product obtained in Step (1) by an alkaline phosphatase;(3) using extension primers to extend the purified product in Step (2) by a single base; and(4) cconducting sample application on a single-base extended product obtained in Step (3) onto a chip for mass spectrometry detection;wherein the amplification primers and the extension primer mix are included in a tube, and wherein the amplification primers and the extension primers are as below:
  • 2. The method according to claim 1, wherein a concentration of the amplification primers is 0.04 to 0.4 μM in a final concentration.
  • 3. The method according to claim 1, wherein in the Step (1), an amplification reaction system used as below:
  • 4. The method according to claim 3, wherein in the Step (1), cycle conditions of PCR amplification reaction are as follows: 95° C., 2 minutes; 45 cycles: 95° C., 30 seconds, 56° C., 30 seconds, 72° C., 60 seconds, 72° C., 5 minutes; keeping a temperature of 4° C.
  • 5. The method according to claim 4, wherein the alkaline phosphatase in Step (2) is a shrimp alkaline phosphatase, and a premixed solution system for purification treatment with the alkaline phosphatase in Step (2) as below:
  • 6. The method according to claim 5, wherein a single-base extension and amplification system in Step (3) is below:
Priority Claims (1)
Number Date Country Kind
202210098021.6 Jan 2022 CN national