The present invention relates in general to mass spectroscopy and in particular to analyte sampling from any surface and its analysis using a MS.
There is a need for improving security at a number of high traffic and strategic locations, such as airports, government offices, and borders. One important security hazard is the transport of hazardous chemical and biological materials. In addition, better security is needed to detect transport of illicit drugs. This need has resulted in the development of sensitive detecting devices to detect minute amounts of vapor and particles from various chemical and biological materials. These systems operate based on obtaining a sample from a surface and introducing it into a detector for analysis. Traces of the chemical and biological material may be transferred to the body or any article of the person that has handled such material. By wiping the body or the article with a swap, some of that material may be collected for analysis. The swap is introduced into a thermal desorption system to release a vapor of the material collected, which is then introduced into an analyzer. In addition to swaps, some systems apply a suction onto the surface, using a vacuum pump, to collect the material. The material collected is then introduced into a detector for analysis. A commonly used detector is an Ion Mobility Spectrometer (IMS) or an Ion Trap Mobility Spectrometer (ITMS).
In view of the above, it is an object of the present invention to provide a more direct and sensitive detection system that detects minute traces of both vapors and particles from target materials. For this purpose, a mass spectrometry is more suitable because of its capacity for the detection of the sample material with high sensitivity, resolution and accuracy. Tandem mass spectrometer, in particular, is a technology with the ability to select a target parent molecule and identify it from a unique fragment profile patterns. Quantification (how much in the sample) and qualification (what is in the sample) are two important qualities of the tandem mass spectrometers, specifically that of triple quadrupole, that other technologies do not have. The biggest disadvantage of the mass spectrometers in the past was related to their size (not portable) and cost. Ion trap mass spectrometers are exception from these criteria because of their small sizes, therefore this technology was attractive for development of small and portable detection system. Unfortunately, because of its intrinsic limited ion storage capacity, this technology could not respond positively to detection of desired molecules from complex mixtures.
Triple quadrupole mass spectrometers with ability to function under continuous beam of ions are uniquely positioned to detect a minute amount of desired sample from a complex mixture with high sensitivity (femto-gram) and accuracy (high resolution). A portable and affordable type of technology is suitably needed to respond adequately for detection of wide range of samples.
A system for analyzing a chemical composition of a sampled material is provided.
The system comprises of a sniffing line to take a sample from a surface. The sniffing line may use the pumping system of the mass spectrometer or an extra pump to generate suction. The system may also use a swap to wipe the surface for sample collection. The martial collected is then introduced into a thermal desorption system to collect the vapor and gaseous analyte desorbed from a sample. The vapor is then introduced into an ionizer and is then directed into a mass spectrometer. The mass spectrometer allows for surface analysis in real time for the detection and quantitation of materials deposited on a surface.
The present device may sample a surface that may contain a layer of a cell, or a contamination by a chemical or biological agents. It can take samples from the surfaces of any item, such as a ticket and or a boarding card in the airports, and test for residue of explosives or narcotics materials.
The present sampling and detection system is capable of releasing and extracting particles and vapors from any surface using a sniffing line. The system may also have an air jet system to generate air jets to impinge on the surface to dislodge the sample material and force them to enter into the sniffing line.
One object of the present invention is to increase the sensitivity of the detection system by using a mass spectrometer for the material analysis. This system can detect extremely low concentrations of materials.
Another object of the present invention is to provide a handheld sniffer to take samples from any surface, and provide real time detection of any chemical and biological material. This increases the speed of the detection process, and hence throughput the test of articles or people, which in turn, reduces the cost of the inspection and inconvenience.
These and other objects of the present invention will become apparent from a reading of the following specification, taken in conjunction with the enclosed drawings.
Embodiments herein will hereinafter be described in conjunction with the appended drawings provided to illustrate and not to limit the scope of the claims, wherein like designations denote like elements, and in which:
4
Main elements for surface analysis system is shown in
The sniffing line comprises of conductive or insulator material of different bore diameter, which may also have a heating system. The length and flexibility of the sniffing line depends on specific application. The sniffing line is pumped internally by using one of the pumps of the system. The sniffing samples in a form of gas shall be directed to an ion source for ionization. In addition, the system may have a thermal desorption device for liquid and solid samples.
The gas analyzer can be a single stage or tandem mass spectrometer such as TOF, Quadrupole, ion trap, magnetic sector, or other types of spectrometer. Exemplary mass spectrometers (“MS”) include, but are not limited to, sector MS, time-of-flight MS, quadrupole mass filter MS, three-dimensional quadrupole ion trap MS, linear quadrupole ion trap MS, Fourier transform ion cyclotron resonance MS, orbitrap MS and toroidal ion trap MS.
The ionization source can comprise of an e-impact, electro-spray, corona discharge, discharge tube, Photo ionization, or other types of ionization sources.
The present system can sample any vapour, liquid or solid from a surface. Materials other than vapour will be transferred to a thermal desorption system and converted into vapor, and then to the ionization source. The gas outlet of the sniffer is coupled to the gas inlet of the thermal desorption system, the outlet of which goes to an ionization source and indirectly coupled to the gas inlet of a mass spectrometer. A gas outlet of the ionization source can be directly coupled to the gas inlet of the mass spectrometer.
The sniffer 100 may have a heater 110 to heat the material that passes through it. The sniffer is made of a material that can withstand high temperatures. It can be metallic, or made of Teflon or ceramic. The sniffer 100 can be flexible or rigid. The sniffer may be handheld and be manually taken over the surface to take a sample. The sniffer may also be a robotic sniffer to operate automatically or by a remote operator.
A suction is generated by a vacuum level in the system. The system vacuum pump generates a desired vacuum in the MS, which induces a vacuum on the sniffing line. The challenge is to have a proper suction on the surface, at the same time, the desired vacuum in the MS. For this purpose, the present system has a first pressure control nozzle 320 between the sniffing line and the ionization source, and a second pressure control nozzle 330, between the ionization source and MS. These two pressure control nozzles control the pressure for the sniffing line, the pressure in the ionization source and the pressure in MS.
The air jet may be a simple orifice nozzle, or may have a special design to guide the gases into the sniffer. For example, the air jet ports may be circumferentially located around the suction port of the sniffer (not shown). A variety of configurations of the air jet with respect to the suction port of the sniffer can be designed to provide optimum gas sampling.
The suction port of the sniffer can collect the dislodged material however, the suction efficiency goes down as the suction port is moved away from the surface. Well-designed air jets can improve the suction efficiently by pushing the vapour to larger distances away from the surface.
The ionization source in the present embodiment may be an electrospray ionization, atmospheric pressure chemical ionization, atmospheric pressure photo-ionization or inductively coupled plasma.
Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, it will be appreciated by those skilled in the art that within the scope of the appended claims, the invention may be practiced other than has been specifically described herein.
The present invention claims the priority date of a U.S. provisional patent application No. 63/038,947 filed on Jun. 15, 2020.
Number | Date | Country | |
---|---|---|---|
63038947 | Jun 2020 | US |