1. Field of the Invention
The present invention relates generally to microarrays of polymers, semiconductor lithographic technology, and synthetic organic chemistry.
2. Background Information
Microarrays of oligonucleotides, peptides, proteins, and or oligosaccharides continue to gain importance as powerful tools for research and diagnostic applications in the biomedical sciences. Oligonucleotide microarrays, for example, can be used to monitor gene expression and genetic mutations in a massively parallel manner. Proteinaceous microarrays provide the ability, for example, to characterize the molecular progression of disease, research cellular pathways, and perform high throughput screening in drug discovery applications. Peptide-containing arrays can serve as molecular probes for a variety of biological events, such as for example, the arrays can serve as antigens for antibody-antigen systems, ligands for cell receptor-ligand system, and substrates for enzyme-protein systems. The ability to collect large volumes of information is an integral part of biomarker discovery and personalization of medical treatments. Further, other applications in bioscience, such as for example, the analysis of the proteomic content of an organism, disease detection, pathogen detection, environmental protection, food safety, and biodefense are capable of benefiting from tools that allow rapid multiplexed study of analyte samples.
As the genomic and proteomic knowledge base expands, so does the need for methods to collect, understand, and apply biologically relevant information. The drive towards personalized medicine magnifies these needs. Methods, such as analyses using microarrays that allow the use of small volumes of sample for highly multiplexed analysis, are valuable tools. Methods that provide for the controllable automated manufacture of arrays are similarly valuable.
Embodiments of the present invention provide methods for the synthesis of polymers on a solid support using photolithographic technology. Polymer synthesis according to embodiments of the invention can be accomplished with precision and can therefore be used to provide controlled-density microarrays. Since the lithographic methods of the present invention are general for a variety of polymer synthesis reactions, microarrays can be created that are comprised of nucleic acids, peptides, and or other organic polymeric molecules.
An array is an intentionally-created collection of molecules attached to a solid support in which the identity or source of a group of molecules is known based on its location on the array. The molecules housed on the array and within a feature of an array can be identical to or different from each other.
The features, regions, or sectors of an array may have any convenient shape, for example, circular, square, rectangular, elliptical, or wedge-shaped. In some embodiments, the region in which each distinct molecule is synthesized within a sector is smaller than about 1 mm2, or less than 0.5 mm2. In further embodiments the regions have an area less than about 10,000 μm2 or less than 2.5 μm2. Additionally, multiple copies of a polymer will typically be located within any region. The number of copies of a polymer can be in the thousands to the millions within a region. In general, an array can have any number of features, and the number of features contained in an array may be selected to address such considerations as, for example, experimental objectives, information-gathering objectives, and cost effectiveness. An array could be, for example, a 20×20 matrix having 400 regions, 64×32 matrix having 2,048 regions, or a 640 ×320 array having 204,800 regions. Advantageously, the present invention is not limited to a particular size or configuration for the array.
A method for synthesizing polymers within one or more selected region(s) of a solid support is shown in
Referring now to
The exposure of the photoresist 4 to radiation generates cleaving reagents (species that catalyze the removal of a protective group, for example) in the exposed portion of the photoresist layer 4. The generation of cleaving reagents in the photoresist may be the result of a number of processes. For example, the cleaving reagent may result from the direct radiation-induced decomposition of or chemical transformation of a photoactive cleavage reagent precursor compound. Alternatively or in addition, generation of the cleaving reagent may occur through the absorption of light by a photosensitizer followed by reaction of the photosensitizer with the cleavage reagent precursor, energy transfer from the photosensitizer to the cleavage reagent precursor, or a combination of two or more different mechanisms.
As a result of the radiation-induced generation of the cleaving reagent (catalyst), the protecting groups 3 are cleaved from the molecules 2 under the exposed area(s) of the photoresist. The molecules 2 located under the unexposed masked regions remain unreacted. The cleaving process leading to the removal of the protecting groups 3 may, for example, be acid-catalyzed cleavage or base-catalyzed cleavage. The chemistry of the process will depend on the type of protecting groups 3 and on the type of cleaving reagents that are generated in the photoresist upon radiation exposure. For example, if the protecting group 3 is t-BOC, acid cleavage can be used. Acids may be generated in the photoresist, for example, through the exposure of sulfonium or halonium salts to radiation (
Subsequent to the exposure of the masked substrate to radiation, the photoresist is removed. The photoresist layer 4 may be removed using acetone or another similar suitable solvent. The resulting surface-modified substrate is shown schematically in
The processes illustrated in FIGS. 1A-E may be repeated to form polymers on the substrate surface. Through the selection of different mask configurations, different polymers comprising building blocks 2 and 6-10 may be formed in regions upon the surface, as shown schematically in
Any unreacted deprotected chemical functional groups may be capped at any point during a synthesis reaction to avoid or to prevent further bonding at such molecule. In general, capping reagents can be a reagent that prevents further reactivity at the site of polymer chain formation. Capping groups cap deprotected functional groups by, for example, binding with the unreacted amino functions to form amides. Capping agents suitable for use in an embodiment of the invention include: acetic anhydride, n-acetylimidizole, isopropenyl formate, fluorescamine, 3-nitrophthalic anhydride and 3-sulfoproponic anhydride.
A monomer or a building block are molecules or compounds that can be joined together to form a polymer. The monomer or building block need not be limited to one monomeric unit and can be comprised of several units, that is, several monomeric units joined together. Monomers are joined by chemical bonds to form a polymer chain. The sequence of the polymer refers to the ordering of monomers in the polymer chain.
A peptide is a polymer in which the monomers are amino acids (natural or unnatural, mimics and derivatives) and which are joined together through amide (peptide) bonds. A peptide can alternatively be referred to as a polypeptide. Peptides contain two or more amino acid monomers, and usually less than 50 amino acid monomers (building blocks).
In general, peptides are polymers of amino acids, amino acid mimics or derivatives, and/or unnatural amino acids. The amino acids can be any amino acids, including α, β, or ω-amino acids. When the amino acids are α-amino acids, either the L-optical isomer or the D-optical isomer may be used.
A protein is a long polymer of amino acids linked via peptide bonds and which may be composed of two or more polypeptide chains. More specifically, the term protein refers to a molecule comprised of one or more polymers of amino acids. Proteins are essential for the structure, function, and regulation of the body's cells, tissues, and organs, and each protein has unique functions. Examples of proteins include some hormones, enzymes, and antibodies.
A protecting group is a group which is bound to a molecule and designed to block a reactive site in a molecule, but may be removed upon exposure to an activator or a deprotecting reagent. Deprotecting reagents include, for example, acids and bases. Protecting groups can be bound to a monomer, a polymer, a linker molecule or a monomer, or polymer, or a linker molecule attached to a solid support to protect a reactive functionality on the monomer, polymer, or linker molecule. Protective groups that may be used in accordance with an embodiment of the invention include all acid and base labile protecting groups. For example, peptide amine groups are preferably protected by t-butoxycarbonyl (t-BOC or BOC) (shown in
Additional protecting groups that may be used in accordance with embodiments of the invention include acid labile groups for protecting amino moieties: tert-amyloxycarbonyl, adamantyloxycarbonyl, 1-methylcyclobutyloxycarbonyl, 2-(p-biphenyl)propyl(2)oxycarbonyl, 2-(p-phenylazophenylyl)propyl(2)oxycarbonyl, .alpha.,.alpha.-dimethyl-3,5-dimethyloxybenzyloxy-carbonyl, 2-phenylpropyl(2)oxycarbonyl, 4-methyloxybenzyloxycarbonyl, furftiryloxycarbonyl, triphenylmethyl (trityl), p-toluenesulfenylaminocarbonyl, dimethylphosphinothioyl, diphenylphosphinothioyl, 2-benzoyl-1-methylvinyl, o-nitrophenylsulfenyl, and 1-naphthylidene; as base labile groups for protecting amino moieties: 9-fluorenylmethyloxycarbonyl, methylsulfonylethyloxycarbonyl, and 5-benzisoazolylmethyleneoxycarbonyl; as groups for protecting amino moieties that are labile when reduced: dithiasuccinoyl, p-toluene sulfonyl, and piperidino-oxycarbonyl; as groups for protecting amino moieties that are labile when oxidized: (ethylthio)carbonyl; as groups for protecting amino moieties that are labile to miscellaneous reagents, the appropriate agent is listed in parenthesis after the group: phthaloyl (hydrazine), trifluoroacetyl (piperidine), and chloroacetyl (2-aminothiophenol); acid labile groups for protecting carboxylic acids: tert-butyl ester; acid labile groups for protecting hydroxyl groups: dimethyltrityl. See also, Greene, T. W., Protective Groups in Organic Synthesis, Wiley-Interscience, N.Y., (1981).
A linker molecule typically is a molecule inserted into the growing polymer that does not necessarily convey functionality to the resulting peptide, such as molecular recognition functionality, but instead elongates the distance between the substrate surface and the peptide functionality to enhance the exposure of the peptide functionality on the surface of the substrate. Preferably a linker should be about 4 to about 40 atoms long to provide exposure. The linker molecules may be, for example, aryl acetylene, ethylene glycol oligomers containing 2-10 monomer units (PEGs), diamines, diacids, amino acids, among others, and combinations thereof. Examples of diamines include ethylene diamine and diamino propane. Alternatively, the linkers may be the same molecule type as that being synthesized (i.e., nascent polymers), such as polypeptides and polymers of amino acid derivatives such as for example, amino hexanoic acids.
Solid support, support, and substrate refer to a material or group of materials having a rigid or semi-rigid surface or surfaces. In some aspects, at least one surface of the solid support will be substantially flat, although in some aspects it may be desirable to physically separate synthesis regions for different molecules with, for example, wells, raised regions, pins, etched trenches, or the like. In certain embodiments, the solid support may be porous.
Substrate materials useful in embodiments of the present invention include, for example, silicon, bio-compatible polymers such as, for example poly(methyl methacrylate) (PMMA) and polydimethylsiloxane (PDMS), glass, SiO2 (such as, for example, a thermal oxide silicon wafer such as that used by the semiconductor industry), quartz, silicon nitride, functionalized glass, gold, platinum, and aluminum. Functionalized surfaces include for example, amino-functionalized glass, carboxy functionalized glass, and hydroxy functionalized glass. Additionally, a substrate may optionally be coated with one or more layers to provide a surface for molecular attachment or functionalization, increased or decreased reactivity, binding detection, or other specialized application. Substrate materials and or layer(s) may be porous or non-porous. For example, a substrate may be comprised of porous silicon.
Photoresist formulations useful in the present invention include a polymer, a solvent, and a radiation-activated cleaving reagent. Useful polymers include, for example, poly(methyl methacrylate) (PMMA), poly-(methyl isopropenyl ketone) (PMPIK), poly-(butene-1-sulfone) (PBS), poly-(trifluoroethyl chloroacrylate) (TFECA), copolymer-(α-cyano ethyl acrylate-α-amido ethyl acrylate (COP), and poly-(2-methyl pentene-1-sulfone). Useful solvents include, for example, propylene glycol methyl ether acetate (PGMEA), ethyl lactate, and ethoxyethyl acetate. The solvent used in fabricating the photoresist may be selected depending on the particular polymer, photosensitizer, and photo-active compound that are selected. For example, when the polymer used in the photoresist is PMMA, the photosensitizer is benzophenone, and the photoactive compound is diphenyliodonium chloride, PGMEA or ethyl lactate may be used as the solvent.
In exemplary photoresist formulations, the mass concentration of the polymer may between about 5% and about 50%, the mass concentration of a photosensitizer may be up to about 20%, the mass concentration of the photo-active compound may be between about 1% and 10%, the balance comprising a suitable solvent. After the photoresist is deposited on the substrate, the substrate typically is heated to form the photoresist layer. Any method known in the art of semiconductor fabrication may be used to for depositing the photoresist solution. For example, the spin coating method may be used in which the substrate is spun typically at speeds between about 1,000 and about 5,000 revolutions per minute for about 30 to about 60 seconds. The resulting wet photoresist layer has a thickness ranging between about 0.1 μm to about 2.5 μm.
Catalysts for protective group removal (also referred to as cleaving reagents) useful in the present invention include acids and bases. For example, acids can be generated photochemically from sulfonium salts (
Photogenerated bases include amines and diamines having photolabile protecting groups. See for example, Shirai, M., Tsunooka, M., Prog. Polym. Sci., 21:1, (1996); Comeron, J. F., Frechet, J. M. J., J. Org. Chem., 55:5919, (1990); and Comeron, J. F., Frechet, J. M. J., J. Am. Chem. Soc., 113:4303, (1991).
Optionally, the photoresists useful in the present invention may also include a photosensistizer. In general, a photosensitizer absorbs radiation and interacts with the cleavage reagent precursor, through one or more mechanisms, including, energy transfer from the photosensitizer to the cleavage reagent precursor, thereby expanding the range of wavelengths of radiation that can be used to initiate the desired catalyst-generating reaction. Useful photosensitizers include, for example, benzophenone (
A catalytic enhancer is a compound or molecule that is added to a photoresist in addition to a radiation-activated catalyst. A catalytic enhancer is activated by the catalyst produced by the radiation-induced decomposition of the radiation-activated catalyst and autocatalyticly reacts to further (above that generated from the radiation-activated catalyst) generate catalyst concentration capable of removing protecting groups. For example, in the case of an acid-generating radiation-activated catalyst, the catalytic enhancer is activated by acid and or acid and heat and autocatalyticly reacts to form further catalytic acid, that is, its decomposition increases the catalytic acid concentration. The acid produced by the catalytic enhancer removes protecting groups from the growing polymer chain.
In a further embodiment, a photoactive layer (photoresist) formulation for high throughput solid phase synthesis of peptide microarrays that requires very low energy for photo acid generation and deprotection of a t-BOC protecting group is provided. The formulation includes poly methyl methacrylate (PMMA) polymer, Bis(4-tert-butylphenyl)iodonium triflate (photo generated acid, PAG) and sensitizer, isopropylthioxanthenone (ITX) in propylene glycol methyl ether acetate (PGMEA). The energy requirement for deprotection of amino acids is as low as 10-50 mJ as shown in
In general, methods according to the disclosed invention are useful for the synthesis of polymers on a substrate. Highly parallel synthesis of varied polymers can be accomplished through matching the radiation-activated deprotection catalyst to the protection scheme chosen for the monomers.
A glass substrate was silanated using a solution of 3% APTES (aminopropyl triethoxy silane) in 95% ethanol. The surface of the substrate was then washed and annealed at about 100° C. for about 1 hour. The substrate was then treated with a 1:1 solution of DIEA (diisopropyl ethyl amine) in DMF (dimethylformamide). A spacer molecule was then coupled to the surface using a solution of 0.25 M solution of O-(N-Boc-2-aminoethyl)-O′-(N-diglycolyl-2-aminoethyl) hexaethyleneglycol, 0.25 M HOBt, and 0.25M DIC (diisopropylcarbodiimide) in NMP (N-methyl pyrrolidone)and gentle agitation over the surface of the substrate in a sealed container for about 30 min. The solution was then discarded and the surface replenished with fresh solution. After coupling was complete, the surface was washed with NMP and then acetone. Unreacted surface amine groups were capped by treatment with 1:1acetic anhydride in DMF solution (a 50% acetic anhydride solution in DMF) for about 30 minutes. The surface was then washed.
A photoresist was prepared by mixing about 10% by mass of PMMA, 20% by mass of triarylsulfonium hexafluoroantimonate in PGMEA solvent and spin coating the mixture over the amino acid derivatized glass surface for about 60 seconds at 2,000 rpm. The photoresist may also optionally contain thioxanthenone, a photosensitizer. The photoresist layer was baked at about 85° C. for about 90 seconds. The resulting photoresist layer had a thickness of about 2 μm.
Acid was generated in the photoresist layer by irradiation of the surface of the substrate with 2-3 J of 365 nm UV light through a mask. The reaction was accelerated by a post exposure bake at about 65° C. for about 60 seconds. After the photogenerated acid deprotection was achieved, the surface of the substrate was rinsed with acetone to strip the photoresist from the surface and the surface was dried. The surface was neutralized by treatment in 25% DIEA/DMF for about 5-10 minutes and then washed in DMF.
A second amino acid (Boc-Leu-OH) was coupled to the surface of the substrate using a 0.25 M solution of N-α-Boc-Leu, HOBt, and DIC as above. Subsequent rounds of coupling and deprotection were accomplished by repeating the above procedures to generate peptides of a desired length. As a result, a hexamer peptide, SDLYKL segement of human tumor suppressor protein p53, was synthesized on an APTES surface derivatized with a PEG (polyethylene glycol) spacer. A labeled F1-tagged anti-p53 monoclonal antibody in a standard Ab binding assay recognized and strongly bound to the SDLYLK peptide on the surface as determined by fluorescence detection.
An array of wildtype (SDLHKL) and mutant (AGLHKL) peptide was synthesized on an aminated glass surface with a linker molecule, O-(N-Boc-2-aminoethyl)-O′-(N-diglycolyl-2-aminoethyl) hexaethyleneglycol, for spacing the peptides from the surface. The peptides were synthesized in a checkerboard pattern using uniform photodeprotection of t-Boc protecting groups through an open grid mask till the second leucine and spatially localized deprotection through a checkerboard mask for the last two amino acid couplings.
The photodeprotection and coupling of linker molecules and amino acids was carried out as described in Example 1.
The peptide array was incubated for 1 hour with 5 μg/ml monoclonal antibody known to specifically recognize the SDLHKL epitope of human p53 protein. A second incubation was performed with fluorescein-labeled rabbit antibody raised against mouse antibody at a 1:100 dilution in phosphate buffered saline with 0.05% Tween 20. A fluorescent checker board pattern was detected on fluorescence scanning of the array suggesting specific interaction of antibody with the wildtype sequence.
Photoresist formulations may include a sensitizer in addition to the photogenerated acid catalyst to generate the acid deprotection catalysts. In general, the amount of PMMA in the resist in these exemplary formulations may vary between about 3% and about 50%.
Useful photoresists may be made using diaryliodonium salts (DAI) and photosensitizers. The mass ration between DAI and photosensitizer may be between about 1:10 and 1:1. For instance, (tolylcumyl)polonium tetrakis (pentafluorophenyl) borate with isopropyl-9H-thioxanthen-9-one may be formulated in a 1:10 or 1:1 (or a ratio there between) in PMMA and PGMEA to form final concentrations of between about 0.5% to 10% by mass DAI. The formulation selected may be spun coated on the substrate surface and baked. The radiation exposure dose may be between about 0.02 J and about 10 J. Post exposure baking may be conducted for about 30 to 60 seconds at about 40° C. to about 85° C.
A glass substrate was cleaned in a 1:1 H2O2/H2SO4 solution for 1 hour, washed in deionized water and 95% ethanol. The surface was then functionalized with 0.5% aminopropyl triethoxy silane (APTES) in ethanol for 30 minutes, washed with ethanol and subsequently cured at 110° C. for 1 hour. T-BOC protected glycine was coupled to the amino functionalized surface at 0.1 M concentration in a solution containing 0.1 M DIC and HOBt (diisopropyl carbodiimide and hydroxybenzotriazole, activators) in N-methyl-2-pyrrolidinone (NMP) for 30 min. The unreacted amino groups of the surface were capped using a 50% acetic anhydride solution in dimethylformamide (DMF) for 30 min.
The photosensitive resist was prepared by mixing 2.5% PMMA, 5% PAG, and 5% ITX sensitizer in PGMEA. The photosensitive layer was deposited by spin coating at 2000 rpm for 60 sec in a spin coater. The film was subsequently baked at 85° C. for 90 sec. A 0.3 μm thick photosensitive film was thus formed. The substrate with photosensitive layer was then exposed to UV radiation at 365 run at 1 mJ to 100 mJ dose to generate acid followed by post exposure at 65° C. to 85° C. for 1 min to accelerate deprotection of t-BOC group. The deprotection was monitored by coupling 5, 6-carboxyfluorescein (1:9 fluorescein: t-BOC-Gly-OH in 0.1M solutions) to the terminal free amines and assessing intensity by fluorescence scanning.
This continuation-in-part application claims the benefit it of U.S. application Ser. No. 11/291,296, filed Nov. 30, 2005, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11291296 | Nov 2005 | US |
Child | 11395899 | Mar 2006 | US |