The present invention relates to packet-switched communication systems and in particular to notification of mobile terminals in such systems.
In packet-switched networks of today, and in particular mobile IP networks and IP multimedia systems, there are a number of situations where the system needs to notify applications in individual mobile terminals in order to trigger services in the terminals. Typical cases when a notification is sent include those when a new message has been received and when someone wishes to initiate communication with the mobile terminal. Notifications of this kind may be, but are generally not, displayed to the end user.
The normal way to achieve IP connectivity and peer-to-peer connections is to introduce an overlay network, such as the IP Multimedia Subsystem (IMS) [1]. IMS provides IP services independent of applications and platforms. IMS uses the Session Initiation Protocol (SIP) [2] as session control mechanism. SIP is indifferent to media and defines how a connection should be handled irrespective of whether the content is voice, video, data or web-based. By means of SIP, mobile devices can be registered and peer-to-peer connections initiated.
When there is IP connectivity to the mobile terminal, notifications can normally be sent in a straightforward and non-problematic manner. However, often the recipient cannot be reached, e.g. when the device is out of coverage, switched off, etc., making the notification issue far from trivial.
Traditional telecom services handle this by pushing out an SMS message and the SMSC will hold the notification until the recipient becomes available.
MMS is an example of this. Such a store-and-forward mechanism is not very well suited for use in connection with IP multimedia systems, such as IMS. It relies on outdated and unnecessarily complex technology and is associated with drawbacks, such as uncertainties relating to the delivery time and restrictions on the form and content of messages.
The International Patent Application [3] uses a store and forward mechanism for IMS systems based on the same principles as the mentioned SMS notification. The leads to a comparatively complicated and non-efficient notification solution.
Accordingly, there is a need for an improved notification mechanism for packet-switched communication and in particular for a notification mechanism suitable for use in IP multimedia systems.
A general object of the present invention is to provide an improved method for notification in packet-switched communication systems. A specific object is to achieve improved notification in IP multimedia systems. Another object is to provide a notification mechanism associated with efficient handling of resources. Still another object is to provide a notification mechanism that is easy to implement.
These objects are achieved in accordance with the attached claims.
Briefly, the present invention proposes a new kind of store-and-forward mechanism, in which a notification server on the recipient side of the communication is used to handle notifications based on the status of the mobile terminal addressed by the notification. If it is determined that the recipient is not available, for example, the notification is stored at the notification server until the recipient becomes available. When the mobile terminal becomes available, the notification server receives an indication of this and attempts to deliver the notification message to the mobile terminal.
The status of the mobile terminal can relate to the IP connectivity thereof, such as “available”/“non-available”. There may also be embodiments in which the status relates to the geographic position of the mobile terminal.
The present invention may be implemented in an IP multimedia system, such as IMS. It enables the system to have services that are delivered to offline users when they becomes available, which is a considerable advantage. The notification server may then for example be implemented as a SIP Application Server (SIP AS) and the notification message may be SIP-based, e.g. using SIP NOTIFY or SIP MESSAGE.
In accordance with different aspects of the invention, a method for notification, a notification server, and a packet-switched communication system with means for notification are provided.
The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken together with the accompanying drawings, in which:
A list of abbreviations follows at the end of this section.
IMS defines a horizontal layered network architecture. The illustrated system 100 comprises application functionality with application and content servers 10, executing various services for the end user. The services may for example be implemented in SIP application servers (SIP AS). The IMS system further comprises control functionality, i.e. network control servers for managing call or session set-up, modification and release, the most important of which is CSCF 14. The CSCF 14, also known as SIP server, manages SIP sessions and coordinates with other network elements for session control, feature/service control and resource allocation. For this, the CSCF 14 is arranged to communicate with the application servers 10 as well as with mobile terminals 12 and a HHS 13 in the domain. The HHS 13 holds IMS subscriber profiles and among other things comprises functionality for authentication and authorization as well as functionality for supporting CSCF and AS access. The application servers 10 may interact with the HSS 13 to obtain subscriber profile information. As for the mobile terminals 12, here exemplified as mobile phones 12-1 and a laptop 12-2, IMS services require that they are equipped with IMS/SIP clients. Such clients typically include a GUI, service logic, routing and discovery functionality, etc.
Still referring to
In IMS, the preferred signalling is SIP. SIP does not explicit have the notion of storing notifications for later delivery as it is intended as a protocol for handling “live” sessions. Nevertheless, it would be most desirable to have a store-and-forward (deferred) notification delivery mechanism in IMS/SIP and similar environments.
Conventional store-and-forward of notifications in the mobile domain normally uses SMS messages.
As mentioned in the background section, store-and-forward by SMS is not very well suited for use in connection with IP multimedia systems, such as IMS. Another conventional notification mechanism is illustrated in
Although the solution of
In order to overcome the described disadvantages of solutions like the one in
The status of the mobile terminal is preferably related to the IP connectivity thereof, such as “available”/“non-available”. There may also be embodiments in which the status instead (or in addition) is related to the geographic position of the mobile terminal. The status change can in such a case for example occur when the mobile terminal enters a specified geographic region.
The proposed terminal notification will now be further explained with reference to some example embodiments.
The present invention may with advantage be implemented in an IP multimedia system, such as IMS. In IMS terms, the application server 40 can then e.g. comprise or correspond to a presence server, a messaging server, and/or a location server. The control logic would typically be a CSCF, preferably with “not registered triggers” routing SIP notifications to the notification server. The notification server, in turn, could then be implemented as a SIP application server specially adapted for handling notifications from a variety of services to many different recipients. Finally, the recipient would in an IMS system typically be a mobile terminal with a client for Presence or Messaging, for example.
By means of the present invention, IMS and other IP multimedia/SIP based networks will be able to have services that are delivered to offline users when they become available. The inefficient SMS based notification mechanism is reduced to a more intelligent and resource efficient handling of IP based notifications using the notification server of the present invention. This enables development of new services and improves the service behavior.
With conventional solutions like the one illustrated in
The application server can for example use the notification message to notify the mobile terminal of the fact that a message, e.g. an MMS, for the mobile terminal has been received. Alternatively, the notification message can indicate that one mobile terminal wants to initiate communication with another mobile terminal.
Other embodiments may relate to a type of service that constantly sends notifications to the terminal regarding changes in parameters related to location and presence. For example, envision a location service that sends out location coordinates of a moving vehicle to a map application in a mobile terminal. The client in the terminal takes the coordinates and draws a line on the map to illustrate how the vehicle moves. It is easily understood that the performance of the service will be poor if some of the locations updates are lost, in which case the line is likely to be incorrect. The safe notification delivery of the present invention considerably increases the performance and value of such a service.
The notification message can with advantage be SIP based, for example comprising or being based on SIP NOTIFY or SIP MESSAGE. However, it should be emphasized that the invention is not restricted to SIP communication but can be used in connection with other notifications as well.
The information related to the status of the mobile terminal can be provided in different ways in different embodiments of the invention. The storing of the notification message can be preceded by a non-successful attempt of sending the notification message to the mobile terminal. In such a case, the transmission failure indirectly indicates the status of the mobile terminal to the notification server.
The storing of the notification message may also be preceded by a storage decision based on knowledge of the current status of the mobile terminal. Such knowledge is typically provided to the notification server from an external unit. In case the mobile terminal registers with a session control function, such as the CSCF, this unit could for example communicate information regarding the connectivity of the mobile terminal to the notification server.
It should be noted that by means of the present invention, in cases where the notification is used to notify the terminal of a message such as a MMS, only the notifications are stored at notification server. The actual messages are contained at the originating application server or elsewhere depending on the application. Moreover, the sender of the notification, i.e. the application server, will not be involved in initiating retransmission since this is handled by the notification server. No functionality for store and forward of notifications need to be included in the respective application servers. Hence, the proposed notification mechanism is associated with the further advantage of being easy to implement.
Furthermore, the notification server 75 may be provided with means (not shown) for deciding which notification messages that are to be stored at the notification storage 77 until the recipient is available. The storage decision may for example be based on the identity of the originator/sender or on the type of notification message. There may also be embodiments where the notification message contains a time stamp, defining a “time-to-live” for the notification, and the storage is performed accordingly.
A notification server according to the present invention can for example be implemented as or comprise a SIP AS arranged at the terminating domain of the communication system. It is typically adapted for simultaneously handling notification messages from a plurality of application servers, as illustrated in
According to a particular embodiment, the notifications to the recipient are aggregated in order to prevent the recipient from being not flooded by many notification messages when the status changes. A plurality of notification messages for the mobile terminal are in such a case aggregated in a suitable manner, e.g. into one SIP message, whereby the aggregated notification messages are sent together to the mobile terminal in response to the status change (e.g. when the recipient becomes available). The means for aggregating notification messages is preferably provided at the notification server, but may also be implemented elsewhere in the network, for instance at the CSCF.
Although the invention has been described with reference to specific illustrated embodiments, it should be emphasized that it also covers equivalents to the disclosed features, as well as modifications and variants obvious to a man skilled in the art. Thus, the scope of the invention is only limited by the enclosed claims.