This Utility Patent Application claims priority to European Patent Application No. 05 011 706.8, filed on May 31, 2005, which is incorporated herein by reference.
In plain old telephone service (POTS) or other communication systems it is advisable to perform a regular testing of communication lines, for example, subscriber lines, which are communication lines running from a central office terminal to end users (subscribers). With such a regular line testing, deteriations or faults of the communication lines can be detected quickly and corresponding measures can be taken. In such a line testing operation, typically electrical properties of the communication line such as resistances and capacitances are of interest.
In
Associated with each of the POTS circuits 39 is a test relay 40 which selectively connects one pair of tip line 41 and ring line 42 to a test bus 43. The test bus 43 typically has connections to a test board 44 comprising analogue circuitry 45, a digital signal processor 46, a random access memory (RAM) 47, and a read-only memory (ROM) 48. The components on the test board 44 perform various tests like resistance measurements on the communication lines which are selectively connected to the test bus 43 via the respective test relay 40.
This solution has a test relay 40 for each POTS circuit 39 (i.e., for each subscriber line) and a separate test board 44. With the test board 44, which is normally present only once in a given system, only one communication line can be tested simultaneously.
Instead of an internal test board, an external test head with essentially the same functionalities may also be used.
An alternative approach is illustrated in
For these and other reasons there is a need for the present invention.
One embodiment provides a method of measuring at least one capacitive property of a communication line. The communication line includes a first line and a second line. The method includes applying at least a first voltage ramp to at least one of the first line and the second line. The method includes measuring at least a first current flowing via the at least one of the first line and the second line during the first voltage ramp. The method includes calculating the capacitive property based on the first measured current.
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the description serve to explain the principles of the invention. Other embodiments of the present invention and many of the intended advantages of the present invention will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Embodiments provide methods and apparatus for measuring at least one capacitive property of a communication line. In some embodiments, capacitances are measured in an equivalent circuit of a communication line comprising a tip line and a ring line, such as in a communication line of a POTS communication system.
One embodiment determines at least one capacitive property of a communication line comprising a first line and a second line (e.g., in a POTS-communication system) to apply at least a first voltage ramp to the communication line and to measure the current flowing through the communication line during the first voltage ramp.
Embodiments provide a corresponding method for measuring at least one capacitive property of a communication line, a corresponding apparatus for measuring at least one capacitive property of a communication line, and a communication line card including functionalities for measuring at least one capacitive property of a communication line.
One embodiment of a method of measures at least one capacitive property of a communication line which comprises at least a first line and a second line. For example, the communication line may be a two-wire subscriber line in a POTS communication system. In order to determine the at least one capacitive property, at least a first voltage ramp is applied to at least one of the first line and the second line, and a first current flowing via the at least one of the first line and the second line is measured during the first voltage ramp. The capacitive property is then calculated on the basis of the first measured current. When a changing voltage is applied to a capacitor, the current flowing into or from the capacitor is proportional to the rate of voltage change (i.e., the derivative of the voltage as a function of time). By applying a voltage ramp, in which the rate of voltage change has a well-defined magnitude, it is therefore possible with this embodiment to accurately determine a capacitance of the circuit to which the voltage ramp is applied.
In general, also resistances are present in the equivalent circuit of the communication line. According to one embodiment, resistive properties of the communication line are taken into account by further applying a second voltage ramp to the at least one of the first line and the second line and measuring a second current flowing via the at least one of the first line and the second line during the second voltage ramp. In this embodiment, the second voltage ramp is generated in such a manner that it is inverted with respect to the first voltage ramp (i.e., the first voltage ramp and the second voltage ramp can have slopes of equal magnitude and of opposite sign), a start voltage of the second voltage ramp corresponds to an end voltage of the first voltage ramp, and an end voltage of the second voltage ramp corresponds to a start voltage of the first voltage ramp. With such a symmetrical configuration of the first voltage ramp and the second voltage ramp, the capacitive property of the communication line can be calculated by substantially taking the difference of the first measured current and the second measured current. Generally, the measured current comprises a current due to the resistive properties of the communication line and a current due to the capacitive properties of the communication line. The current due to the resistive properties depends on the actual value of the voltage applied to the communication line, whereas the current due to the capacitive property depends, as explained above, on the rate of the voltage change. Therefore, the currents due to the resistive properties cancel out in the difference of the first measured current and the second measured current and the currents due to the capacitive properties are doubled. Consequently, it is possible to accurately determine the capacitive property without any adverse influence on the measurement process from resistive properties of the communication line.
In addition, one embodiment integrates the first measured current and the second measured current and subtracts the integrated first measured current and the integrated second measured current. In one embodiment, the integration is performed over the duration of the first voltage ramp and the second voltage ramp. In other embodiments, it is possible to select other appropriate integration windows. By means of the integration, an improved accuracy can be achieved and transient effects can be eliminated from the result.
In one embodiment, additional measurements are performed so as to take into account, in a more detailed way, the resistive properties of the communication line. In one embodiment, a voltage is applied to at least one of the first line and the second line, to measure the current flowing via the at least one of the first line and the second line, and/or to measure a voltage present at the first line and/or the second line. In such measurements, results are obtained which reflect the resistive properties of the communication line. These results may on the one hand be used for a more detailed determination of the capacitive properties of the communication line (i.e., to determine parameters of a more detailed equivalent circuit of the communication line). On the other hand, these results may be used to determine resistive parameters of the equivalent circuit.
In order to determine a plurality of parameters of the equivalent circuit (i.e., to determine a plurality of capacitive properties or a plurality of resistive properties) one embodiment performs a plurality of measurements in different configurations of the communication line. The different configurations can correspond to switching a first line driver connected to the first line or a second line driver connected to the second line into either a high-impedance state or into a low-impedance state, the latter corresponding to the normal configuration of the line driver. In a configuration in which one of the first line and the second line in an essentially disconnected state by switching the line driver into the high-impedance state, it is possible to obtain measurement results which reflect the coupling of the communication line with respect to ground. The above-mentioned procedures of applying a voltage ramp or a voltage and measuring the current or the voltage can be performed in each of the different configurations. The results from the plurality of measurements can then be combined to determine the different parameters of the equivalent circuit of the communication line. This may, for example, involve solving a linear equation system into which the measurement results are entered.
In case that the communication line essentially corresponds to a two-wire subscriber line of a POTS communication system, the first line and the second line of the communication line correspond to a tip line and a ring line. The equivalent circuit of the communication line may comprise a capacitance between the first line and the second line, a capacitance between the first line and ground, a capacitance between the second line and ground, a resistance between the first line and the second line, a resistance between the first line and ground, and a resistance between the second line and ground.
The functionalities for performing some method embodiments are present in some POTS chip sets or may be easily implemented therein, so that no additional circuitry is needed. In particular, according to an embodiment, a voltage ramp generator for applying the voltage ramp to the communication line may be implemented by a suitably configured ring voltage generator. Further, the first line driver and the second line driver which are used for obtaining the different configurations of the communication line may be included in a subscriber line interface circuit (SLIC) whereas for performing the current measurements and voltage measurements corresponding functionalities of a coder/decoder (CODEC) may be used.
One embodiment of an apparatus measures at least one capacitive property of the communication line. The apparatus comprises a control unit for controlling the process of measuring the at least one capacitive property, a voltage ramp generator, current measurer, and calculator means. As mentioned above, these functionalities can be integrated in a POTS chip set or a line card to be connected to the communication line. The apparatus can be configured to implement the above-described methods.
A line card 1 comprises POTS chipset 2 which on the one hand is used for communication purposes and on the other hand is used for performing measurements of electrical properties of a communication line. In the present case, the communication line comprises a tip line 6 connected to a tip connector 3 and a ring line 7 connected to a ring connector 4 of the line card 1. Electrical properties of the communication line include a resistance Rtr between tip line 6 and ring line 7, a resistance Rtg between tip line 6 and ground 8, a resistance Rrg between ring line 7 and ground 8, a capacitance Ctr between tip line 6 and ring line 7, a capacitance Ctg between tip line 6 and ground 8 and a capacitance Crg between ring line 7 and ground 8. Furthermore, in a connected state, at a far end of the communication line a subscriber device 5 is present, represented by a resistance Re and a capacitance Ce connected in series. The resistances Rtg, Rrg and Rtr are basically leak resistances which, in a fault-free state of the communication line, should be high. The capacitances Ctg, Crg and Ctr are basically parasitic capacitances which, in a fault-free state of the communication line, should be low. Measuring these resistances and capacitances can give valuable information with respect to possible faults.
Generally, the line card 1 may comprise a plurality of POTS circuits or chipsets 2 connected to a plurality of subscriber lines, each subscriber line including a tip line and a ring line. For simplification, only one such POTS circuit is represented.
In
SLIC 9 comprises a first line driver 9A and a second line driver 9B, the first line driver 9A being connected via resistors R1 and R3 to tip connector 3 for driving the tip line 6 of
The first line driver 9A and the second line driver 9B may be activated or deactivated; in a deactivated state they have a high impedance meaning that no or little leakage current may flow via the respective line driver. Typical values are leakage currents smaller than ±30 μA for voltages up to 150 V, however, the leakage current in the deactivated or high-impedance state may be as high as 150 μA corresponding to a resistance of the order of 1 MΩ.
The SLIC 9 can further have the capability of measuring a current flowing into or from tip connector 3 and ring connector 4. Such a functionality is usually provided in commercially available SLICs since it is also needed in normal communication.
The integrated circuit 10 is a circuit which has the capability of measuring voltages present on the tip connector 3 and the ring connector 4. This capability usually is also present in some chips in commercially available POTS chipsets (e.g., for measuring a battery voltage). According to the present embodiment, this functionality is used for line testing purposes.
Integrated circuit 10 is connected to tip connector 3 and ring connector 4 via respective voltage measuring lines.
In some embodiments, integrated circuit 10 comprises a built-in measurement control 10A or control unit which controls the measurements performed by SLIC 9 and integrated circuit 10. However, the control of the measurements which is usually realized by software may also be realized in SLIC 9 or in some other (not illustrated) part of the chipset which is also responsible for controlling the operation of SLIC 9 and integrated circuit 10 during normal communication operation. Further, integrated circuit 10 comprises a voltage ramp generator 11 for generating voltage ramps to be applied to the tip connector 3 and/or the ring connector 4. The voltage ramp generator 11 is implemented as a suitably designed ring voltage generator. In particular, the voltage ramp generator 11 is configured in such a manner that it can generate with a high accuracy voltage ramps which are inverted with respect to each other. This means that, in this embodiment, the slopes of the voltage ramps have exactly the same magnitude but opposite signs and that the start voltage of the second voltage ramp exactly corresponds to the end voltage of the first voltage ramp and that the end voltage of the second voltage ramp exactly corresponds to the start voltage of the first voltage ramp.
In the following, it will be explained how the electrical properties of the communication line (i.e. the resistances Rtg, Rrg and Rtr and the capacitances Ctg, Crg and Ctr) can be measured using the POTS circuitry as explained above. For this purpose, first the measurement of the resistances will be explained. For the measurement of the resistances, the capacitances may be neglected. The values obtained for the resistances may, however, be used when evaluating the capacitances. Therefore in one embodiment, the resistances are evaluated first and then the capacitances are evaluated. Of course, it would also be possible to perform the necessary sets of measurement and then to evaluate the resistances and the capacitances simultaneously. It is possible that capacitive properties can be determined without having to determine the resistive properties of the communication line.
Embodiments of measurement of the resistive properties (i.e., the resistances Rtg, Rrg, Rtr) will in the following be explained with reference to
To determine the resistances Rtg, Rrg and Rtr, three distinctive sets of measurements are performed with different configurations of the communication line.
At 12 of
Next, at 14, a voltage Vt1 at tip connector 3 and a voltage Vr1 at ring connector 4 are measured using integrated circuit 10, and a voltage difference ΔV1 is calculated by measurement control 10A according to ΔV1=Vt1−Vr1. This and the following calculations may, however, be performed in any suitable computing logic provided on line card 1.
At 15, a current It1 flowing between tip connector 3 and ring connector 4 is measured by SLIC 9. Of course, acts or steps at 14 and 15 may be performed simultaneously or in reverse order.
At 16, a transversal voltage having the opposite sign as the transversal voltage applied at 13 is applied to the subscriber line (i.e., the voltage applied by first line driver 9A is now smaller than the voltage applied by second line driver 9B). The magnitude of the transversal voltage applied at 13 and the transversal voltage applied at 16 may be of the same or approximately of the same magnitude.
At 17, the voltage at tip connector 3 Vt2 and the voltage at ring connector 4 Vr2 are measured, and their difference ΔV2=Vt2−Vr2 is calculated, similar to the measurements and calculations performed at 14. At 18, the corresponding current It2 is measured similar to the current It1 measured at 15.
Finally, at 19, a resistance Ra, also called active resistance, is calculated according to
At 20 the first set of measurements ends.
The resistance Ra may be calculated from the resistances Rtg, Rtr and Rrg using Kirchchoff's rules, yielding
For a following second set of measurements, line driver 9A of
Deactivating line driver 9A practically results in disconnecting tip connector 3.
In the second configuration, a second set of measurements schematically represented in the flow chart of
By again using Kirchhoff's rules, it can be shown that
Finally, for a third set of measurements using a third configuration, the second line driver 9B is set to the high impedance state, resulting in the schematic equivalent circuit of
The third set of measurements represented in the flow chart of
Next, at 33, a second voltage is applied to tip connector 3, with the second line driver 9B still being deactivated in its high impedance state. At 34, the same voltages at 32 are measured, designated Vtg4 and Vrg4.
At 35, ΔV5=Vtg3−Vtg4 and ΔV6=Vrg3−Vrg4 are calculated. Finally, at 36, the ratio khr=ΔV5/ΔV6 is calculated, and at 37 the third set of measurements ends. As stated before, the calculations may generally be performed in measurement control 10A.
Using Kirchhoff's rules again, it can be shown that
So far, Ra, kht and khr have been determined, leading to the three equations (2), (3) and (4) for the three variables Rrg, Rtr and Rrg. By solving this set of equations, the variables can be determined. To achieve this, in a first step, equations (3) and (4) may be substituted into equation (2), yielding
Substituting equations (5) and (6) again in equation (2) yields the following result for Rtr:
After Rtr has been calculated according to equation (7), Rrg and Rtg may be calculated using this result and equations (5) and (6), respectively. The results thus calculated will represent the real line condition with a very good accuracy.
There may be cases where Rtr has a high value as compared to the resistances Rtg and Rrg which represent leakages between the tip line and the ring line and ground, respectively. In an even more extreme case, there may be no connection between tip line and ring line, resulting in Rtr being infinite. In this case, as can be seen from equations (5) and (6), the method represented above for calculating Rrg and Rtg is not suitable. In the following, an easy way for determining Rtg and Rrg for this case is presented.
In
At 55, a second voltage different from the voltage applied at 53 is applied to ring connector 4 by line driver 9B, line driver 9A still being in its high impedance state. At 56, the same voltage and current at step 54 are measured as described above, designated by Vrg6 and It4. At 57, ΔV7=Vrg5−Vrg6 and ΔIt3=It3−It4 are calculated. Finally, at 58, Rht=ΔV7/(2×ΔIt3) is calculated (e.g., by measurement control 10A). At 59, the measurement and calculation procedure ends.
Next, it will be shown that in the above-mentioned case according to which Rtr is high or infinite, Rht corresponds to Rrg. It can be shown that
For Rtr having a large value, equation (8) can be simplified to
(i.e., Rht corresponds to Rrg in this case).
In a similar manner, Rtg may be calculated performing the same acts or steps as illustrated in
Consequently, it has been illustrated that Rrg and Rtg can be determined even in case Rtr is high or infinite.
Of course, the measurements and calculations described above only serve as an illustrative example. Using Kirchhoff's rules, many other possible sets of measurements may be carried out in order to determine the resistance values Rrg, Rtr and Rtg. For example, other combinations of voltages applied to tip connector 3 and/or ring connector 4 of
In the following, embodiments of measurement and evaluation of the capacitive properties of the communication line (i.e., of the capacitances Ctg, Crg and Ctr) will be explained with reference to
In general, embodiments of methods described herein take advantage of the fact that capacitances can be measured by applying a time-varying voltage and measuring the current flowing into or from the capacitance. The basic formula on which the capacitance measurement technique used herein is based is
I=C×dU/dt. (11)
As can be seen from equation (11), the capacitance C can be measured as the ratio of the current flowing into or from a capacitor and the slope of a voltage ramp applied to the capacitor. In case of a voltage ramp having a constant slope dU/dt, the resulting current is constant. In the apparatus as illustrated in
The basic idea to cancel out the effect of the resistances Rtg, Rrg and Rtr is to create voltage ramps in two opposite directions, integrate the current measured during the voltage ramps both times over the same period of time, and then subtract the integrated measured currents. The integral of the currents caused by the resistive properties of the communication line is the same in each case and will cancel out in the subtraction. The integral of the currents due to the capacitive properties of the communication line is equal and opposite both times and will sum up to twice the real value. The latter can be easily taken into account in the evaluation, essentially by performing a division by two.
With respect to the integration in one embodiment the integration windows have the same width in both cases. Further, the integration windows can be arranged symmetrically (i.e., the integration windows are positioned in such a manner that a start voltage of the second integration window exactly corresponds to an end voltage of the first integration window and vice versa).
To calculate the values of three independent capacitances (i.e., the capacitances Ctg, Crg and Ctr) three linearly independent equations are employed. Thus, three different parameters are measured which is accomplished by performing the measurements using three different configurations of the communication line. These three different configurations are analogous to the configurations used in the resistance measurements as described above.
In the first configuration, which is illustrated in
The voltage ramps and the measured currents as a function of time t are illustrated in
At 60 of
Next, at 62, the first voltage ramp having a slope SL1 is applied to the communication line, starting from the start voltage, and finishing at an end voltage of the first voltage ramp. At 63, the current flowing from the tip connector 3 to the ring connector 4 during the first voltage ramp is measured and integrated, resulting in an integrated measured current, designated by It5a.
At 64, a second voltage ramp having a slope −SL1 is started from the end voltage of the first voltage ramp, finishing at the start voltage of the first voltage ramp. At 65, the current measured during the second voltage ramp is integrated, resulting in an integrated measured current It5b.
Then, at 66, a current It5 is calculated according to
It5=(It5a−It5b)/2. (12)
At 67, the first set of measurements for determining the capacitive properties ends.
The current It5 can be expressed in terms of the electrical properties of the communication line by the following term:
A second configuration for a second set of measurements for determining the capacitive properties of the communication line is illustrated in
The second set of measurements performed in this configuration is schematically represented in the flowchart of
At 72, a first voltage ramp having a slope SL2 is applied to ring connector 4, starting at the start voltage of the first voltage ramp and finishing at an end voltage of the first voltage ramp.
As compared to the configuration of the first set of measurements for determining the capacitive properties, the voltage ramp is not applied with respect to the tip line 6, but with respect to ground 8. At 73, the current flowing into or from ring connector 4 is measured and integrated so as to result in an integrated measured current It6a.
Next, at 74, a second voltage ramp having a slope −SL2 is applied to ring connector 4, starting at the end voltage of the first voltage ramp and finishing at the start voltage of the first voltage ramp. At 75, the current flowing into or from ring connector 4 during the second voltage ramp is measured and integrated so as to obtain an integrated measured current It6b.
At 76, a current It6 is calculated according to
It6=(It6a−It6b)/2. (14)
The second set of measurements for determining the capacitive properties ends at 77.
The current measured in the second configuration as illustrated in
In equation (15) the parameters j2 and k2 are defined as follows:
A third configuration of the communication line used for a third set of measurements for determining the capacitive properties of the communication line is represented in
The third set of measurements for determining the capacitive properties of the communication line is schematically represented in the flowchart of
At 82, a first voltage ramp having a slope SL3 is applied to tip connector 3, starting at the start voltage and finishing at an end voltage. At 83, the current flowing into or from tip connector 3 during the first voltage ramp is measured and integrated, resulting in an integrated measured current It7a.
At 84, a second voltage ramp having a slope −SL3 is applied to tip connector 3, starting at the end voltage of the first voltage ramp and finishing at the start voltage of the first voltage ramp. At 85, the current flowing into or from tip connector 3 during the second voltage ramp is measured and integrated, resulting in an integrated measured current It7b.
Then, at 86, a current It7 is calculated according to
It7=(It7a−It7b)/2. (18)
At 87, the third set of measurements for determining the capacitive properties of the communication line ends.
The current It7 obtained in the third set of measurements can be expressed in terms of the electric properties of the communication line by the following term:
In equation (19), the terms j3 and k3 are defined as follows:
In the measurements described with reference to
By performing the three sets of measurements for determining the capacitive properties of the communication line, the parameters It5, It6 and It7 have been determined.
These parameters are linked to the electrical properties of the communication line by three linearly independent equations, namely equations (13), (15) and (19). By solving this set of equations, the capacitances Ctg, Crg and Ctr can be determined. Solving the linear equation system yield the following result:
As can be seen, using the results previously obtained for the resistances Rtg, Rrg and Rtr, the capacitances Ctg, Crg and Ctr can be calculated. Of course, it would also be possible to directly calculate the capacitances using the results obtained in the sets of measurements as explained with reference to
Further, it will be appreciated that if a smaller number or only one of the electrical properties of the communication line is of interest, the number of measurements may be reduced accordingly. Generally, for each of the resistances and each of the capacitances one set of measurements will be performed. Moreover, the sets of measurement using a similar configuration, could be combined. In addition, the techniques described above could also be used to estimate the resistance Re and the capacitance Ce of the subscriber equipment 5 connected to the communication line.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
05 011 706.8 | May 2005 | EP | regional |