A user may interact with a computer's projected display. For example, the user may tap, drag and drop, and use other gestures to manipulate graphical user interface elements projected onto the display. If the image projected onto the display is misaligned, a touch of a position may be detected to the right, to the left, or not at all, which can make performing any task frustrating and ruin the user experience. Thus what are needed are method and apparatus to properly align a projected image onto a display.
In the drawings:
Use of the same reference numbers in different figures indicates similar or identical elements.
As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The terms “a” and “an” are intended to denote at least one of a particular element. The term “based on” means based at least in part on. The term “or” is used to refer to a nonexclusive such that “A or B” includes “A but not B,” “B but not A,” and “A and B” unless otherwise indicated.
In examples of the present disclosure, an optical alignment measurement system may use a camera to capture a measurement image projected by a device under test (DUT) on a calibration plate with fiduciary markers to determine if the DUT meets a specification. The accuracy of such an optical measurement is reduced when the camera is not properly aligned with thee calibration plate. The reduced accuracy may result in passing a DUT that is actually out of specification or failing a DUT that actually meets a specification. Thus what are needed are method and apparatus to measure and correct optical misalignment.
In examples of the present disclosure, an image may be a photograph, a digital picture, a frame of a video, or a view from the camera.
Calibration plate 102 is parallel to the XZ plane. Fiducial markers 110 may include a first fiducial marker 112, a second fiducial marker 114, a third fiducial marker 116, and a fourth fiducial marker 118. DUT interface 120 may be a mount with mechanical features to receive a DUT. Camera 140 may be mounted on rotary sub-stage 132 and rotary sub-stage 132 may be mounted on linear sub-stage 134, or camera 140 may be mounted on linear sub-stage 134 and linear sub-stage 134 may be mounted on rotary sub-stage 132. Rotary sub-stage 132 may be rotatable about a vertical Z direction and the linear sub-stage 134 may be translatable along a horizontal X direction.
In block 202, camera 140 of
In block 204, alignment stage 130 of
In block 302, a light pattern from the DUT is projected onto calibration plate 102 of
In block 304, camera 140 is used to capture an image of the light pattern on calibration plate 102 relative to fiducial markers 110. Block 304 may be followed by block 306.
In block 306, it is determined if the DUT meets a specification based on the image.
Fiducial markers 410 may include a first fiducial marker 412, a second fiducial marker 414, a third fiducial marker 416, and a fourth fiducial marker 418. Camera 440 may be mounted on rotary sub-stage 432, rotary sub-stage 432 may be mounted on linear sub-stage stage 434, and linear sub-stage 434 may be mounted on rotary sub-stage 436. The order of rotary sub-stage 432, linear sub-stage 434, and rotary sub-stage 436 may be switched. Rotary sub-stage 432 may be rotatable about a vertical Z direction, linear sub stage 434 may be translatable along, a horizontal X direction, and rotary sub stage 436 may be rotatable about a horizontal Y direction.
Controller 460 may he coupled to camera 440 and alignment stage 430. Controller 460 is to capture an image of calibration plate 402 with camera 440 and determine adjustments to alignment stage 430 based on locations of the fiducial markers 410 in the image.
In some examples of the present disclosure, fiducial markers 410 are circles located at corners of an imaginary quadrilateral, such as a square or a rectangle. In other examples of the present disclosure, fiducial markers 410 are squares or crosses located at corners of an imaginary rectangle.
In examples of the present disclosure, DUT 422 may be a projector. The projector may have adjustable focus and lens shift (e.g., where the projected image may be shifted up, down, left, or right).
In block 502, controller 460 uses camera 440 of
In block 504, controller 460 determines the locations of fiducial markers 412, 414, 416, and 418 of
In block 506, controller 460 determines if a first distance between diagonally opposed first fiducial marker 412 and second fiducial marker 414 in the image is the same as a second distance between diagonally opposed third fiducial marker 416 and fourth fiducial marker 418 in the image. If so, block 506 may be followed by block 510. Otherwise, block 506 may be followed by block 508.
In some examples of the present disclosure, the first distance is considered to be the same as the second distance when the first distance is greater than 99% of the second distance and is smaller than 101% of the second distance. In other examples of the present disclosure, the first distance is considered to be the same as the second distance when the first distance is greater than 99.9% of the second distance and is smaller than 100.1% of the second distance.
In block 508, when the first and second distances are determined to be unequal in block 506, controller 460 adjusts rotary sub-stage 432 of
In block 510, controller 460 determines if a line between a first midpoint between first fiducial marker 412 and third fiducial marker 416 in the image to new image if adjustment was made in block 508) and a second midpoint between second fiducial marker 414 and fourth fiducial marker 418 in the image is vertical. If so, block 510 may be followed by block 514. Otherwise, block 510 may be followed by block 512.
The line under investigation is considered to be vertical when the line is vertical in the image. In some examples of the present disclosure the line under investigation is considered to be vertical in the image when the line is greater than 89 degrees and is smaller than 91 degrees. In other examples of the present disclosure, the line under investigation is considered to be vertical when the line is greater than 89.9 degrees and is smaller than 90.1 degrees.
In block 512, when the line under investigation from block 510 is determined to be non-vertical, controller 460 adjusts rotary sub-stage 436 of
In block 514, controller 460 determines if the line between a first midpoint between first fiducial marker 412 and third fiducial marker 416 in the image (a new image if adjustment was made in block 508 or 512) and a second midpoint between second fiducial marker 414 and fourth fiducial marker 418 in the image is centered. If so, block 514 may be followed by block 518, which ends method 500. If not, block 514 may be followed by block 516.
The line under investigation is centered when the line is centered in the image. In examples of the present disclosure, the line under investigation is considered to be centered in the image when a first distance from the line to a left edge of the image is greater than 99% of a second distance from the line to a right edge of the image, and the first distance and is smaller than 101% of the second distance. In other examples of the present disclosure, the line under investigation is considered to be centered in the image when the first distance is greater than 99.9% of the second distance and smaller than 100.1% of the second distance.
In block 516, when the line under investigation from block 514 is not centered, controller 460 adjusts linear sub-stage 434 to translate camera 440 along the horizontal X direction until the line under investigation from block 514 is centered in a new image captured by camera 440.
In block 602, controller 460 causes DUT 422 of
In block 604, controller 460 uses camera 440 to capture an image of the first light pattern on calibration plate 402 relative to the fiducial markers 410 of
In block 606, controller 460 determines the locations of the circular fiducial markers 412, 414, 416, and 418 of
In block 608, controller 460 determines the edges of the first light pattern in the image. Controller 460 then determines locations of the corners of the light pattern from the intersections of the edges. Block 608 may be followed by block 610.
In block 610, controller 460 determines if the corners determined in block 608 are located substantially at centers of the circular fiducial markers 412, 414, 416, and 418 of
In block 612, controller 460 causes DUI 422 to project a second light pattern onto calibration plate 402. The light pattern may be a checkerboard. Block 612 may be followed by block 614.
In block 614, controller 460 uses camera 440 to capture an image of the second light pattern on calibration plate 402. Block 614 may be followed by block 616.
In block 616, controller 460 detects peripheral edges of the second light pattern in image. Block 616 may be followed by block 618.
In block 618, controller 460 determines if DUT 422 produces a pincushion or barrel distortion from the peripheral edges. If so, block 618 may be followed by block 622. Otherwise block 618 may be followed by block 620.
In block 620, DUT 422 passes the test because the corners determined in block 608 are located substantially at centers of the circular fiducial markers 412, 414, 416, and 418 and DUT 422 has lens distortion.
In block 622, OUT 422 fails the test because the corners determined in block 608 are not located substantially at centers of the circular fiducial markers 412, 414, 416, and 418 or DUT 422 has lens distortion.
In examples of the present disclosure, processor 706 executes instructions 702 on non-transitory computer readable medium 704 to use camera 440 of
In examples of the present disclosure, processor 706 executes instructions 702 on non-transitory computer readable medium 704 to determine if a first distance between diagonally opposed first fiducial marker 412 and second fiducial marker 414 of
In examples of the present disclosure, processor 706 executes instructions 702 on the non-transitory computer readable medium 704 to determine if a line between a first midpoint between first fiducial marker 412 and third fiducial marker 416 of
In examples of the present disclosure, processor 706 executes instructions 702 on the non-transitory computer readable medium 704 to determine if the line is centered and adjust the alignment stage 430 of
In examples of the present disclosure, processor 706 executes instructions 702 on the non-transitory computer readable medium to determine if DUT 422 of
In examples of the present disclosure, processor 706 executes instructions 702 on the. non-transitory computer readable medium to determine if DUT 422 of
Various other adaptations and combinations of features of the examples disclosed are within the scope of the disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/049295 | 7/31/2014 | WO | 00 |