The present invention relates generally a system that can be used to measure force, distance and/or contact during robotic manipulation. More specifically, the present invention relates to a measurement system comprising a low-cost tactile sensor that combines force and distance measurements and can be retro-fitted to existing robotic grippers and hands.
Grasping and manipulation remain hard challenges in robotics. After identifying an object's pose, a robot's end-effector needs to be controlled so that impact with the object provides a sufficient number of constraints for successful pick-up while maintaining the object's pose until all desired contact points are reached, thereby preventing the object from moving out of the end-effector's reach. There exist complementary approaches to tackle subsets of the grasping problem, ranging from relying on compliance of the gripper's material, pushing the object to exploit environmental constraints, obtaining a precise 3D model of the object and calculating an appropriate grasp, to using visual servoing to make up for uncertainty in sensing and actuation. In practice, each class of solutions addresses a very narrow range of problems and presents distinct challenges. For example, most compliant hands exclusively rely on compliance to successfully grasp an object once its pose has been determined. Touch sensors have been used to determine whether the grasp is successful, but cannot be used to improve the grasp prior to contact. Exploiting environmental constraints such as walls or a bowl has been shown to increase grasping success, but planning such a motion requires precise knowledge of the environment's geometry and would benefit from active sensing to determine whether an object has reached a desired pose. Using 3D sensing suffers from uncertainty in both sensing and actuation, making reliable grasps very difficult, regardless of the type of end-effector used. While visual servoing might help alleviate this challenge by allowing to make up for errors in sensing and actuation, it requires precise registration of an object's geometry, which is difficult in particular when the hand comes close to the object and thereby shields it from external sensors mounted on the wrist or elsewhere on the robot.
Combining compliance, planning and reactive control is a promising avenue. Using simple infrared distance sensors within a robotic gripper for reactive control during the final phase of grasping has been proposed. Similarly, reactive control can be based on finger torque, curvature or contact itself, which can be achieved by a large number of sensing modalities ranging from capacitive to resistive and optical. Commercially successful systems (that is, widely deployed) in-hand sensors however are virtually non-existing as of yet as they are difficult to manufacture and expensive. At the same time, the algorithmic foundations for reactive grasp planning are only sparsely developed, with most of the focus on the sense-plan-act model that requires precise sensing and actuation.
While there exist a myriad of both distance and pressure sensors, none of them are commercially successful as they are costly to manufacture and often impractical to use. The dominating paradigm for locating objects and determining grasp points is therefore to use external sensors such as cameras and depth sensors. These sensors do not have sufficient resolution and fail in cluttered or hard-to-reach environments, such as reaching inside a shelf.
Accordingly, it is desirable to provide a low-cost measurement system and method to measure force, distance and/or contact during robotic manipulation using commodity infrared proximity sensors.
Presented herein is a measurement system comprising at least one low-cost tactile sensor embedded in elastomer that combines force and distance measurements. The proposed sensor can be simple to manufacture and easy to integrate with existing hardware. The invention also comprises a low-cost method to measure force, distance and/or contact using at least one commodity infrared proximity sensor that can be retro-fitted to existing robotic grippers and hands. The sensor can be less than 1 cm2 and can be arranged in strips and arrays, drastically facilitating manipulation tasks in uncertain environments. The elastomer can protect the sensor, provide a rugged and low-friction surface, as well as allow performing force measurements using Hooke's law.
The sensor comprises a commodity digital infrared distance sensor that is embedded in a soft polymer, which doubles as a spring for force measurements based on Hooke's law. The strong dependence of infrared-based sensors on surface properties can be overcome by exploiting the discontinuity that the elastomer coating introduces into the sensor response.
Related methods of operation are also provided. Other apparatuses, methods, systems, features, and advantages of the force, distance and/or contact measurement system will be or become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional apparatuses, methods, systems, features, and advantages be included within this description, be within the scope of the force, distance and/or contact measurement system, and be protected by the accompanying claims.
The present invention can be understood more readily by reference to the following detailed description, examples, and claims, and their previous and following description. Before the present system, devices, and/or methods are disclosed and described, it is to be understood that this invention is not limited to the specific systems, devices, and/or methods disclosed unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description of the invention is provided as an enabling teaching of the invention in its best, currently known aspect. Those skilled in the relevant art will recognize that many changes can be made to the aspects described, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a “sensor” includes aspects having two or more such sensors unless the context clearly indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The application relates to systems and methods for measuring force, distance and contact during robotic manipulation. In one aspect, the system 10 comprises at least one infrared proximity sensor 12 embedded in a polymer 14 as illustrated in
As used herein, the term “contact” means the event when both distance and force are zero. For example, a robot contacts an object to be manipulated when the distance from the robot to the object is zero, and when the force exerted by the robot on the object is zero.
Infrared sensors can be strongly non-linear, dependent on the surface properties of sensed objects, and sensitive to cross-talk from other sensors or infrared light in the environment. Increasing use in consumer electronics such as smart phones has led to a new generation of devices that improve cross-sensitivity by integrating sensor and emitter with digital signal processing.
In one aspect, the sensor 12 can be an integrated proximity and ambient light sensor such as, for example and without limitation, a VCNL 4010 sensor marketed by Vishay Semiconductors. This device has a relatively miniature 3.95×3.95×0.75 mm3 package which combines an infrared emitter and PIN photodiode for proximity measurement, ambient light sensor, a signal processing IC, a 16 bit ADC, and inter-integrated-circuit (I2C) communication interface. The chip allows setting a large variety of parameters. For example, one parameter can be the emitter current (20 mA to 200 mA in increments of 10 mA). In another example, a parameter can be the carrier frequency in the range from 390.625 kHz-3.125 MHz in four increments. The emitter current should not be confused with the actual power consumption, which is less than 4 mA when performing 250 measurements per second at full (200 mA) power, and in the order of μA when doing 10 or less measurements per second.
In one aspect, the at least one sensor 12 can be a single embedded sensor. In other aspects, the sensor can comprise a plurality of embedded sensors arranged in an array. That is, the plurality of sensors 12 can be arranged in n x m array, where n and m can be one, two, three, four, five, six, seven, eight, none, ten or more than ten. For example, the plurality of sensors can be arranged in a 1×8 array positioned on the finger of a gripper 16, an 8×8 array positioned on the hand of a gripper, a 20×20 array positioned on a gripper and the like. In another example, the system of
Each sensor 12 can be embedded in a polymer, such as for example and without limitation, an elastomer 14. In one aspect, the polymer can be a transparent polymer (to infrared light) when cured. That is, the sensor can be embedded in a polymer that is transparent to the sensor 12. In another aspect, the polymer 14 can be, for example and without limitation, polydimethylsiloxane, (“PDMS”) such as Dow Corning Sylgard 184 and the like. PDMS is a widely used silicon elastomer, whose mechanical and optical properties are known. PDMS is simple to manufacture and cheap, while providing good transparency and mechanical properties such as resistance to chemical and mechanical abrasion. The elastomer can protect the sensor and provide a rugged and low-friction surface, as well as allow performing force measurements using Hooke's law. Further, adding the elastomer introduces an infliction point in sensor response upon contact which can be detected by simple signal processing. It can therefore possible to determine contact independently of the surface properties, as well as calibrating the sensor on the fly.
The integrated infrared emitter of the sensor 12 has a peak wavelength. For example, if the sensor is a VCNL 4010, the peak wavelength can be about 890 nm. The light from the emitter passes through the PDMS in which the sensor is embedded. The emitted light can then reflected by nearby objects and received by a photo-receiver of the sensor. The amplitude and phase of the received light vary as a function of the distance to the surface, and the surface orientation, color and texture.
Due to the quadratic decay of light amplitude with distance, the sensor 12 can have its highest resolution right after its minimum range, for example 0.5 mm. It can therefore be possible to measure small variations in distance in the order of hundredths of millimeters. In one aspect, this effect can be exploited by measuring the elastic deformation that occurs when an object is pressed against the sensor. As the elastomer acts like a spring with a constant Young's modulus E, the force is given by
with A the contact area over the sensor, d the width of the PDMS layer and Δx the measured deformation. Note that the sensor area can be constant and smaller than the actual contact area of typical objects. Yet, the value of F can be approximate as PDMS cannot be infinitely compressed and eventually changes its absorption properties.
Let the emitted light intensity be I0 and the measured reflected intensity from an object be I. Let the thickness of the rubber be d and the distance to the object x. Depending on the index of refraction of the rubber material, a fraction R of the light will be reflected from the interface between rubber and air, a fraction κ will be scattered, and a fraction A will be absorbed at the target surface. Assuming that the light intensity decays quadratically with distance, the amount of returned infrared light can be approximated as
The reflection at the PDMS/air interface can be calculated using the Fresnel equation, which reduces to
for normal incidence. With the refractive index of PDMS n1≈1.41 and that of air n2≈1, around 2.9% of the light can get reflected from the internal surface of the PDMS as well as on the outside on the return path.
This formalism helps to better understand certain edge cases. First, when d<<x, the light intensity at the receiver is dominated by I0R 1/d2, which leads to saturation of the sensor. The width d of the PDMS therefore governs the maximum current at which the sensor can be operated and thereby the maximum attainable range. At the same time, the width governs the maximum allowable Δx and thereby the maximum force and its resolution that the sensor can measure.
Once the object touches the sensor surface, i.e. x=0, (2) reduces to a constant which is a function of material properties. After touching, the PDMS gets compressed by
leading to
Note that (4) still depends on the surface reflectance A, which therefore needs to be known for accurate force measurements. As Ix=0=const and the derivative of (2) increasing when approaching zero, while the derivative of (4) decreasing, x=0 appears to be an inflection point, which possibly could be detected in recordings of I.
In one aspect, the at least one infrared sensor 12 requires few external components, such as, for example and without limitation, 3 capacitors. Encapsulation of the sensor in a polymer such as PDMS 14 can be readily accomplished by fixing the circuit board in a mold and pouring the liquid polymer in it. The elastomer then cures to form a robust and compliant rubber contact surface for grasping and manipulation. Illustrations of the process are shown in
In order to avoid air being trapped at the interface between PDMS 14 and the sensor 12, the assembly can be degassed in a vacuum chamber, according to one aspect. The PDMS can then be cured in an oven at 70° C. for about 20 minutes. To accurately study the optical properties of amorphous PDMS, it can be useful to purify the raw materials before the mixing process to avoid extrinsic losses, e.g. by particle scattering. The base material and coupling agents can thus be filtered using a cellulose-mix-ester membrane filter having a pore size of about 0.2 μm. The entire sensor preparation process can take around 5 hours per pair.
To experimentally characterize the performance of the proposed tactile sensor 12, the response of an individual sensor can first be characterized. Then the sensing capabilities of a complete array of sensors can be characterized by installing the array on a parallel gripper 16.
Single-point measurements at distances from 0 to 6 cm in increments of 1 cm can be recorded, as well as force from 1N to 5N in increments of 1N for current values from 40 mA to 200 mA in increments of 40 mA (
The thickness of PDMS 14 can have an effect on the amount of light absorbed and scattered within the PDMS material. However, the amount of light reflected back from the air-PDMS surface can remain the same regardless of the thickness of the PDMS as the amount of reflection can depend only on the refractive indexes of the material.
The mid-infrared transmission of thin PDMS film can be characterized using Fourier Transform Infrared (FT-IR) Spectrometry. The transmittance of infrared light can depend on the mixing ratio of two parts causing the composition of PDMS to change; for example, a lower mixing ratio can result in higher transmittance. Maximum transmittance of about 95% can be found between wavenumbers 2490-2231 cm−1 with mixing ratios of 8:1. To compare the results at wavenumbers 12500-10526 cm−1 (800-950 nm), three mixtures of PDMS with different mixing ratio of the base and curing agent (5:1, 10:1, and 12:1) were prepared.
For calibrating the relationship between the sensor 12 reading and actual distance, the sensitivity of the sensor to surface reflectance was characterized. The data for different distances across a variety of sensors for white paper was recorded. A width of 6 mm at a mixing rate of 8:1 was chosen due to the higher dynamic range in both the distance and force regime.
The intensity of light reflected from objects can be dependent on the color, pose and surface properties of the object. Five different colored target cardboard papers (red, yellow, white, gray and black, Canson, 150 gsm) were chosen. The colored cardboard papers were mounted on a screen shown in
The reflectance for a variety of colors can be in the range of 0.9 (gray) to 1.0 (white), whereas black cardboard has a reflectance of 0.12. Cardboard of all colors can be more reflective than wood (0.77), brick (0.61) or concrete (0.53), but less reflective than surfaces such as polished plastic or china.
In order to obtain a relationship between sensor 12 readings and actual distance, data from fourteen different sensors and white paper was recorded. Seven sensors were soldered in a line at 10 mm spacing to a rigid PCB as illustrated in
This data was fitted with a function of the form y=axb+c using MATLAB's curve fitting toolbox's trustregion method and bisquare weighting of outliers. The candidate function corresponds to physical intuition (with b=−2) and can be inverted to
Notice that the denominator of the above equation includes the b-th root, which yields complex values for y<c. This can be the case whenever a sensor 12 reading falls below the asymptote of the fitted curve, which can be the case for farther-away measurements. Therefore all measurements can be converted into a decibel scale using log10 I/I∞, where I∞ is the measurement obtained in plain air. With b≈−1 after fitting on the log-scale, all distance measurements remain real. The fit as well as absolute error for both the raw and PDMS-coated sensors are shown in
As force measurement can be susceptive to surface reflectance, fits for a variety of colored papers were performed using data from
The at least one sensor 12 can be mounted on the parallel gripper 16 of a robot, such as for example and without limitation, the Baxter robot from Rethink Robotics, which is equipped with two 7-DOF arms. The size of each finger sensor can be 80×2×1 mm (
Proximity sensing can first be used to center a gripper 16 around an object. This can be helpful because successful grasping can require both fingers to simultaneously make contact. For example, grasping a cup at its handle induces a turning motion that needs to be counteracted by the opposite finger before the cup has turned out of the robot's grasp. Similarly, removing a block from a Jenga tower requires the gripper to create force-closure with the block while inducing a minimum amount of motion on the block itself.
Assuming the surface properties (reflectance) are the same on both sides of the object, data shown in
Force sensing can be used to determine the location of incidence of an object on the gripper.
Given the material parameters, in-hand proximity sensing can be used to augment, and possibly register against, conventional 3D sensing. The robot arm can be programmed to reach a specified scanning position on the table in a position shown in
A toy airplane form the YCB object set which has a highly reflecting surface was also selected.
The sensor 12 of the present application has a series of design parameters comprising the choice of the material itself, its mixing ratio, its thickness, and the current at which the emitter operates. Each of these parameters can affect the sensors' range, dynamic range, and thereby resolution and accuracy. While far from exhaustive, systematic experiments presented here highlight important trends, and allow obtaining a good trade-off between ranging and force sensing capabilities.
Though roughly following the form y=axb+c, this approximation introduces non-negligible systematic error, an effect that gets amplified by adding a PDMS layer, which introduces another constant to the denominator of (2). While better non-linear approximations could be found, e.g., using support vector machines or training a neural network, the sensor 12 an be sensitive to surface properties. For example, black paper is five times less reflecting than white paper, whereas shiny objects are more reflecting. However, most practical application of the sensor might not require calibration at all. Indeed, centering around an object only requires equalizing sensor readings, which are both monotonously increasing and continuous from infinity to 5N force.
Moreover, it can be possible for the system 10 to take measurements independently of surface reflectivity by looking at peaks in the derivative of the signal emitted from the sensor 12.
Further, the shape of the function that relates distance/force/contact measurements to raw sensor 12 readings is of similar quality independent of the surface properties, thickness, mixing ratio, and current, with an infliction point at the contact point. Performing a firm grasp on an unknown object such as the panhandle in
Squeezing an object might also provide insight for tuning the sensing current. For example, the sensor 12 current could be reduced until the sensor saturates at a value below the maximum reading, and calibration data could be obtained during a second squeeze.
Another limitation of optical proximity sensors can be their dependence on the angle of incidence. While this is not noticed with rotation symmetric objects such as those used here, scanning a rectangular object using a circular swivel motion, e.g., could cause the object to appear elliptical. As the resulting error is well quantified, contact information can be exploited to estimate the angle of a surface. Similarly, sensor-based motion planning techniques could allow complete reconstruction of a 3D object and/or registering it with information obtained by other sensors such as vision and depth.
An integrated force, distance and/or contact sensor 12 is provided that can be simple to manufacture and low-cost, yet providing a series of benefits that conventionally required much more complex sensors. As expected with infrared-based sensors, the sensor can be strongly nonlinear, highly sensitive to surface properties and has poor lateral resolution when compared with ray-based or RGBD sensors.
Nevertheless, the sensor has a wide range of use cases that facilitate grasping and manipulation ranging from contact point detection, determining grasp points, to object registration, and can possibly be improved by improved sensor models and sensor-based motion planning strategies. The necessary processing could be co-located with the sensor, allowing it to autonomously identify surface properties of an object and adapt accordingly.
Although several aspects of the invention have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other aspects of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific aspects disclosed hereinabove, and that many modifications and other aspects are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims that follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention.
This application claims the benefit of U.S. Provisional Application No. 62/322,469, filed on Apr. 14, 2016 which is herein incorporated by reference in its entirety.
This invention was made with government support under grant number FA9550-15-1-0238, awarded by the U.S. Air Force. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62322469 | Apr 2016 | US |