Field
The present disclosure relates generally to methods for cutting and separating strengthened glass sheets into smaller sheet segments, and more specifically to methods for mechanical cutting and separating strengthened glass substrates without inducing undesired sheet breakage.
Technical Background
Chemically strengthened glass sheet has been used in a wide range of applications including protective cover glasses for consumer electronic devices. The ion-exchange process used for chemical strengthening creates a layer of compressive stress on glass surfaces that provides the desired increase in surface damage resistance, but at the same time results in a tensile stress in the mid-section across the thickness of glass.
To obtain chemically strengthened glass sheet components in accordance with current practice, the components are first cut as sheet segments from non-strengthened (non-ion exchanged) glass sheet into the final shape for the desired component, with finishing of the segment edges and shapes to meet aesthetic and functional objectives. Thereafter the glass components go through the ion-exchange strengthening process by immersing the sheet segments into an ion-exchange bath at an optimum elevated temperature and for a time sufficient to develop an engineered stress profile across glass thickness that provides the required surface strengthening effect. Thereafter the components are removed from the bath and cleaned for further processing.
As the applications for chemically strengthened glass widen to cover emerging technologies, such as devices with integrated touch screens, display manufacturers require the ion-exchanged glass to be supplied in larger sheets of glass, for subsequent cutting into the various sizes and shapes of the final components. To reduce the number of components used to support the functionality of touch screen devices, and to lower manufacturing costs, it is increasingly required that the cutting and separation process steps for medium-to-large-size glass panels be conducted on panels previously subjected to ion-exchange strengthening.
Currently available mechanical methods and processes for cutting glass sheet, including thin drawn glass sheet of the kind used for small and large information display panels, have not yet been successfully adapted to the cutting of ion-exchange-strengthened glass without causing glass cracking, due to the relatively high frangibility of many chemically strengthened glasses. Thus increased attention is presently being focused on specialized processes, such as water-jet cutting and the so-called “wet-etching” processes, to enable the efficient cutting and separation of chemically strengthened glasses. Many of these procedures are time-consuming and expensive, however, so there remains a need for an economical yet effective method for separating relatively frangible chemically strengthened glass sheet into sheet segments of predetermined sizes and shapes.
In accordance with the present disclosure, methods for the cutting and separation of large-sheet chemically strengthened glass into smaller strengthened sheet segments of predetermined size and shape are provided. Economical mechanical scoring process parameters, in combination with improved separation techniques, can secure clean sheet separation even in thin glass sheets incorporating high levels of compressive surface stress. Further, the disclosed methods can readily be adapted for use in presently existing manufacturing environments.
In a first aspect, therefore, the disclosure encompasses methods for scribing a strengthened glass sheet without inducing sheet separation or breakage. Those methods comprise, first, forming a crack initiation site in a first surface of the glass sheet, at a location proximate to a first edge of the sheet. The glass sheet is chemically strengthened sheet having a surface compression layer of a given depth (a depth “DOL”), and the crack initiation site formed at the location proximate to the first edge of the sheet comprises a surface indentation extending into the first surface.
Following the formation of the crack initiation site, the first surface is mechanically scored from the crack initiation site toward a second edge of the glass sheet such as the opposite edge of the sheet to scribe a vent line in the surface. For the purpose of the present description a vent line is an indentation line formed in the sheet surface that opens that surface to a certain depth. In accordance with the present methods the vent line extends into the first surface of the sheet to a vent depth at least equal to the depth DOL, but less than a fracture depth, i.e., a depth causing a spontaneous and complete separation of the glass sheet into sheet segments or other pieces.
In a second aspect the disclosure provides methods for separating chemically strengthened glass sheet incorporating surface compression layers into two or more sheet segments. Those methods utilize vent lines provided in accordance with the foregoing description and/or by other suitable procedures. In accordance with those methods a vent line is first provided on a first surface of the sheet, that vent line extending into the surface to a vent depth at least equal to the depth of the surface compression layer (e.g., a depth DOL), but less than a fracture depth causing separation of the glass sheet. Thereafter a uniform bending moment is applied across the vent line on the first surface, the bending moment being of a sufficient magnitude (i.e., generating sufficient surface stress) to separate the glass sheet into glass segments along the vent line. A fracture initiation site or sites such as above described may be provided at vent line ends to improve separation efficiency if desired.
Other aspects of the presently disclosed methods are described below, in part with reference to the appended drawings wherein:
Although the methods disclosed herein are generally applicable to the segmentation of a wide variety of sheet glass articles and materials into smaller sheet glass segments, particular embodiments of those methods as hereinafter more fully described incorporate processing steps bounded by particular ranges of parameters that are especially effective for the scribing and segmenting highly strengthened and toughened glasses such as are presently demanded for information displays to be subjected to severe conditions of use. Thus the following descriptions and illustrative examples are particularly directed to such embodiments even though the practice of the disclosed methods is not limited thereto.
Chemically strengthened glass sheets are essentially glass substrates incorporating engineered stress profiles across their thicknesses, with surface portions of the sheets being brought to high levels of compressive stress, and interior portions into tensile stress, in the course of chemical strengthening. Glass sheets having thicknesses not exceeding 1.5 mm, when comprising surface compression layers exhibiting a peak compressive stress in the range of 400-900 MPa and a depth of compression layer (DOL) in the range of 5-100 μm, are typical of the sheets being employed for information display applications. Thus they comprise an important category of technical materials for which the presently disclosed methods of sheet separation offer particular economic and technical advantages.
The scoring of such sheets utilizing techniques developed for the separation of large glass sheets such as used for LCD display substrates typically leads to glass cracking. According to theory, when a scoring force is applied to an ion-exchange-strengthened glass article that is adequate to overcome the surface compressive stress and initiate median cracking into the tensilely stressed interior of the article, the crack simply propagates uncontrollably to cause spontaneous breakage of the article.
In accordance with selected embodiments of the disclosed methods, however, an abrasive scoring wheel with an appropriately selected geometry is used to initiate controlled mechanical damage that can overcome the residual surface compressive stress without undesired sheet separation or breakage. In particular embodiments a 2 mm-diameter diamond scribing wheel with a suitably tapered circumferential scoring edge can be used for the purpose. As a particular example, a scribing wheel with an edge taper angle in the range of 90-140°, or even 110-115°, can effect the successful scribing of a non-crack-propagating vent line in a 1.1 mm thick sheet of ion-exchanged glass having a maximum (outer surface) compressive stress in the range of 400-900 MPa, particularly in cases where the compressively stressed surface layers have layer depths (DOL) in the range of 5-100 μm. These wheel taper angles can provide median crack depths (vent depths) equal to as much as 10-20% of glass thickness without causing self-separation of the glass sheet during the scribing process.
The selection of any particular wheel taper angle within these ranges can be guided by the particular scoring speed and scoring wheel force (stress level against the glass surface) selected for vent line scoring. As illustrative embodiments of suitable scoring parameters, scoring speeds in the range of 50-500 mm/s and scribing loads in the range of 10-30N, e.g., a scoring speed of 150 mm/s and a scribing load in the range of 18-21 N, can be used.
In accordance with selected embodiments of the disclosed methods, however, an abrasive scoring wheel with an appropriately selected geometry is used to initiate controlled mechanical damage that can overcome the residual surface compressive stress without undesired sheet separation or breakage. In particular embodiments a 2 mm-diameter diamond scribing wheel with a suitably tapered circumferential scoring edge can be used for the purpose. As a particular example, a scribing wheel with an edge taper angle in the range of 90-140°, or even 110-115°, can effect the successful scribing of a non-crack-propagating vent line in a 1.1 mm thick sheet of ion-exchanged glass having a maximum (outer surface) compressive stress in the range of 400-900 MPa, particularly in cases where the compressively stressed surface layers have layer depths (DOL) in the range of 5-100 μm and the level of central tension (CT) is less than 50 MPa. These wheel taper angles can provide median crack depths (vent depths) equal to as much as 10-20% of glass thickness without causing self-separation of the glass sheet during the scribing process.
As depicted in
In particular embodiments, indentation depths (h) will fall in the range DOL≦h≦3DOL, where DOL is the depth of the surface compression layer 14 provided on the strengthened glass sheet 10. In that range the indentations need to extend only a short distance inwardly from the edges of the sheets 10.
Also useful in controlling the level of edge and surface damage at crack initiation sites 21 is the use of relatively low scribing speeds. Thus to avoid excessive crack propagation from those sites 21 that could cause spontaneous sheet cracking or sheet separation in the course scribing vent lines 34 in the sheets 10, crack initiation scribing speeds will generally be lower in mm/sec than the scribing speed employed for vent line scoring. The size and shape of the resulting surface indentations can vary, but indentation shapes in the form of “half-penny” or “semi-circular” flaws that are absent radial cracks extending from the indentations provide good results under most scribing and separating conditions.
a of the drawings schematically illustrate the step of providing a crack initiation site proximate to the edge of a chemically strengthened glass sheet 10 in accordance with the disclosed methods. As shown in
As depicted in
For the purpose of separating scribed sheets of chemically strengthened glass into strengthened sheet segments, mechanical breaker apparatus rather than hand breaking is employed. In general, hand breaking cannot generate bending stresses that are sufficiently uniform along the lengths and across the widths of the scribed sheets to guide crack propagation from one sheet edge to another without risking crack deviation and thus uncontrolled sheet breakage.
Mechanical breaker arms can apply uniform bending moments/separation forces across scribe lines along the entire lengths of those lines. Further, close control over the magnitudes and rates of application of the applied bending/separation forces can be secured through such means. The levels of bending force to be employed for the controlled separation of sheets provided with vent lines as herein described will depend on variables such as the thicknesses and elastic properties of the glass, the stress profiles present across the thicknesses of the strengthened sheets, and the depths and widths of the vent lines. However, the particular bending rates and forces to be selected in any particular case can readily be determined by routine experiment.
The selected bending forces may be applied by cantilever beam bending or by three-point bending, but in all cases are applied in a direction effective to develop tensional stress across the vent lines provided in the glass surface. As examples of particular embodiments of sheet separation methods such as herein described, tensional bending stresses of 10-35 MPa, or in the narrower range of 20-25 MPa, will be used. In three-point bending, the tensional stress is generated through the application of a mechanical force to a second surface of the glass sheet opposite the first surface.
In particular three-point-bending embodiments of the disclosed separation methods, the scribed sheets are supported on a compliant support surface during the application of a mechanical breaking force to the sheets. The sheets are positioned on the supports with the vent lines facing the support surfaces, and mechanical breaking forces are then applied to the sheets on the sheet surfaces opposite the vent lines.
In breaking methods involving 3-point bending against compliant support surfaces, the desired flexure and breakage of the sheets along vent lines is favored by providing surface grooves in the support surfaces. The vent lines in the sheet surface in those embodiments are positioned over and in alignment with the grooves in the support surfaces to facilitate sheet deflection during the application of the mechanical force.
When the elements of the illustrated assembly are brought into contact with each other, the breaker bar can effect separation of glass sheet 40 along leftmost vent line 44 through the application of a downward force F to the top surface of sheet 40. That force creates tensional stress across leftmost vent line 44 through the flexure of sheet 40 downwardly into groove 50b of compliant support member 50, resulting in sheet separation caused by three-point bending of the sheet. In some embodiments, those portions of the cross-vented glass sheet 40 not being subjected to downward force by breaker bar 60 can be stabilized through the application of a uniform clamping pressure broadly applied to glass sheet 40 and underlying compliant support member 50 over the clamping area indicated as area A in
Variations in processing parameters and equipment specifications useful in the practice of selected embodiments of the disclosed methods are presented in the following illustrative descriptions. One consideration affecting scribing effectiveness in some cases relates to the choice of rotating abrasive scoring wheels for forming the scribed vent lines. Steeper wheel taper angles, e.g., taper angles in the range of 110-125° can be effectively employed with wheels of relatively small diameter, i.e., diameters in the 2-4 mm range. Ground abrasive wheel surfaces, as opposed to surfaces that have been finished by polishing, are particularly suitable for the scribing of highly compressed glass surfaces, and are commercially available. Suitable materials for fashioning abrasive scoring wheels or other scoring implements include tungsten carbide and diamond, the latter including either single crystal or polycrystalline diamond (PCD). Scoring wheel surface finishes in the range of 0.25 μm (+/−0.15 μm) as measured by Zygo white light interferometer provide good results.
The use of such wheels in combination with appropriately selected scoring speeds and scribing loads help to prevent full-body sheet separation during the scribing process, and to minimize surface chipping adjacent separated surfaces. The use of a computer controlled vision system to position the strengthened sheets on scribing tables is helpful to insure proper sheet alignment and vent line registration and spacing.
As noted above, scribing loads and speeds suitable for producing vent lines with median crack depths in the range of 10-20% of glass thickness are generally effective both to avoid sheet separation during scribing and to secure consistent sheet separation under subsequently applied bending stresses. For the purpose of achieving good control over vent line depth it is generally found that increases in scribing speed that are offset by increases in scribe load can produce equivalent ranges of median crack depth.
Table 1 below provides one illustration of this effect. Included in that Table are data covering a particular range of scribing speeds and loads, including an indication in each case as to the effectiveness of each set of scribing conditions for achieving controlled rather than spontaneous sheet separation. The data in Table 1 are representative of results generated during the scribing of ion-exchange strengthened glass sheet of 1.1 mm thickness having a peak compressive surface stress level in the range of 600-750 MPa, a peak central tension level of less than 40 Mpa, and a depth of surface compression layer in the range of 25-40 μm. Scribing conditions yielding stable criss-crossing vent lines are identified by an XC indicator, while conditions yielding stable parallel vent lines are identified by S indicator. Conditions resulting in an undesirable level of sheet separation during scribing are identified by an FS indicator in the Table.
Of course, the scribing conditions most effective to generate vent lines without spontaneous sheet separation and/or excessive surface damage in any particular case will depend on glass thickness as well as on the particular engineered stress profile developed across the thickness of the strengthened sheet in the course of chemical strengthening. In particular illustrative embodiments of the disclosed methods, ion-exchange strengthened glass sheet of 1.1 mm thickness having a peak compressive surface stress level in the range of 400-850 MPa, a peak central tension level not exceeding 40 Mpa, and depth of compressive layer in the range of 10-70 μm can be effectively scribed within a scribe load range of 14-24N and a scribing speed of 50-750 mm/s. Scribing within a scribe load range of 16-21 N at scribing speeds in the range of 125-250 mm/s can produce median crack depths in the range of 120-180 μm in such glasses, while maintaining lateral crack sizes below 150 μm.
A specific illustrative embodiment of the application of the disclosed sheet separation procedures is provided in
Sheet separation effectiveness within the process ranges shown in
The effective separation of strengthened glass sheet segments from appropriately scribed glass sheets of larger dimensions depends in part on the application of bending moments to the scored sheets that generate tensional breaking stresses in a suitable stress range. In typical embodiments of the sheet separation methods disclosed herein, tensional stresses in the range of about 10-35 MPa are effective to provide consistent sheet separation over a relatively wide range of sheet thicknesses and vent line depths. Thus, for ion-exchange-strengthened sheets of 1.1 mm thickness, applied tensional stresses in the range of 20-30 MPa across the vent lines are effective.
The selection of appropriate stress levels for achieving consistent sheet separation in three-point bending against a compliant supporting surface will depend in part on the presence and configuration of surface grooves in the surface that are aligned with the vent lines in the strengthened sheets. Suitable ranges of groove depth can be estimated utilizing the following formula relating deflection δ of a glass sheet of thickness t resulting from the application of an applied bending stress σf where the strengthened glass has an elastic modulus E:
Table 2 below presents calculated sheet deflections that would result from the application of two levels of bending stress to strengthened glass sheet of three different thicknesses. Bending or breaking stresses are reported in MPa, glass sheet thicknesses in mm, and the sheet deflection at each given sheet thickness and bending stress in μm. Utilizing a compliant support material such as a silicone elastomer to provide compliant supporting surface for effecting scribed sheet separation in three-point bending, it can be calculated that a groove depth greater than 2 mm in combination with a groove width greater than 200 μm can accommodate sheet deflections greater than 1.1 mm.
The consistency of sheet separation under cantilever or three-point bending can also be affected by the rate at which the bending forces are applied to the glass. The selection of a suitable separation speed will depend on sheet thickness and on the level of separation force to be applied, with thicker and stiffer glass sheet benefiting from higher force levels applied at lower speeds, and thinner, more flexible sheet benefiting from the application of lower bending forces at higher speeds. As an illustrative example, the separation of a chemically strengthened glass sheet of a thickness below 1.5 mm having a compressive surface stress in the range of 400-850 MPa and a scribed vent depth in the range of 100-225 μm can generally be effected at an applied stress in the range of 10-35 MPa. Where the applied stress is to be generated via an advancing breaker bar under cantilever beam loading, consistent sheet separation can be achieved at bar advance rates in excess of 0.02 inches/min at a moment arm length or bar offset of between 3-10 mm between the breaker bar contact line and the vent line.
An illustrative embodiment of strengthened glass sheet separation utilizing embodiments of the methods hereinabove described is shown in the following non-limiting example.
Two strengthened glass sheet types are selected for processing. Both samples comprise Corning Gorilla® Glass sheet of 1.1 mm sheet thickness. One sheet sample incorporates surface compression layers of 30 μm thickness and a surface compressive stress level of 750 MPa, with a calculated sheet center tension of 33 MPa. The other sheet incorporates surface compression layers of 36 μm thickness and a surface compressive stress level of 625 MPa, also with a calculated sheet center tension of 33 MPa.
Sheets of these two glasses, each 370 mm by 470 mm in size are selected for sectioning into four equally sized smaller sheet segments, each segment to be 135 mm×235 mm in size. For that purpose each sheet is mechanically scribed in accordance with the procedure below utilizing a commercial abrasive glass cutting machine, i.e., a Gen-3 TLC Phoenix-600® glass cutting machine commercially obtained from TLC International, Phoenix, Ariz., USA. The abrasive cutting wheel used for scoring the surfaces of the glass sheets is a DCW-TX 2.0×0.65×0.8×110° A140 tapered cutting wheel of taper angle 110°.
As shown in
The scribing speeds employed are 250 mm/s for the sheet with the 30 μm compression layer depth and 125 mm/s for the sheet with the 36 μm compression layer depth. The first scribe direction is parallel to the long dimension of each sheet and the second or crossing scribe direction is parallel to the short dimension of each sheet.
Following the machining of crossing vent lines in each of the sheets, each sheet is successfully separated into four sheet segments of smaller size by the application of a uniform breaking force across the vent lines in each sheet utilizing a mechanical breaker bar. A breaking stress in the range of 25-35 MPa is sufficient to achieve sheet separation along each of the vent lines.
Sheets of the same glass composition, but of reduced (0.7 mm) thickness and incorporating thinner surface compression layers, are also successfully cross-vented utilizing the same glass cutting equipment as described above, but at scoring speeds in the range of 250-500 mm/s. Additionally, utilizing Gen-5 glass cutting equipment from the same manufacturer, successful cross-scribing and sheet separation are accomplished without edge-crushing the sheets to provide the required crack initiation sites. In that procedure, suitable crack initiation sites are formed proximate to the edges of the larger sheets by utilizing slow abrasive wheel set-down velocities and light wheel scribing loads at wheel set-down locations greater than 5 mm from the edges of the larger glass sheets.
The foregoing descriptions and examples demonstrate that chemically strengthened glass sheet may be successfully segmented into smaller strengthened sheets of any required size and shape, even using existing mechanical scribing systems, provided that procedures effective to overcome the glass breakage problems presented by the high sheet stress levels and frangibility of chemically strengthened glass sheets are appropriately applied. Of course, those examples and descriptions are merely illustrative of the range of scribing and separation procedures that may successfully be adapted for the purpose of processing large sheets of chemically strengthened glass within the scope of the appended claims.
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/315,491 filed on Mar. 19, 2010.
Number | Name | Date | Kind |
---|---|---|---|
3464880 | Rinehart | Sep 1969 | A |
3865673 | DeTorre | Feb 1975 | A |
3880337 | Augustin et al. | Apr 1975 | A |
3956547 | DeTorre | May 1976 | A |
3959000 | Nakagawa et al. | May 1976 | A |
3983771 | Bonaddio | Oct 1976 | A |
4057184 | Michalik | Nov 1977 | A |
4289261 | Dahlberg | Sep 1981 | A |
4341139 | DeTorre | Jul 1982 | A |
4427143 | Hyatt | Jan 1984 | A |
4487350 | DeTorre | Dec 1984 | A |
5016800 | Sato et al. | May 1991 | A |
5038654 | Mackey | Aug 1991 | A |
5871134 | Komagata et al. | Feb 1999 | A |
6222604 | Suginoya et al. | Apr 2001 | B1 |
6402004 | Yoshikuni | Jun 2002 | B1 |
6412677 | Yoshikuni et al. | Jul 2002 | B1 |
6818576 | Ikenishi et al. | Nov 2004 | B2 |
7131562 | Ueyama | Nov 2006 | B2 |
7439665 | Wakayama | Oct 2008 | B2 |
7523846 | Takamatsu | Apr 2009 | B2 |
7553390 | Yamabuchi et al. | Jun 2009 | B2 |
8720228 | Li | May 2014 | B2 |
8875967 | Bayne | Nov 2014 | B2 |
20020110706 | Miyamoto | Aug 2002 | A1 |
20030194583 | Miyamoto | Oct 2003 | A1 |
20040155085 | Takamatsu et al. | Aug 2004 | A1 |
20040187659 | Nishiyama | Sep 2004 | A1 |
20050032623 | Araujo et al. | Feb 2005 | A1 |
20050056127 | Yamabuchi et al. | Mar 2005 | A1 |
20050221044 | Gaume et al. | Oct 2005 | A1 |
20050258135 | Ishikawa et al. | Nov 2005 | A1 |
20060042433 | Maekawa et al. | Mar 2006 | A1 |
20060137505 | Wakayama | Jun 2006 | A1 |
20070151962 | Doll et al. | Jul 2007 | A1 |
20080217311 | Eberhardt et al. | Sep 2008 | A1 |
20080264994 | Herve et al. | Oct 2008 | A1 |
20080311817 | Kawamoto | Dec 2008 | A1 |
20090156081 | Kirihara et al. | Jun 2009 | A1 |
20090201444 | Yamabuchi | Aug 2009 | A1 |
20090262092 | Halsey, IV et al. | Oct 2009 | A1 |
20100119846 | Sawada | May 2010 | A1 |
20100170558 | Stein | Jul 2010 | A1 |
20100210442 | Abramov et al. | Aug 2010 | A1 |
20100272134 | Blanding et al. | Oct 2010 | A1 |
20110017713 | Abramov et al. | Jan 2011 | A1 |
20110049765 | Li et al. | Mar 2011 | A1 |
20110127242 | Li | Jun 2011 | A1 |
20110183116 | Hung et al. | Jul 2011 | A1 |
20110226832 | Bayne et al. | Sep 2011 | A1 |
20120011981 | Brown | Jan 2012 | A1 |
20120012632 | Tominaga et al. | Jan 2012 | A1 |
20120329525 | Hashimoto et al. | Dec 2012 | A1 |
20130224439 | Zhang et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1252390 | May 2000 | CN |
1437018 | Aug 2003 | CN |
1532158 | Sep 2004 | CN |
1930097 | Mar 2007 | CN |
101544029 | Sep 2009 | CN |
101544029 | Sep 2009 | CN |
101579854 | Nov 2009 | CN |
101605840 | Dec 2009 | CN |
101687686 | Mar 2010 | CN |
101962262 | Feb 2011 | CN |
201890842 | Jul 2011 | CN |
1491309 | Dec 2004 | EP |
2165174 | Apr 1986 | GB |
2000247671 | Sep 2000 | JP |
2004 083378 | Mar 2001 | JP |
2001255504 | Sep 2001 | JP |
2001255504 | Sep 2001 | JP |
2002167230 | Jun 2002 | JP |
2002308637 | Oct 2002 | JP |
2003292332 | Oct 2003 | JP |
2003292332 | Oct 2003 | JP |
2004-083378 | Mar 2004 | JP |
2004083378 | Mar 2004 | JP |
2008007384 | Jan 2008 | JP |
2008007384 | Jan 2008 | JP |
2008-247732 | Oct 2008 | JP |
2008247732 | Oct 2008 | JP |
2011026193 | Feb 2011 | JP |
20050016393 | Feb 2005 | KR |
1020050016393 | Feb 2005 | KR |
20110009639 | Jan 2011 | KR |
200902467 | Jan 2009 | TW |
201107257 | Mar 2011 | TW |
201127763 | Aug 2011 | TW |
2007094348 | Aug 2007 | WO |
2008100331 | Aug 2008 | WO |
2008133800 | Nov 2008 | WO |
2011084561 | Jul 2011 | WO |
2011116165 | Sep 2011 | WO |
Entry |
---|
Visiontek Systems Ltd., “Glass”, Jun. 8, 2002, http://www.visionteksystems.co.uk/glass.htm. |
B. R. Lawn and D. B. Marshall, “Compact Fracture Resistance of Physically and Chemically Tempered Glass Plates: A V Theoretical Model”, Feb. 1977, Physics and Chemistry of Glasses, vol. 18, No. 1, pp. 7-18. |
Lema, Parma. “The Glass Chemical Tempering Process” May 1, 2005, http://www.allbusiness.com/nonmetallic-mineral/glass-glass-manufacturing/468622-1.html. |
Corning Incoporated, “Corning Gorilla Glass,” Aug. 2008, http://pdf.directindustry.com/pdf/corning/gorilla- glass- product- information- sheet/12631- 67069- —2.html. |
Glass Basics: Scoring and Separating Recommendations, Technical Information Paper, Corning Disply Technologies, copyright 2004, available at (Jan. 15, 2015): http://pdf.directindustry.com/pdf/corning-display-technologies/glass-basics-scoring-separating-recommendations/57416-562792.html. |
Kopchekchi, L.G., and Shitova, L.A., Dependence of the Crack Depth on Glass Cutting Speed, Glass and Ceramics, vol. 56, Nos. 7-8, 1999. |
Ono, Toshihiko, and Tanaka, Kohichi, Effective of Scribing Wheel Dimensions on the Cutting of AMLCD Glass Substrates, Technical Information Paper, Corning, pp. 1-9, avaiable at http://www.corning.com/media/worldwide/cdt/documents/TIP—306.pdf on Sep. 9, 2016. |
International Search Report and Written Opinion; PCT/US2011/043510 filed Jul. 11, 2011; ISR dated Jun. 10, 2011. |
International Search Report and Written Opinion; PCT/US2011/028777 filed Mar. 11, 2011; ISR dated Jul. 21, 2011. |
European Patent Office Communication pursuant to Rules 161(1) and 162 EPC; EP Application No. 11738888.4. |
Office Action dated Feb. 14, 2014 filed in European Patent Application No. 11711203.7. |
International Search Report & Written Opinion in PCT/US2013/041591 filed May 17, 2013; ISR dated Aug. 21, 2013. |
Taiwan Notice of Allowance dated May 28, 2015 relating to Taiwan Patent Application No. 100108613. |
Taiwan 1st Office Action & Search Report dated Jan. 28, 2015 relating to TW Patent Application No. 100108613. |
JP 2nd Office Action dated Sep. 15, 2015 relating to JP Patent Application No. 2013-501319. |
Chinese Office Action filed in Patent Application No. 201180014471.2 dated Jul. 2, 2014. |
Office Action dated Apr. 9, 2014 filed in U.S. Appl. No. 13/935,085. |
Petition Submitted by Third Party in corresponding Japanese Application, dated Aug. 26, 2014. |
Final Office Action dated Aug. 15, 2016 for U.S. Appl. No. 13/477,391, filed May 22, 2012. |
English Translation of Chinese first office action dated May 30, 2016 for CN Patent Application No. 201380035076.1. |
Office Action dated Mar. 21, 2017 filed in Chinese Patent Application No. 201510500387.1. |
Office Action dated Jan. 13, 2017 filed in Korean Patent Application No. 2012-7027320. |
Number | Date | Country | |
---|---|---|---|
20110226832 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61315491 | Mar 2010 | US |