The present application claims priority to U.S. Provisional Application Ser. No. 60/856,035, filed Nov. 9, 2006 and entitled, “MECHANICAL VOLUME CONTROL FOR INJECTION DEVICES”, which is herein incorporated by reference in its entirety.
The present invention relates generally to the delivery of therapeutic fluids. More specifically, the present invention relates to an adjustable mechanical system for accurately delivering measured amounts of a therapeutic fluid to an internal treatment site.
A wide variety of medical treatments are at least partially performed through the delivery and introduction of therapeutic compositions to a treatment location. In home or outpatient settings, typical delivery methods can comprise oral delivery, via liquid or solid forms, as well as a variety of inhalant style devices. In clinical or hospital settings, therapeutic fluids can be injected using a needle-based process, or in some minimally invasive procedures the therapeutic fluid can be delivered through a tubular device such as a catheter or endoscope based systems.
When medications are administered at an external location such as, for example, by swallowing the medication, administering a shot or connecting a drip line, the amount of dispensed medication is easily verifiable and controllable simply by measuring and viewing each administration. However, the ability to measure and view each administration of medication is complicated by the inability to actually see delivery with internal applications. In addition, the complexities and time involved in suitably positioning a tubular device at a desired internal location can make the use of individualized applicators impractical such that multiple medication deliveries with a single tubular device are preferred.
Due to the inherent characteristics associated with the delivery of therapeutic compositions to treatment locations within the body, it would be advantageous to have improved procedures and components that provide for accurate and controlled dispensation of therapeutic compositions at internal treatment locations.
The present invention comprises a fluid delivery system and related methods for adjustably controlling the delivery of therapeutic fluids to treatment sites within a patient. The fluid delivery system can comprise an injector source and an access device. The access device can comprise a minimally invasive, tubular delivery lumen such as a catheter or endoscope. The fluid delivery system generally includes an adjustable volume control system for selectively metering the amount of therapeutic fluid to be delivered to the treatment location. The adjustable volume control system generally includes a mechanical stop system with a plunger member and a stop member, wherein the plunger member and stop member physically interact to restrict a plunger insertion length which simultaneously controls an amount of therapeutic fluid expelled by said plunger. In some embodiments, the stop member can be configured so as to be actuated coaxially with plunger movement while in other embodiments, the stop member may be actuated transversely to the plunger movement. The fluid delivery system can further comprise an imaging system allowing a medical professional to precisely position the access device with respect to a desired treatment location, and which in some embodiments can be used to verify the position of the stop member.
In one aspect of the present disclosure, a fluid delivery system can include an access device having an adjustable volume control for metering and delivering therapeutic fluids to treatment locations within a patient's body. In one presently contemplated embodiment, the access device can comprise a needleless lumen such as a catheter or endoscope for administering the therapeutic fluid in a minimally invasive fashion. The adjustable volume control can comprise a mechanical interface between a stop member and a delivery plunger so as to control a stroke length of the plunger. In some embodiments, the stop member can be actuated in a manner transverse to a travel path of the plunger while in other embodiments, the stop member can be actuated in a coaxial manner with respect to the plunger travel path. In some embodiments, the delivery plunger can be actuated by a delivery shaft that interfaces directly with the stop member to limit a travel length of the delivery plunger.
In another aspect of the present disclosure, a method for selectively metering and administering a volume of a therapeutic fluid with a needleless delivery system can comprise positioning a stop member in a delivery lumen such that the stop member physically interacts with a delivery shaft so as limit a travel length of a delivery plunger. In some embodiments, the stop member can be positioned by biasing a coaxial actuator so as to rotate the stop member to a desired position. Alternatively, the stop member can be positioned by biasing a transverse actuator such that the stop member is inserted to a desired depth within the delivery lumen, wherein the stop member interfaces with the delivery shaft. In yet other embodiments, the delivery shaft can be formed so as to have an engagement profile adapted to selectively interface with the stop member, wherein the engagement profile allows for metering selected volumes of the therapeutic fluid.
In another aspect, the present disclosure is directed to a method for delivering consistently repeatable volumes of a therapeutic fluid to a treatment location within the body with a needle-free delivery system. One representative method for delivering the consistently repeatable volumes of therapeutic fluid can first comprise accessing a treatment location with a minimally invasive access device such as, for example, a catheter or endoscope. Next, a delivery plunger for expelling a volume of pressurized fluid can have its stroke length controlled by limiting a travel length of a delivery shaft coupled to the delivery plunger. The minimally invasive access device can include a stop member that physically and selectively interacts with the delivery shaft. In some embodiments, the delivery shaft can be fabricated so as to have an engagement profile that allows for a variety of travel lengths such that volumes of the pressurized fluid expelled by the delivery plunger can be varied as desired by a medical professional.
The above summary of the various representative embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the invention. The figures in the detailed description that follows more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives.
In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as to not unnecessarily obscure aspects of the present invention.
A needleless fluid delivery system 100 is illustrated generally in
As seen in
As illustrated in
Stop member 204 generally includes a stop body 216 defining a stop surface 218. Stop member 204 can be operably mounted within the connector member 108, or alternatively, within the applicator lumen 104. Stop member 204 is generally configured for retainable placement into surface opening 109 through the use of suitable retention mechanisms including, for example, a friction fit, magnetic coupling, detent means, ratcheted surfaces, spring-loaded retention members and the like.
In use, the stop member 204 is biased into surface opening 109 of connector member 108 such that a desired amount of the stop surface 218 is present within the connector member 108. The amount of stop surface 218 within connector member 108 is selected based upon which of the first engagement surface 210a, the second engagement surface 212a or the third engagement surface 214a is desired to be engaged. By selecting which of the engagement surfaces is engaged, the stroke length of the plunger shaft assembly 202 is limited such that each full stroke delivers the same measured amount of therapeutic fluid through the applicator lumen 104. Through selective placement of the stop member 204, a medical professional can vary the volumetric amount of therapeutic fluid that is ultimately administered at delivery end 112 with each stroke of the plunger shaft assembly 202.
Referring to
Stop member 304 generally comprises a circular stop body 316 having a first engagement recess 318 and a second engagement recess 320. Each of the engagement recesses end at a recess surface 318a, 320a. Stop member 304 can be operably mounted within the connector member 108, or alternatively, within the applicator lumen 104 such that the circular stop body 316 is rotatably positionable. Stop member 304 is generally configured for retainable placement into surface opening 109 through the use of suitable retention mechanisms including, for example, a friction fit, magnetic coupling, detent means, ratcheted surfaces, spring-loaded retention members and the like.
In use, the stop member 304 is rotatably biased such that the desired engagement recess is aligned with the step-style engagement member 308 within the connector member 108. The desired engagement recess is selected based upon which of the step portions is desired to be engaged with the stop member 304. For instance, if a user desires a maximum stroke length, the circular stop body 316 is rotatably positioned such that the first engagement recess 318 is aligned with the step-style engagement member 308. In this configuration, advancement of the plunger shaft assembly 302 results in second step portion 312 and third step portion 314 advancing through the first engagement recess 318 and past the stop member 304 until the circular stop body 316 engages the first engagement surface 310a on the first step portion 310. In a similar manner, circular stop body 316 can be rotatably positioned such that recess surface 320a engages the second engagement surface 312a or that circular stop body 316 immediately engages the third engagement surface 314a. By selecting which of the engagement surfaces is engaged by the circular stop body 316, the stroke length of the plunger shaft assembly 302 is limited such that each full stroke delivers the same measured amount of therapeutic fluid through the applicator lumen 104.
As illustrated in
Stop member 404 generally includes a stop body 412 including a projecting stop member 414. Projecting stop member can include a pair of projecting legs 416a, 416b which cooperatively define a stop recess 418 with the stop body 412. Stop body 412 further includes a stop surface 420. Removable stop member 404 can be fabricated such that the projecting stop member 414 is located centrally along the stop body 412 or alternatively, at a forward or rear location as shown in phantom in
In use, the stop member 404 is positioned within the connector member 108 such that the projecting stop member 414 is positioned at a desired location with the connector member 108. As the plunger shaft assembly 402 is advanced, the stop recess 418 accommodates the shaft member 406 such that the engagement surface approaches the projecting stop member 414. Further advancement of the plunger shaft assembly 402 is prevented when engagement surface 410 comes into contact with the stop surface 420. By selectively choosing a stop member 404 with the projecting stop member 414 in a desired location, a user controls the length of advancement of the plunger shaft assembly 402 which subsequently controls the amount of a therapeutic fluid administered due to the travel limitations placed on a plunger attached to the shaft member 406.
As illustrated in
In use, the threaded stopping nut 506 is threadably positioned at the desired location on the threaded shaft member 504. As the plunger shaft assembly 502 is advanced with each stroke, the threaded stopping nut is advanced until it physically encounters connector member 108. Contact between the connector member 108 and threaded stopping nut 506 limits the stroke length of the plunger shaft assembly 502 and ultimately, a plunger that dispenses the therapeutic fluid through the applicator lumen 104. By selectively positioning the threaded stopping nut 506 along the threaded shaft member 504, a medial professional can selectively choose the amount of therapeutic fluid that is ultimately dispensed through the supply end 112 with each stroke of the plunger shaft assembly 502. A shield member 508 can be positioned over connector member 508 and plunger shaft assembly 502 so as to prevent possible pinching as the threaded stopping nut 506 is advanced to the connector member 108.
With respect to the various needle free therapeutic fluid delivery systems described herein, it will be understood that a medical professional preferably utilizes such systems in conjunction with a medical imaging system such as, for example, computer axial tomography (CAT), magnetic resonance imaging (MRI), or in the case of treatment of a prostate gland, the preferred imaging means is transrectal ultrasound (TRUS). Through the use of a medical imaging system, a medical professional can verify that the delivery end 112 is properly inserted and positioned with respect to the desired treatment location.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives.
Number | Name | Date | Kind |
---|---|---|---|
118206 | Crowell | Aug 1871 | A |
2621853 | Bollerup | Dec 1952 | A |
2708600 | Froidevaux | May 1955 | A |
2867375 | Petersen | Jan 1959 | A |
3212684 | Svensson et al. | Oct 1965 | A |
3248950 | Pursell et al. | May 1966 | A |
4701162 | Rosenberg | Oct 1987 | A |
4705502 | Patel | Nov 1987 | A |
4792330 | Lazarus | Dec 1988 | A |
4848367 | Avant et al. | Jul 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4909785 | Burton et al. | Mar 1990 | A |
4911164 | Roth | Mar 1990 | A |
4932956 | Reddy et al. | Jun 1990 | A |
4941808 | Qureshi et al. | Jul 1990 | A |
5047039 | Avant et al. | Sep 1991 | A |
5123908 | Chen | Jun 1992 | A |
5152772 | Sewell, Jr. | Oct 1992 | A |
5306226 | Salama | Apr 1994 | A |
5322418 | Comer | Jun 1994 | A |
5540701 | Sharkey et al. | Jul 1996 | A |
5545171 | Sharkey et al. | Aug 1996 | A |
5630709 | Bar-Cohen | May 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5931842 | Goldsteen et al. | Aug 1999 | A |
5964791 | Bolmsjo | Oct 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6119045 | Bolmsjo | Sep 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6238368 | Devonec | May 2001 | B1 |
6254570 | Rutner et al. | Jul 2001 | B1 |
6299598 | Bander | Oct 2001 | B1 |
6302905 | Goldsteen et al. | Oct 2001 | B1 |
6391039 | Nicholas et al. | May 2002 | B1 |
6416545 | Mikus et al. | Jul 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6447533 | Adams | Sep 2002 | B1 |
6461367 | Kirsch et al. | Oct 2002 | B1 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6520974 | Tanner et al. | Feb 2003 | B2 |
6530932 | Swayze et al. | Mar 2003 | B1 |
6562024 | Alvarez de Toledo et al. | May 2003 | B2 |
6565579 | Kirsch et al. | May 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6602243 | Noda | Aug 2003 | B2 |
6695832 | Schon et al. | Feb 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6719709 | Whalen et al. | Apr 2004 | B2 |
6719749 | Schweikert et al. | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6740098 | Abrams et al. | May 2004 | B2 |
6746456 | Xiao | Jun 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6821283 | Barzell et al. | Nov 2004 | B2 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020002363 | Urakawa et al. | Jan 2002 | A1 |
20020087176 | Greenhalgh | Jul 2002 | A1 |
20030069629 | Jadhav et al. | Apr 2003 | A1 |
20030208183 | Whalen et al. | Nov 2003 | A1 |
20030229364 | Seiba | Dec 2003 | A1 |
20040078047 | Nicholas et al. | Apr 2004 | A1 |
20040087995 | Copa et al. | May 2004 | A1 |
20050070938 | Copa et al. | Mar 2005 | A1 |
20050131431 | Copa et al. | Jun 2005 | A1 |
20050251155 | Orban, III | Nov 2005 | A1 |
20060200178 | Hamel et al. | Sep 2006 | A1 |
20060264985 | Copa et al. | Nov 2006 | A1 |
20060276811 | Copa et al. | Dec 2006 | A1 |
20070219584 | Copa et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 9204869 | Apr 1992 | WO |
WO 9607447 | Mar 1996 | WO |
WO 9916359 | Apr 1999 | WO |
WO 9921490 | May 1999 | WO |
WO 9921491 | May 1999 | WO |
WO 9958081 | Nov 1999 | WO |
WO 2004000135 | Dec 2003 | WO |
WO 2004000136 | Dec 2003 | WO |
WO 2004000137 | Dec 2003 | WO |
WO 2004000138 | Dec 2003 | WO |
WO 2004034913 | Apr 2004 | WO |
2007013070 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090124974 A1 | May 2009 | US |