Medical canister connectors

Information

  • Patent Grant
  • 8216197
  • Patent Number
    8,216,197
  • Date Filed
    Friday, May 15, 2009
    15 years ago
  • Date Issued
    Tuesday, July 10, 2012
    12 years ago
Abstract
A medical canister connector is presented for connecting to a medical canister, which has a patient port and a reduced-pressure port. The medical canister connector includes a first connection member that is coupled to a patient-port-attachment member, which is for coupling to a patient port on a medical canister and has a patient-port opening with a first longitudinal axis. The medical canister connector also includes a second connection member coupled to a reduced-pressure-port-attachment member, which is for coupling to a reduced-pressure port on the medical canister and has a reduced-pressure-port opening with a second longitudinal axis. A spacing member or pressure transport member may be used to couple the first connection member to the second connection member. The spacing member or transport member flexes and twists during connection. The medical canister connector may also help organize one or more pressure-sensing conduits. Methods are also presented.
Description
BACKGROUND

The present invention relates generally to medical treatment systems and, more particularly, to medical canister connectors and methods.


In a number of medical applications, fluids, such as blood, ascites, and exudates from wounds, are removed from a patient and need to be stored for disposal or processing. The removal of these fluids may be the primary purpose of a treatment or a secondary result. For example, in many surgical procedures, it is common to apply suction to remove blood. As another example, in applying reduced-pressure therapy, or negative pressure wound therapy, fluids are removed and must be stored or processed.


The removed fluids are often stored in medical canisters. The medical canisters receive fluids from the patient and receive suction, or reduced pressure, from a reduced-pressure source. The canisters come in varying sizes and designs. The canisters typically need changing or removal on a regular basis. Existing systems for attaching a reduced-pressure source to a canister and for attaching a patient conduit to the canister require considerable attention with the possibility of significant error existing.


SUMMARY

Problems with existing medical canisters and systems are addressed by the illustrative embodiments described herein. According to one illustrative embodiment, a medical canister connector for releasably connecting to a medical canister, which has a patient port and a reduced-pressure port, includes a first connection member for coupling to a first reduced-pressure delivery conduit; a patient-port-attachment member for coupling to the patient port on the medical canister and having a patient-port opening and a first longitudinal axis. The first patient-port-attachment member is coupled to the first connection member. The illustrative medical canister connector further includes a second connection member for coupling to a second reduced-pressure delivery conduit; a reduced-pressure-port attachment member for coupling with a reduced-pressure port on the medical canister and having a reduced-pressure-port opening and a second longitudinal axis; and a spacing member having a first end and a second end. The first end of the spacing member is coupled to the first connection member and the second end of the spacing member is coupled to the second connection member. The medical canister connector has a free position and is operable to be maneuvered into a loading position.


A medical canister connector for releasably connecting to a medical canister, which has a patient port and a reduced-pressure port, includes a first connection member for coupling to a first reduced-pressure delivery conduit and for coupling to a first pressure-sensing conduit; a patient-port-attachment member for coupling to the patient port on the medical canister and having a patient-port opening and a first longitudinal axis. The first patient-port-attachment member is coupled to the first connection member. The medical canister connector further includes a second connection member for coupling to a second reduced-pressure delivery conduit and for coupling to a second pressure-sensing conduit; a reduced-pressure-port-attachment member for coupling with a reduced-pressure port on the medical canister and having a reduced-pressure-port opening and a second longitudinal axis; and a pressure transport member having a first end and a second end. The first end of the pressure transport member is coupled to the first connection member and the second end of the pressure transport member is coupled to the second connection member. The medical canister connector has a free position and the canister is operable to be maneuvered into a loading position.


A method for manufacturing a medical canister connector includes the step of forming a body from a soft thermoplastic polymer to form a medical canister connector. The step of forming a body may include injection molding, thermoforming, thermosettting, overmolding, or substractive machining.


A method for connecting a medical canister, which has a patient port and a reduced-pressure port, to a first reduced-pressure conduit, a first pressure-sensing conduit, a second reduced-pressure conduit, and a second pressure-sensing conduit includes the steps of providing a medical canister connector; providing a flexing force on a pressure transport member of the medical canister connector such that an angle alpha (α) formed by intersection of a first longitudinal axis and a second longitudinal axis is greater than 90 degrees and so that a patient-port opening interfaces with a patient port on the medical canister while a reduced-pressure-port opening interfaces with a reduced-pressure port on the medical canister; and releasing the flexing force.


Objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is schematic diagram, with a portion shown in cross section, of a reduced pressure treatment system and including an illustrative embodiment of a medical canister connector;



FIG. 2 is a schematic, perspective view of the medical canister connector of FIG. 1 shown on a portion of a medical canister;



FIG. 3 is a schematic, elevational view of the medical canister connector of FIGS. 1-2; and



FIG. 4 is a schematic, cross sectional view of the medical canister connector of FIGS. 1-3.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.


Referring to FIGS. 1-4, and initially to FIG. 1, an illustrative embodiment of a medical canister connector 100 is shown as part of a reduced-pressure treatment system 102. While the medical canister connector 100 is presented in the context of the reduced-pressure treatment system 102, it should be understood that the medical canister connector 100 might be used with any medical system involving the need to connect conduits to a medical canister. Other examples of medical systems might include a surgical suction system, a medical drainage system, or an open-abdomen reduced-pressure system.


In this illustrative embodiment, the reduced-pressure treatment system 102 provides reduced-pressure treatment to a tissue site 104 on a patient. The tissue site 104 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, epithelial tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. The tissue site 104 may be within a body cavity, such as an abdominal cavity. The treatment by the reduced-pressure treatment system 102 may include removing fluids, such as ascites or exudates, delivering of reduced pressure, or providing a protective barrier. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.


Reduced pressure is delivered through a conduit 106 to a reduced-pressure interface 108. The reduced-pressure interface 108 delivers the reduced pressure to a manifold 110 that is adjacent the tissue site 104. The tissue site 104 is shown as a wound, or damaged area of tissue, that involves epidermis 112 and other tissue layers. A pneumatic seal is formed over the patient's epidermis 112 by a sealing member 114 that has an attachment device 116, such as an adhesive on a patient-facing side 118. The conduit 106 may be a dual-lumen conduit wherein one lumen delivers reduced pressure and transports removed fluids, such as exudates or ascites. The other lumen of conduit 106 may provide a pressure-sensing lumen to allow the pressure at the tissue site 104 to be measured or otherwise determined by a remote measuring device. The conduit 106 could contain additional lumens, but in this example is a dual-lumen design.


The conduit 106 is fluidly coupled to, or in fluid communication with, an interface member 120. The interface member 120 fluidly couples the first lumen to a first reduced-pressure conduit 122 and fluidly couples the second lumen to a first pressure-sensing conduit 124. The first reduced-pressure conduit 122 is coupled to a first connection member 126 of the medical canister connector 100. The first pressure-sensing conduit 124 is also coupled to the first connection member 126.


As shown clearly in FIG. 4, the first connection member 126 may be formed with a first reduced-pressure-conduit opening 128 and a first pressure-sensing-conduit opening 130. The first pressure-sensing-conduit opening 130 may be a tubular entry port that receives and surrounds the whole circumference of the first pressure-sensing conduit 124, or the first pressure-sensing-conduit opening 130 may be a channel opening, e.g., could be an extension or part of channel 186, in which only a portion of the circumference of the first pressure-sensing conduit 124 is secured. The first reduced-pressure conduit 122 may be coupled in the first reduced-pressure-conduit opening 128 by solvent bonding, interference fit, adhesive, or other means to achieve a substantially fluid-tight connection. Similarly, the first pressure-sensing conduit 124 may be coupled in the first pressure-sensing-conduit opening 130 by solvent bonding, interference fit, adhesive, or other means.


The medical canister connector 100 is also coupled to a second reduced-pressure conduit 132 that delivers reduced pressure from a reduced-pressure unit 134. The reduced-pressure unit 134 includes a reduced-pressure source, such as a vacuum pump (not shown) or other means of supplying reduced pressure that may be contained within housing 136. The second reduced-pressure conduit 132 enters the housing 136 at a reduced-pressure-housing port 138 and is fluidly coupled to the reduced-pressure source within the reduced-pressure unit 134.


The medical canister connector 100 is also coupled to a second pressure-sensing conduit 140 that delivers pressure to the reduced-pressure unit 134. The second pressure-sensing conduit 140 enters the housing 136 at a pressure-sensing-housing port 142. A measuring device within the housing 136 of the reduced-pressure unit 134 receives the second pressure-sensing conduit 140 and is able to measure or determine the pressure existing at tissue site 104. It should be noted that the first pressure-sensing conduit 124 and the second pressure-sensing conduit 140 may be an integral conduit as is shown.


The medical canister connector 100 facilitates easy connection of the first reduced-pressure conduit 122 and the second reduced-pressure conduit 132 to a medical canister 144 and more particularly to a lid 146 of the medical canister 144. Preferably, a healthcare provider is able to install the medical canister connector 100 to a medical canister 144 with one movement; that is, instead of having to couple two conduits one at a time to two ports, the healthcare provider is able to take hold of the medical canister connector 100 and apply the medical canister connector 100 in one operation to the lid 146. The use of medical canister connector 100 is discussed further below. Moreover, as a safety measure, the medical canister connector 100 is configured so that the first reduced-pressure conduit 122 and second reduced-pressure conduit 132 may only be attached in the proper way without an obvious deviation; this is to minimize or eliminate the possibility of an error being made in treatment. Alternatively, the medical canister connector 100 may transport, e.g., in an internal passageway, the pressure in the first pressure-sensing conduit 124 to the second pressure-sensing conduit 140.


The medical canister 144 may be any canister that requires conduits to be attached accurately and preferably easily. An off-the-shelf medical canister may provide economic advantages for patients and healthcare providers and as such is preferred. The medical canister connector 100 may be sized and configured to work with a particular model of a medical canister. For example, in one illustrative embodiment, the medical canister 144 might be an 800 cc hydrophobic rigid canister, which includes a hydrophobic shutoff filter, available from Beamis Manufacturing Company of Sheboygan Falls, Wis. The medical canister connector 100 will be further explained in the illustrative context of working with this medical canister, but it should be understood that the medical canister connector 100 could easily be used with other off-the-shelf medical canisters by adjusting the dimensions and location of components. The lid 146 of the medical canister 144 has a patient port 148, which is horizontal (for the orientation shown in FIG. 1), and a reduced-pressure port 150, or suction port, which is vertical (for the orientation shown in FIG. 1).


The first connection member 126 is fluidly coupled to the first reduced-pressure conduit 122 and may be fluidly coupled to the first pressure-sensing conduit 124 as previously noted. A patient-port-attachment member 152 is coupled to the first connection member 126 and formed with a patient-port-attachment body 153 having a patient-port opening 154. The patient-port opening 154 of patient-port-attachment member 152 may be formed with a plurality of sealing ribs 156 to help form an interference fit with the patient port 148 on the medical canister 144. The patient-port opening 154 may also be tapered to further facilitate an interference fit with the patient port 148 on the medical canister 144. In the installed position, the patient-port opening 154 and patient port 148 form a substantially fluid-tight connection. The volume within the patient-port opening 154 has a first longitudinal axis 157.


A stopper 158, or cap, may be coupled with a strap 160 to the first connection member 126, and the stopper 158 may be sized and configured to seal off the patient-port opening 154 when the medical canister connector 100 is not in use or is being changed. Use of the stopper 158 prevents fluids from leaking through patient-port opening 154 when the medical canister connector 100 is not in use or a medical canister 144 is being changed.


A second connection member 162 may be formed with a second reduced-pressure-conduit opening 164 and a second pressure-sensing-conduit opening 166. The second reduced-pressure conduit 132 may be coupled in the second reduced-pressure-conduit opening 164 by solvent bonding, interference fit, adhesive, or other means to achieve a substantially fluid-tight connection. Similarly, the second pressure-sensing conduit 140 may be coupled in the second pressure-sensing-conduit opening 166 by solvent bonding, interference fit, adhesive or other means. The second connection member 162 also includes a reduced-pressure-port attachment member 168 having a reduced-pressure-port body 170 formed with a reduced-pressure-port opening 172. The volume within the reduced-pressure-port opening 172 has a second longitudinal axis 174.


The second reduced-pressure-conduit opening 164 may extend until it intersects the reduced-pressure-port opening 172 and thereby forms a fluid path for reduced pressure to flow into the second reduced-pressure-conduit opening 164 and out of the reduced-pressure-port opening 172. As used herein, “fluid” may include a gas or a liquid. The reduced-pressure-port opening 172 may be formed with a plurality of sealing ribs 176 on an interior surface of the reduced-pressure-port opening 172 to help form an interference fit when the reduced-pressure-port opening 172 is placed on the reduced-pressure port 150 of the lid 146 of the medical canister 144. The interior surface of the reduced-pressure-port opening 172 may also be tapered to further facilitate an interference fit. In the installed position, the reduced-pressure-port opening 172 and the reduced-pressure port 150 achieve a substantially fluid-tight connection.


The first connection member 126 and second connection member 162 may be used to transition conduit sizes. For example, the first reduced-pressure conduit 122 may be a small diameter conduit, but the first connection member 126 allows the first reduced-pressure conduit 122 to be fluidly coupled to a larger diameter patient port 148 on the medical canister 144. The first connection member 126 and second connection member 162 may be used to transition conduit sizes from small to large or large to small.


In one embodiment, the medical canister connector 100 only receives and manages reduced pressure associated with the first reduced-pressure conduit 122 and the second reduced-pressure conduit 132. In this alternative embodiment, the patient-port-attachment member 152 and the reduced-pressure-port attachment member 168 are coupled and secured in a spaced relationship by a spacing member 180.


In another illustrative embodiment, the medical canister connector 100 receives and manages reduced pressure associated with the first reduced-pressure conduit 122 and the second reduced-pressure conduit 132 and the reduced pressure associated with first pressure-sensing conduit 124 and the second pressure-sensing conduit 140. In this illustrative embodiment, the pressure transport member 178 serves as the spacing member and couples and secures in spaced relationship the patient-port-attachment member 152 and the reduced-pressure-port attachment member 168. The pressure transport member 178 facilitates transportation of the reduced pressure between the first pressure-sensing conduit 124 and the second pressure-sensing conduit 140. The transport of the reduced pressure by the pressure transport member 178 may be by an integral chamber or passageway connecting the pressure-sensing conduits 124, 140 or by clips or channels that secure a conduit that fluidly couples the pressure-sensing conduits 124, 140.


The pressure transport member 178 or the spacing member 180 may be used as part of the medical canister connector 100 to hold the first connection member 126 and the second connection member 162 in their relative positions and yet to allow flexibility. The pressure transport member 178 has a first end 182 and a second end 184. The first end 182 of the pressure transport member 178 is coupled to the first connection member 126, and the second end 184 of the pressure transport member 178 is coupled to the second connection member 162. The pressure transport member 178 may be a solid conduit, or passageway, formed in the medical canister connector 100 that transports the pressure from the first pressure-sensing conduit 124 to the second pressure-sensing conduit 140. Alternatively, as shown, the pressure transport member 178 may include a device, e.g., a channel or clip, for holding the first pressure-sensing conduit 124 as the first pressure-sensing conduit 124 runs the length of the medical canister connector 100 to exit at the second pressure-sensing conduit 140. In the latter situation, the pressure transport member 178 may have a channel 186 and a plurality of clips 188 to releasably couple the first pressure-sensing conduit 124/second pressure-sensing conduit 140 to the medical canister connector 100.


Again, in an alternative embodiment, in the situation in which the medical canister connector 100 is for use with only a first reduced-pressure conduit 122 and a second reduced-pressure conduit 132, the spacing member 180 holds the first connection member 126 and the second connection member 162 in their relative positions but does not transport reduced pressure for sensing. The spacing member 180 has a first end 190 and a second end 192. The first end 190 of the spacing member 180 is coupled to the first connection member 126, and the second end 192 of the spacing member 180 is coupled to the second connection member 162. The spacing member 180 may further include a support rib 194 to provide additional strength and stability. When both the pressure transport member 178 and the spacing member 180 are included, the pressure transport member 178 and the spacing member 180 may cooperate to hold the first connection member 126 and the second connection member 162 in their relative positions and to allow flexibility. The pressure transport member 178 and the spacing member 180 may be the same member.


The medical canister connector 100 is formed from a flexible material that allows the medical canister connector 100 to move and twist in a limited manner but adequately to allow the patient-port opening 154 to interface with the patient port 148 on the medical canister 144 while at the same time the reduced-pressure-port opening 172 interfaces with the reduced-pressure port 150 on the medical canister 144. In this way, the medical canister connector 100 is designed to assume at least two positions: a free position in which the patient-port opening 154 and the reduced-pressure-port opening 172 are spaced and aligned to engage the patient port 148 and the reduced-pressure port 150 at the same time, and a loading position in which the medical canister connector 100 is flexed and positioned to allow the patient-port opening 154 to go on to the patient port 148 at the same time that the reduced-pressure-port opening 172 goes on to the reduced-pressure port 150.


One way to describe the flex, or movement, of the medical canister connector 100 in one illustrative embodiment is with reference to the first longitudinal axis 157 and the second longitudinal axis 174. In a two dimensional elevational view, the first longitudinal axis 157 and the second longitudinal axis 174, or at least their projections, intersect to form an angle alpha (α). In the free position, the angle alpha (α) is about 90 degrees as shown. When flexing the medical canister connector 100 to the loading position, the angle alpha (α) may be extended to 95, 100, 110, 120, 130, 140, 150, 160, 170, 180 degrees or more or any angle therein. In addition, the medical canister connector 100 might be twisted axially about the pressure transport member 178 or spacing member 180 or might be twisted about the first longitudinal axis 157 or second longitudinal axis 174. The twisting may be between 1-90 degrees or more.


As previously noted, the medical canister connector 100 is formed from a flexible material that allows the medical canister connector 100 to move and twist. An elastic polymer might be used to form the medical canister connector 100. For example, the medical canister connector 100 may be formed from a soft thermoplastic polymer, such as polyvinyl chloride (PVC), or from a thermoset polymer, such as silicone. Still other polymers and materials, e.g., a flexible composite, might be used as well. The medical canister connector 100 may be formed in a number of ways, such as by injection molding, thermoforming, thermosettting, or overmolding, substractive machining.


There are a number of ways that the medical canister connector 100 may be applied onto the lid 146 of the medical canister 144 and only one illustrative example will now be given. According to one illustrative manner of installing the medical canister connector 100, the healthcare provider may place their hand on the pressure transport member 178 or spacing member 180 to lift the medical canister connector 100 and put the medical canister connector 100 near the lid 146 of canister 144. The patient-port opening 154 may then be maneuvered so that the patient port 148 of the canister lid 146 enters, at least partially, the patient-port opening 154. The healthcare provider may pull, or rotate, on the pressure transport member 178 or spacing member 180. This causes the medical canister connector 100 to flex and causes the angle alpha (α) to increase beyond 90 degrees. Then, if not already aligned, the medical canister connector 100 may be twisted about the first longitudinal axis 157 so that the reduced-pressure-port opening 172 aligns with the reduced-pressure port 150 on the lid 146. The healthcare provider may push the patient port 148 a little further into the patient-port opening 154 and release the force on the pressure transport member 178 or spacing member 180 so that the angle alpha (α) decreases. As the angle alpha (α) decreases, the reduced-pressure port 150 extends further into the reduced-pressure-port opening 172. From there, the healthcare provider may push the medical canister connector 100 further onto the lid 146. The medical canister connector is thus fully connected to the medical canister 144. The medical canister connector 100 attaches to the medical canister 144 in only one way and thereby reduces or eliminates the possibility of error. The medical canister connector 100 may typically be applied by the healthcare provider with one hand.


Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims.

Claims
  • 1. A medical canister connector for releasably connecting to a medical canister that has a patient port and a reduced-pressure port, the medical canister connector comprising: a first connection member for coupling to a first reduced-pressure delivery conduit;a patient-port attachment member for coupling to the patient port on the medical canister and having a patient-port opening and a first longitudinal axis, the patient-port attachment member is coupled to the first connection member;a second connection member for coupling to a second reduced-pressure delivery conduit;a reduced-pressure-port attachment member for coupling with a reduced-pressure port on the medical canister and having a reduced-pressure-port opening and a second longitudinal axis, the reduced-pressure-port attachment member is coupled to the second connection member;a spacing member having a first end and a second end, the first end of the spacing member coupled to the first connection member and the second end of the spacing member coupled to the second connection member;wherein the medical canister connector has a free position and wherein the medical canister is operable to be maneuvered into a loading position.
  • 2. The medical canister connector of claim 1 wherein an angle (α) is formed by the intersection of the first longitudinal axis and the second longitudinal axis and wherein the angle (α) is about 90 degrees in the free position and the angle (α) in the loading position is greater than 100 degrees.
  • 3. The medical canister connector of claim 1 wherein an angle (α) is formed by the intersection of the first longitudinal axis and the second longitudinal axis and wherein the angle (α) is about 90 degrees in the free position and the angle (α) in the loading position is greater than 110 degrees.
  • 4. The medical canister connector of claim 1 wherein an angle (α) is formed by the intersection of the first longitudinal axis and the second longitudinal axis and wherein the angle (α) is about 90 degrees in the free position and the angle (α) in the loading position is greater than 120 degrees.
  • 5. The medical canister connector of claim 1 wherein an angle (α) is formed by the intersection of the first longitudinal axis and the second longitudinal axis and wherein the angle (α) is about 90 degrees in the free position and the angle (α) in the loading position is greater than 140 degrees.
  • 6. The medical canister connector of claim 1 wherein the medical canister comprises an elastic polymer.
  • 7. A medical canister connector for releasably connecting to a medical canister that has a patient port and a reduced-pressure port, the medical canister connector comprising: a first connection member for coupling to a first reduced-pressure delivery conduit and for coupling to a first pressure-sensing conduit;a patient-port attachment member for coupling to a patient port on the medical canister and having a patient-port opening and a first longitudinal axis, the patient-port attachment member coupled to the first connection member;a second connection member for coupling to a second reduced-pressure delivery conduit and for coupling to a second pressure-sensing conduit;a reduced-pressure-port attachment member for coupling to a reduced-pressure port on the medical canister and having a reduced-pressure-port opening and a second longitudinal axis;a pressure transport member having a first end and a second end, the first end of the pressure transport member coupled to the first connection member and the second end of the pressure transport member coupled to the second connection member; andwherein the medical canister connector has a free position and wherein the medical canister is operable to be maneuvered into a loading position.
  • 8. The medical canister connector of claim 7 wherein the angle (α) in the loading position is greater than 100 degrees.
  • 9. The medical canister connector of claim 7 wherein the angle (α) in the loading position is greater than 110 degrees.
  • 10. The medical canister connector of claim 7 wherein the angle (α) in the loading position is greater than 120 degrees.
  • 11. The medical canister connector of claim 7 wherein the pressure transport member comprises a channel and a plurality of clips operable to secure a pressure-sensing conduit.
  • 12. The medical canister connector of claim 7 wherein the patient-port attachment member comprises a patient-port body formed with a patient-port opening, and wherein the patient-port opening comprises a tapered opening formed with a plurality of sealing ribs on an interior surface.
  • 13. The medical canister connector of claim 7 wherein the reduced-pressure-port attachment member comprises a reduced-pressure-port body formed with a reduced-pressure-port opening.
  • 14. The medical canister connector of claim 7 wherein the reduced-pressure-port attachment member comprises a reduced-pressure-port body formed with a reduced-pressure-port opening, and wherein the reduced-pressure-port opening comprises a tapered opening formed with a plurality of sealing ribs on an interior surface.
  • 15. The medical canister connector of claim 7 wherein the first connection member, the patient-port attachment member, the second connection member, the reduced-pressure-port attachment member, and the pressure transport member are formed as an integral unit from a soft polymer.
  • 16. The medical canister connector of claim 7 wherein the first connection member, the patient-port attachment member, the second connection member, the reduced-pressure-port attachment member, and the pressure transport member are formed as an integral unit from an elastic polymer.
  • 17. The medical canister connector of claim 7 wherein the first connection member, the patient-port attachment member, the second connection member, the reduced-pressure-port attachment member, and the pressure transport member are formed as an integral unit from a thermoplastic polymer (PVC).
RELATED APPLICATION

The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/109,439, entitled “A Medical Canister Connector,” filed Oct. 29, 2008, which is incorporated herein by reference for all purposes.

US Referenced Citations (178)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4250882 Adair Feb 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4294240 Thill Oct 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4346711 Agdanowski et al. Aug 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4430084 Deaton Feb 1984 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4633865 Hengstberger et al. Jan 1987 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4728642 Pawelchak et al. Mar 1988 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4815468 Annand Mar 1989 A
4825866 Pierce May 1989 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4844072 French et al. Jul 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4899965 Usui Feb 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4908350 Kramer et al. Mar 1990 A
4919654 Kalt Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5192266 Wilk Mar 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5437683 Neumann et al. Aug 1995 A
5441481 Mishra et al. Aug 1995 A
5443848 Kramer et al. Aug 1995 A
5466231 Cercone et al. Nov 1995 A
5484399 Diresta et al. Jan 1996 A
5484428 Drainvill et al. Jan 1996 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5662598 Tobin Sep 1997 A
5701917 Khouri Dec 1997 A
5792173 Breen et al. Aug 1998 A
5893368 Sugerman Apr 1999 A
5902260 Gilman et al. May 1999 A
5938626 Sugerman Aug 1999 A
6042539 Harper et al. Mar 2000 A
6051747 Lindqvist et al. Apr 2000 A
6071267 Zamierowski Jun 2000 A
6135116 Vogel et al. Oct 2000 A
6174306 Fleischmann Jan 2001 B1
6241747 Ruff Jun 2001 B1
6264979 Svedman Jul 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6383162 Sugarbaker May 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6537241 Odland Mar 2003 B1
6553998 Heaton et al. Apr 2003 B2
6626891 Ohmstede Sep 2003 B2
6685681 Lockwood et al. Feb 2004 B2
6695823 Line et al. Feb 2004 B1
6752794 Lockwood et al. Jun 2004 B2
6814079 Heaton et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6936037 Bubb et al. Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7105001 Mandelbaum Sep 2006 B2
7128735 Weston Oct 2006 B2
7195624 Lockwood et al. Mar 2007 B2
7276051 Henley et al. Oct 2007 B1
7284730 Walsh et al. Oct 2007 B2
7338482 Lockwood et al. Mar 2008 B2
7381859 Hunt et al. Jun 2008 B2
7476205 Erdmann Jan 2009 B2
7790945 Watson, Jr. Sep 2010 B1
7951100 Hunt et al. May 2011 B2
20020062097 Simpson May 2002 A1
20020065494 Lockwood et al. May 2002 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020115956 Ross Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20020161317 Risk et al. Oct 2002 A1
20030208149 Coffey Nov 2003 A1
20040030304 Hunt et al. Feb 2004 A1
20050085795 Lockwood Apr 2005 A1
20050101922 Anderson et al. May 2005 A1
20050131327 Lockwood et al. Jun 2005 A1
20050222544 Weston Oct 2005 A1
20050261642 Weston Nov 2005 A1
20050273066 Wittmann Dec 2005 A1
20060029650 Coffey Feb 2006 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060079852 Bubb Apr 2006 A1
20060189910 Johnson et al. Aug 2006 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070282309 Bengston et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080058684 Ugander et al. Mar 2008 A1
20080103462 Wenzel et al. May 2008 A1
20080125687 Flick et al. May 2008 A1
20080167593 Fleischmann Jul 2008 A1
20080269658 Vinton et al. Oct 2008 A1
20090099519 Kaplan Apr 2009 A1
20100030132 Niezgoda et al. Feb 2010 A1
Foreign Referenced Citations (71)
Number Date Country
550575 Aug 1982 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
2005436 Jun 1990 CA
2 303 085 Mar 1999 CA
26 40 413 Mar 1978 DE
2754775 Jun 1979 DE
43 06 478 Sep 1994 DE
295 04 378 Oct 1995 DE
20115990 Dec 2001 DE
69806842 Jan 2003 DE
60118546 Aug 2006 DE
102006032870 Jan 2008 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
271491 Jun 1988 EP
0358302 Mar 1990 EP
0506992 Oct 1992 EP
0555293 Aug 1993 EP
0777504 Jun 1997 EP
0 853 950 Oct 2002 EP
1284777 Feb 2003 EP
1 088 569 81 Aug 2003 EP
1018967 Aug 2004 EP
0 688 189 Jun 2005 EP
0 620 720 Nov 2006 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 333 965 Aug 1999 GB
2342584 Apr 2000 GB
2 329 127 Aug 2000 GB
2365350 Feb 2002 GB
3056429 May 1991 JP
4129536 Apr 1992 JP
71559 Apr 2002 SG
WO 8002182 Oct 1980 WO
WO 8701027 Feb 1987 WO
WO 8704626 Aug 1987 WO
WO 9010424 Sep 1990 WO
WO 9207519 May 1992 WO
WO 9309727 May 1993 WO
WO 9420041 Sep 1994 WO
WO 9605873 Feb 1996 WO
WO 9718007 May 1997 WO
WO 9901173 Jan 1999 WO
WO 9913793 Mar 1999 WO
WO 0007653 Feb 2000 WO
WO 0042958 Jul 2000 WO
WO 0057794 Oct 2000 WO
WO 0059418 Oct 2000 WO
WO 0059424 Oct 2000 WO
WO 0134223 May 2001 WO
WO 0171231 Sep 2001 WO
WO 0185248 Nov 2001 WO
WO 0189431 Nov 2001 WO
WO 03057307 Jul 2003 WO
WO 03086232 Oct 2003 WO
WO 2006048246 May 2006 WO
WO 2006114637 Nov 2006 WO
WO 2007031762 Mar 2007 WO
WO 2007041642 Apr 2007 WO
WO 2007109209 Sep 2007 WO
WO 2007133618 Nov 2007 WO
WO 2008014358 Jan 2008 WO
WO 2008040020 Apr 2008 WO
WO 2008041926 Apr 2008 WO
WO 2008103625 Aug 2008 WO
Related Publications (1)
Number Date Country
20100106116 A1 Apr 2010 US
Provisional Applications (1)
Number Date Country
61109439 Oct 2008 US