The present disclosure relates generally to a method and system for monitoring physiological parameters of a patient. Specifically, embodiments of the present invention relate to more accurate estimation of intravascular blood volume and fluid responsiveness by adjusting pulse oximetry waveform measurements to account for variations in respiratory parameters and/or other patient parameters.
This section is intended to introduce the reader to aspects of the art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.
One physiological parameter that physicians may wish to monitor is blood fluid volume (i.e., intravascular volume). Variations from normal fluid volume in the blood may indicate a change in clinical condition or an injury. For example, hypovolemia is a state of decreased intravascular volume that may be associated with dehydration. Correct clinical assessment of hypovolemia is complex. More specifically, intravascular volume is difficult to estimate, particularly in critically ill patients. Without an accurate assessment of a patient's intravascular volume, it is difficult to predict whether a patient will respond to fluid therapy (e.g., a blood or fluid infusion) with an improvement in clinical condition, such as an increase in stroke volume and cardiac output. Accordingly, accurate assessments of intravascular volume may assist a clinician in determining whether a patient will be responsive to fluid therapy.
To this end, indicators such as the systolic blood pressure variation, pulse pressure variation, or stroke volume variation may be used to estimate intravascular volume and determine whether a patient is likely to be fluid responsive. However, these measurements tend to be invasive. For example, to obtain an accurate pulse pressure waveform from which the intravascular volume can be determined, a physician may insert an invasive arterial line.
Advantages of the disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
For patients who are undergoing multiple and overlapping medical treatments, monitoring physiological parameters may be complex. For example, certain physiological characteristics of the patient may be influenced by the medical treatment being provided. In embodiments, a ventilator may control a patient's breathing rate along with the type and amount of gases inhaled. Because respiration affects the delivery of oxygen from the lungs into the blood, changes in ventilation parameters and/or patient lung conditions may result in changes to hemodynamic parameters, such as pulse pressure and blood oxygenation.
The variability in a waveform representative of a patient's blood oxygen levels (i.e., a plethysmographic waveform) may be used to estimate a patient's intravascular volume. Blood oxygen levels may be monitored with a on-invasive, optical pulse oximetry sensor that transmits two or more wavelengths of light, most commonly red and near infrared wavelengths, through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. The use of pulse oximetry to estimate intravascular volume and fluid responsiveness in ventilated patients provides the ease of use of a noninvasive, rather than invasive, sensor. However, as noted, blood oxygen measurements may be affected by other clinical conditions, such as respiratory parameters. For example, the plethysmographic waveform signal may be sensitive to respiratory parameters, such as respiration rate, tidal volume, end tidal carbon dioxide concentration, or positive end-expiratory pressure, which may be controlled by particular settings on a ventilator. In addition, the plethysmographic waveform signal may be sensitive to tissue or blood constituent concentration, for example, a tissue water fraction or a partial pressure of carbon dioxide in the tissue. Further, the plethysmographic waveform signal may have certain patient-to-patient variability based on age, weight, gender, and clinical condition.
The plethysmographic waveform signal, or, in embodiments, a calculated value based on variation in the waveform signal, may be corrected or adjusted to provide a more accurate estimate of intravascular volume. A clinician may use the estimate of intravascular volume to make determinations about a patient's clinical condition, such as the likelihood that the patient will respond to fluid therapy. The adjustment may correct for certain physiological conditions that may influence the plethysmographic waveform and that may either mask or exaggerate the plethysmographic waveform variability. For example, in the case of a ventilated patient with a controlled respiration rate, the patient's blood oxygen saturation may be higher relative to a patient who is not receiving breathing assistance. Depending on the patient's clinical condition, a ventilated patient with generally higher respiration rate may have greater peak-to-peak variability in a plethysmographic waveform, which in turn would result in a higher calculated variability value. Typically, higher variability values (e.g., greater than 15% variability) may be associated with increased fluid responsiveness. Accordingly, an artificially high variability value may mask a patient's true fluid responsiveness.
By correcting the variability of the plethysmographic signal to account for the influence of patient parameters, such as a higher respiration rate as a result of ventilation, the resulting plethysmographic waveform variability value may be more accurate. Accordingly, a clinician may be able to make more informed decisions about whether the patient may benefit from fluid therapy. In addition, the clinician may be able to assess changes in blood volume more rapidly and may be able to intervene to provide therapy to the patient at an earlier time point. In embodiments, a closed-loop system is provided in which the corrected plethysmographic waveform variability is used to estimate the intravascular volume and determine the fluid responsiveness of a patient. A closed-loop controller may control delivery of fluid therapy if the estimate of intravascular volume is associated with hypovolemia, which may indicate that the patient will be responsive to fluid therapy.
Embodiments provided herein are directed to medical devices for assessing intravascular volume based on respiratory or other patient parameters. Suitable devices may be incorporated into a respiratory system 10, shown in
The system 10 may also include a pulse oximetry sensor 20 for generating a plethysmographic waveform signal representative of a patient's blood oxygen levels. The pulse oximetry sensor 20 may be in communication with a monitor 22 configured to receive the plethysmographic waveform signal and estimate the patient's intravascular volume and/or fluid responsiveness. In one embodiment, the monitoring functions of the monitor 22 may be incorporated into a single device that also performs the functions of ventilator 18.
In embodiments, the plethysmographic waveform variability may be corrected by adjusting for respiratory parameters controlled by the ventilator 18. For example, the ventilator 18 may include a controller for controlling respiration rate, tidal volume, flow rate, pressure, peak airway pressure, ratio of expiration to inspiration time, fraction of inspired oxygen (i.e., the percentage of oxygen in the gas mixture), inspired pressure increases or decreases over each breath (e.g., positive end-expiratory pressure), and any other respiratory parameter. Any suitable respiratory parameter controlled by the ventilator 18 may be used to adjust an estimate of intravascular volume, as discussed in more detail below.
The respiratory system 10 may also include any number or combination of additional sensors for providing information related to patient parameters that may be used to correct or adjust the estimate of the patient's intravascular volume and/or fluid responsiveness. For example, suitable sensors may include sensors for determining tissue hydration, tissue constituents, blood constituents, blood pressure, heart rate, patient temperature, or tissue impedance. Such sensors may also include sensors for determining the presence or concentration of biomarkers, including sensors for circulating biomarkers related to cardiac stress and function (e.g., troponin or cholesterol) and/or biomarkers associated with lung function (e.g., surfactant protein D).
Suitable sensors for providing information about additional patient parameters may be optical, electrical, chemical, or biological sensors. A carbon dioxide sensor or tissue water fraction sensor may direct two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm, into a sample, e.g., a gas sample or a tissue sample. Other sensors may include electrical sensors, such as electrical impedance sensors that may sense a voltage drop between two electrodes that are applied to a patient's tissue. Chemical sensors may include calorimetric chemical sensors, such as calorimetric sensors for detection of carbon dioxide. For example, a chemical sensor for carbon dioxide may include an indicator solution containing hydroxyl ions or amine residues that react chemically with carbon dioxide to form a carbonate and/or a bicarbonate or carbamate moiety, such as those discussed in co-pending U.S. Patent Publication No. 2008/0078394 by Ostrowski et al., filed on Sep. 25, 2006, the specification of which is incorporated by reference in its entirety herein for all purposes. This reaction may ultimately result in a color change that may be optically detected. Biological sensors may include enzymatic sensors for detecting a color or fluorescence change produced by enzymatic reactions or by antibody/ligand binding. For example, surfactant protein D may be detected by an enzyme-linked immunosorbent assay available from Cell Sciences (Canton, Mass.).
By way of example,
The respiratory system 10 may include, either instead of or in addition to carbon dioxide sensor/s 24, any number of additional sensor types. For example, aquametry sensor 26 may be a sensor that may be applied to a patient's tissue for determining a tissue water fraction. The aquametry sensor 26 may include any suitable arrangement of optical components for spectrophotometrically assessing the patient's tissue water fraction. In one embodiment, the aquametry sensor 26 and the pulse oximetry sensor 20 may be integrated into a unitary sensor body.
The downstream monitor 22 may receive signals, for example from ventilator 18 or from one or more sensors 24 or 26, to correct or adjust pulse oximetry signals received from pulse oximetry sensor 20.
The monitor 22 may include a microprocessor 32 coupled to an internal bus 34. Also connected to the bus may be a RAM memory 36 and a display 38. A time processing unit (TPU) 40 may provide timing control signals to light drive circuitry 42, which controls when an optical sensor (e.g., pulse oximetry sensor 20, carbon dioxide sensor 24, or tissue water fraction sensor 26) is activated, and, if multiple light sources are used, the multiplexed timing for the different light sources. TPU 40 may also control the gating-in of signals from sensor 20 through an amplifier 43 and a switching circuit 44. These signals are sampled at the proper time, depending at least in part upon which of multiple light sources is activated, if multiple light sources are used. The received signal from the pulse oximetry sensor 20 may be passed through an amplifier 46, a low pass filter 48, and an analog-to-digital converter 50. The digital data may then be stored in a queued serial module (QSM) 52, for later downloading to RAM 36 or ROM 56 as QSM 52 fills up.
In an embodiment, based at least in part upon the received signals corresponding to the light received by optical components of the pulse oximetry sensor 20, microprocessor 32 may calculate the oxygen saturation using various algorithms In addition, the microprocessor 32 may calculate a plethysmographic waveform variation using various algorithms, such as suitable statistical or time-series analysis algorithms. The plethysmograhpic waveform variation may be corrected based on input signals from other sensors (e.g., carbon dioxide sensor 24 or aquametry sensor 26), the ventilator 18, or caregiver inputs to control inputs 54. For example, the caregiver may input a patient's age, weight, gender, or information about the patient's clinical condition that may be relevant to the accurate estimation of the intravascular volume. These algorithms may employ certain coefficients, which may be empirically determined, and may correspond to the wavelengths of light used. In addition, the algorithms may employ additional correction coefficients. By way of example, a particular end tidal carbon dioxide measurement, as generated from a signal provided by carbon dioxide sensor 24, may be associated with a particular correction coefficient. The algorithms and coefficients may be stored in a ROM 56 or other suitable computer-readable storage medium and accessed and operated according to microprocessor 32 instructions. In one embodiment, the correction coefficients may be provided as a lookup table.
A patient's intravascular volume may be determined based on the corrected variability of a pulse oximetry plethysmographic waveform that is adjusted based on patient parameters.
According to an embodiment the method 64 begins with obtaining a plethystnographic waveform signal from a pulse oximetry sensor 20 at step 66. Additional data relating to one or more patient parameters is obtained at step 68. The data relating to one or more patient parameters may be received from the ventilator 18, or may be calculated from signals received from patient sensors, e.g., carbon dioxide sensor 24 or aquametry sensor 26. In addition, the data relating to one or more patient parameters may be manually input by a healthcare provider.
The monitor 22 may perform analysis of the plethysmographic waveform signal and calculation of the plethysmographic waveform variability at step 70 based on the plethysmographic waveform signal obtained at step 66 and the additional patient parameter data obtained at step 68. The mathematical model for adjusting the waveform variability based on additional patient parameters obtained in step 68 may be linear or nonlinear, multivariate, partial least squares, principal component regression, auto-regressive moving average, mathematical curve fitting or simply an additive constant to the variability value. In one embodiment, the waveform variability is first calculated to provide a percentage value, and then the percentage value is adjusted based on the patient parameters.
In embodiments, the plethysmographic waveform signal may be modified or filtered based on the patient parameters prior to the calculation of the waveform variability to provide an adjusted or corrected variability value. For example, if a patient parameter is associated with having a damping effect on the waveform, the damping effect may be quantified and a filter may be used to remove the damping effect. In addition, the variability of the AC component (i.e., the pulsatile component) of the plethysmographic waveform signal, and not the DC component (i.e., the nonpulsatile component), may be used for assessing the intravascular blood volume. Accordingly, the DC component may be filtered out or otherwise removed from the waveform prior to the analysis in step 70.
Wv=(Wmax−Wmin)/Wmean
where Wmax is a maximum peak value, taken as a vertical distance 82 between a peak 84 and trough 86 for a largest peak 88 (i.e., a single cardiac cycle) and Wmin is a minimum peak value, taken as vertical distance 90 between a peak 92 and trough 94 for a smallest peak 96 within a window 98 of consecutive peaks. Wmean represents the mean vertical distance between peak maxima and minima for the consecutive peaks in the window 98. The window 98 may be a total number of peaks, such as 5 consecutive peaks, or may include all consecutive peaks within a time window, such as 10 seconds. In embodiments, an operator may adjust the settings on a monitor to change the size of the window according to the desired monitoring parameters. For example, an operator may increase the size of the window 98 from 10 seconds to 30 seconds to capture more data prior to providing the waveform variability. This may provide more accurate and/or stable waveform variability values, but may also slow the updating. The monitor 22 may provide rolling updates as the window 98 moves forward in time.
Turning back to
Similarly, information relating to whether or not a patient is receiving positive end expiratory pressure (PEEP) ventilation may be used to adjust the plethysmographic waveform variability. PEEP can cause significant hemodynamic consequences through decreasing venous return to the right heart and decreasing right ventricular function. PEEP may increase intrathoracic pressure, leading to a resulting decrease in venous return and decrease in cardiac output. Accordingly, information relating to PEEP may be used to adjust the plethysmographic waveform variability to a lower threshold value indicative of hypovolemia, as discussed below. For example, because PEEP and intravascular volume depletion may be contraindicated, a patient receiving PEEP may be closely monitored for hypovolemia and may have a lower plethysmograhpic waveform variability threshold. In addition, PEEP may lead to an increase in plethysmographic waveform variability, meaning that the plethysmographic waveform variability may be adjusted downwards to account for the effects of PEEP.
A patient parameter may also be used to determine if plethysmographic waveform variability is likely to be accurate for the patient in question. For example for patients with normal tidal volumes, e.g., between 8 and 15 kg/ml, the plethysmographic waveform variability value may be a generally accurate estimate of intravascular volume or fluid responsiveness. Accordingly, for these patients, the plethysmographic waveform variability value may not be adjusted when their tidal volumes are in the normal range. However, for patients outside of the range of normal tidal volumes, the plethysmographic waveform variability value may be less accurate and maybe adjusted according to its relationship with tidal volumes outside of normal ranges.
In embodiments, tissue water fraction information from an aquametry sensor 26 may be used to adjust the plethysmographic waveform variability. Because plethysmographic waveform variability may be used as a surrogate for blood volume, information about the hydration state of other compartments, such as the tissue, may provide additional information for assessing intravascular blood volume. Total body water depletion through dehydration may lead to poor intravascular volume. The body may protectively shunt blood towards the most vital organs (heart, kidney and brain) and away from peripheral organs such as the intestines, muscles and skin. Hence, the earliest sign of dehydration may be seen in the skin and muscle tissues. A reduced extracellular fluid volume, e.g., tissue water fraction, may be an early indicator of low intravascular volume. A tissue water fraction may be determined according to methods discussed in U.S. Patent Publication No. 2008/0221411 to Hausmann et al., filed on Mar. 9, 2007, the specification of which is incorporated by reference herein in its entirety for all purposes. If the tissue water fraction is associated with a low level of hydration, the plethysmographic waveform variability may be increased or adjusted upwards to reflect a higher likelihood of hypovolemia. In addition, the tissue water fraction may be used as a confirmation or confidence check for the plethysmographic waveform variability.
Further, information from a carbon dioxide sensor 24 may be used to adjust the plethysmographic waveform variability. Abnormally low levels of carbon dioxide in end tidal breaths may correlate with a concurrent decrease in blood volume. Accordingly, the plethysmographic waveform variability may be increased or adjusted upwards to reflect a higher likelihood of hypovolemia for patients with decreased end tidal carbon dioxide levels.
The monitor 22 may calculate the adjusted plethysmographic variability value and provide a display or other indication to a clinician, such as a graphical, visual, or audio representation of the intravascular volume at step 72. For example, an adjusted plethysmographic variability value associated with normal intravascular blood volume may include a numeric value or a green light indicated on a display or a short tone generated by a speaker associated with monitor 22. Similarly, an adjusted plethysmographic variability value associated with hypovolemia may trigger an alarm, which may include one or more of an audio or visual alarm indication. Further, the monitor 22 may provide a confidence metric or indicator to provide information to the clinician relating to how may parameters may have been taken into account. For example, if the plethysmographic variability value is consistent with trends from two or more additional patient parameters, the confidence may be higher than if only one patient parameter is used.
In one embodiment, the alarm may be triggered if the adjusted plethysmographic variability value is substantially greater than a predetermined value, substantially less than a predetermined value, or outside of a predetermined range. In one embodiment, a plethysmographic variability value of 10-15% may be considered to be indicative of a non-responsive or normovolemic patient that would not benefit from a fluid infusion. In addition, a plethysmographic variability value above 15% may be considered to be indicative of a hypovolemic patient that would likely benefit from a fluid infusion with respect to increasing cardiac output and improving the overall state of oxygenation. Accordingly, an alarm may be triggered when the plethysmographic waveform variability value is above 15% to alert a clinician that the patient may benefit from fluid therapy.
In other embodiments, a patient respiratory system 100 may operate under closed-loop control to provide to delivery of a fluid therapy (e.g., saline, blood, or other fluid) to a patient 14.
For example, the controller 102 may receive a request for increased fluid from the monitor 22 when a measured plethysmographic waveform variability value, adjusted with regard to available patient parameters, is above a predefined target, e.g., above 15%. The fluid delivery device 104 may include a peristaltic pump or other type of pump attached to an automatic intravenous line to achieve the desired delivery rate of the fluid to the patient. To control the rate at which the pump infuses the fluid, the speed of the pump may be controlled by the closed-loop controller 102. When the plethysmographic waveform variability value falls below 15%, the controller 102 may slow or stop delivery of fluid from the fluid delivery device 104. If the monitor 22 fails to determine that a plethysmographic waveform variability value has decreased after a set time, the controller 102 may generate a signal notifying a caregiver of prolonged hypovolemia or may cease delivery of fluids.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3638640 | Shaw | Feb 1972 | A |
3721813 | Condon et al. | Mar 1973 | A |
4586513 | Hamaguri | May 1986 | A |
4603700 | Nichols et al. | Aug 1986 | A |
4621643 | New, Jr. et al. | Nov 1986 | A |
4653498 | New, Jr. et al. | Mar 1987 | A |
4685464 | Goldberger et al. | Aug 1987 | A |
4694833 | Hamaguri | Sep 1987 | A |
4697593 | Evans et al. | Oct 1987 | A |
4700708 | New, Jr. et al. | Oct 1987 | A |
4714080 | Edgar, Jr. et al. | Dec 1987 | A |
4714341 | Hamaguri et al. | Dec 1987 | A |
4759369 | Taylor | Jul 1988 | A |
4770179 | New, Jr. et al. | Sep 1988 | A |
4773422 | Isaacson et al. | Sep 1988 | A |
4776339 | Schreiber | Oct 1988 | A |
4781195 | Martin | Nov 1988 | A |
4796636 | Branstetter et al. | Jan 1989 | A |
4800495 | Smith | Jan 1989 | A |
4800885 | Johnson | Jan 1989 | A |
4802486 | Goodman et al. | Feb 1989 | A |
4805623 | Jöbsis | Feb 1989 | A |
4807630 | Malinouskas | Feb 1989 | A |
4807631 | Hersh et al. | Feb 1989 | A |
4819646 | Cheung et al. | Apr 1989 | A |
4819752 | Zelin | Apr 1989 | A |
4824242 | Frick et al. | Apr 1989 | A |
4825872 | Tan et al. | May 1989 | A |
4825879 | Tan et al. | May 1989 | A |
4830014 | Goodman et al. | May 1989 | A |
4832484 | Aoyagi et al. | May 1989 | A |
4846183 | Martin | Jul 1989 | A |
4848901 | Hood, Jr. | Jul 1989 | A |
4854699 | Edgar, Jr. | Aug 1989 | A |
4859056 | Prosser et al. | Aug 1989 | A |
4859057 | Taylor et al. | Aug 1989 | A |
4863265 | Flower et al. | Sep 1989 | A |
4865038 | Rich et al. | Sep 1989 | A |
4867557 | Takatani et al. | Sep 1989 | A |
4869253 | Craig, Jr. et al. | Sep 1989 | A |
4869254 | Stone et al. | Sep 1989 | A |
4880304 | Jaeb et al. | Nov 1989 | A |
4883055 | Merrick | Nov 1989 | A |
4883353 | Hansman et al. | Nov 1989 | A |
4890619 | Hatschek | Jan 1990 | A |
4892101 | Cheung et al. | Jan 1990 | A |
4901238 | Suzuki et al. | Feb 1990 | A |
4908762 | Suzuki et al. | Mar 1990 | A |
4911167 | Corenman et al. | Mar 1990 | A |
4913150 | Cheung et al. | Apr 1990 | A |
4926867 | Kanda et al. | May 1990 | A |
4927264 | Shiga et al. | May 1990 | A |
4928692 | Goodman et al. | May 1990 | A |
4934372 | Corenman et al. | Jun 1990 | A |
4936679 | Mersch | Jun 1990 | A |
4938218 | Goodman et al. | Jul 1990 | A |
4942877 | Sakai et al. | Jul 1990 | A |
4948248 | Lehman | Aug 1990 | A |
4955379 | Hall | Sep 1990 | A |
4960126 | Conlon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
4971062 | Hasebe et al. | Nov 1990 | A |
4972331 | Chance | Nov 1990 | A |
4974591 | Awazu et al. | Dec 1990 | A |
5007423 | Branstetter et al. | Apr 1991 | A |
5025791 | Niwa | Jun 1991 | A |
RE33643 | Isaacson et al. | Jul 1991 | E |
5028787 | Rosenthal et al. | Jul 1991 | A |
5040539 | Schmitt et al. | Aug 1991 | A |
5054488 | Muz | Oct 1991 | A |
5055671 | Jones | Oct 1991 | A |
5058588 | Kaestle | Oct 1991 | A |
5065749 | Hasebe et al. | Nov 1991 | A |
5066859 | Karkar et al. | Nov 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5078136 | Stone et al. | Jan 1992 | A |
5084327 | Stengel | Jan 1992 | A |
5088493 | Giannini et al. | Feb 1992 | A |
5090410 | Saper et al. | Feb 1992 | A |
5094239 | Jaeb et al. | Mar 1992 | A |
5094240 | Muz | Mar 1992 | A |
5099841 | Heinonen et al. | Mar 1992 | A |
5099842 | Mannheimer et al. | Mar 1992 | A |
H1039 | Tripp et al. | Apr 1992 | H |
5104623 | Miller | Apr 1992 | A |
5109849 | Goodman et al. | May 1992 | A |
5111817 | Clark et al. | May 1992 | A |
5113861 | Rother | May 1992 | A |
5119815 | Chance | Jun 1992 | A |
5122974 | Chance | Jun 1992 | A |
5125403 | Culp | Jun 1992 | A |
5127406 | Yamaguchi | Jul 1992 | A |
5131391 | Sakai et al. | Jul 1992 | A |
5140989 | Lewis et al. | Aug 1992 | A |
5152296 | Simons | Oct 1992 | A |
5154175 | Gunther | Oct 1992 | A |
5158082 | Jones | Oct 1992 | A |
5167230 | Chance | Dec 1992 | A |
5170786 | Thomas et al. | Dec 1992 | A |
5188108 | Secker et al. | Feb 1993 | A |
5190038 | Polson et al. | Mar 1993 | A |
5193542 | Missanelli et al. | Mar 1993 | A |
5193543 | Yelderman | Mar 1993 | A |
5203329 | Takatani et al. | Apr 1993 | A |
5209230 | Swedlow et al. | May 1993 | A |
5213099 | Tripp et al. | May 1993 | A |
5216598 | Branstetter et al. | Jun 1993 | A |
5217012 | Young et al. | Jun 1993 | A |
5217013 | Lewis et al. | Jun 1993 | A |
5218962 | Mannheimer et al. | Jun 1993 | A |
5224478 | Sakai et al. | Jul 1993 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5228440 | Chung et al. | Jul 1993 | A |
5237994 | Goldberger | Aug 1993 | A |
5239185 | Ito et al. | Aug 1993 | A |
5246002 | Prosser | Sep 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5247931 | Norwood | Sep 1993 | A |
5247932 | Chung et al. | Sep 1993 | A |
5249576 | Goldberger et al. | Oct 1993 | A |
5253645 | Friedman et al. | Oct 1993 | A |
5253646 | Delpy et al. | Oct 1993 | A |
5259381 | Cheung et al. | Nov 1993 | A |
5259761 | Schnettler et al. | Nov 1993 | A |
5263244 | Centa et al. | Nov 1993 | A |
5267562 | Ukawa et al. | Dec 1993 | A |
5267563 | Swedlow et al. | Dec 1993 | A |
5273036 | Kronberg et al. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5279295 | Martens et al. | Jan 1994 | A |
5285783 | Secker | Feb 1994 | A |
5285784 | Seeker | Feb 1994 | A |
5287853 | Vester et al. | Feb 1994 | A |
5291884 | Heinemann et al. | Mar 1994 | A |
5297548 | Pologe | Mar 1994 | A |
5299120 | Kaestle | Mar 1994 | A |
5299570 | Hatschek | Apr 1994 | A |
5309908 | Friedman et al. | May 1994 | A |
5311865 | Mayeux | May 1994 | A |
5313940 | Fuse et al. | May 1994 | A |
5323776 | Blakeley et al. | Jun 1994 | A |
5329922 | Atlee, III | Jul 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5339810 | Ivers et al. | Aug 1994 | A |
5343818 | McCarthy et al. | Sep 1994 | A |
5343869 | Pross et al. | Sep 1994 | A |
5348003 | Caro | Sep 1994 | A |
5348004 | Hollub et al. | Sep 1994 | A |
5349519 | Kaestle | Sep 1994 | A |
5349952 | McCarthy et al. | Sep 1994 | A |
5349953 | McCarthy et al. | Sep 1994 | A |
5351685 | Potratz | Oct 1994 | A |
5353799 | Chance | Oct 1994 | A |
5355880 | Thomas et al. | Oct 1994 | A |
5355882 | Ukawa et al. | Oct 1994 | A |
5361758 | Hall et al. | Nov 1994 | A |
5365066 | Krueger, Jr. et al. | Nov 1994 | A |
5368025 | Young et al. | Nov 1994 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5368224 | Richardson et al. | Nov 1994 | A |
5372136 | Steuer et al. | Dec 1994 | A |
5377675 | Ruskewicz et al. | Jan 1995 | A |
5385143 | Aoyagi | Jan 1995 | A |
5387122 | Goldberger et al. | Feb 1995 | A |
5390670 | Centa et al. | Feb 1995 | A |
5392777 | Swedlow et al. | Feb 1995 | A |
5398680 | Polson et al. | Mar 1995 | A |
5402777 | Warring et al. | Apr 1995 | A |
5411023 | Morris, Sr. et al. | May 1995 | A |
5411024 | Thomas et al. | May 1995 | A |
5413099 | Schmidt et al. | May 1995 | A |
5413100 | Barthelemy et al. | May 1995 | A |
5413101 | Sugiura | May 1995 | A |
5413102 | Schmidt et al. | May 1995 | A |
5417207 | Young et al. | May 1995 | A |
5421329 | Casciani et al. | Jun 1995 | A |
5425360 | Nelson | Jun 1995 | A |
5425362 | Siker et al. | Jun 1995 | A |
5427093 | Ogawa et al. | Jun 1995 | A |
5429128 | Cadell et al. | Jul 1995 | A |
5429129 | Lovejoy et al. | Jul 1995 | A |
5431159 | Baker et al. | Jul 1995 | A |
5431170 | Mathews | Jul 1995 | A |
5437275 | Amundsen et al. | Aug 1995 | A |
5438986 | Disch et al. | Aug 1995 | A |
5448991 | Polson et al. | Sep 1995 | A |
5452717 | Branigan et al. | Sep 1995 | A |
5465714 | Scheuing | Nov 1995 | A |
5469845 | DeLonzor et al. | Nov 1995 | A |
RE35122 | Corenman et al. | Dec 1995 | E |
5482034 | Lewis et al. | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5483646 | Uchikoga | Jan 1996 | A |
5485847 | Baker, Jr. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5490523 | Isaacson et al. | Feb 1996 | A |
5491299 | Naylor et al. | Feb 1996 | A |
5494032 | Robinson et al. | Feb 1996 | A |
5497771 | Rosenheimer | Mar 1996 | A |
5499627 | Steuer et al. | Mar 1996 | A |
5503148 | Pologe et al. | Apr 1996 | A |
5505199 | Kim | Apr 1996 | A |
5507286 | Solenberger | Apr 1996 | A |
5517988 | Gerhard | May 1996 | A |
5520177 | Ogawa et al. | May 1996 | A |
5521851 | Wei et al. | May 1996 | A |
5522388 | Ishikawa et al. | Jun 1996 | A |
5524617 | Mannheimer | Jun 1996 | A |
5529064 | Rall et al. | Jun 1996 | A |
5533507 | Potratz et al. | Jul 1996 | A |
5551423 | Sugiura | Sep 1996 | A |
5551424 | Morrison et al. | Sep 1996 | A |
5553614 | Chance | Sep 1996 | A |
5553615 | Carim et al. | Sep 1996 | A |
5555882 | Richardson et al. | Sep 1996 | A |
5558096 | Palatnik | Sep 1996 | A |
5560355 | Merchant et al. | Oct 1996 | A |
5564417 | Chance | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5575285 | Takanashi et al. | Nov 1996 | A |
5577500 | Potratz | Nov 1996 | A |
5582169 | Oda et al. | Dec 1996 | A |
5584296 | Cui et al. | Dec 1996 | A |
5588425 | Sackner et al. | Dec 1996 | A |
5588427 | Tien | Dec 1996 | A |
5590652 | Inai | Jan 1997 | A |
5595176 | Yamaura | Jan 1997 | A |
5596986 | Goldfarb | Jan 1997 | A |
5611337 | Bukta | Mar 1997 | A |
5617852 | MacGregor | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5626140 | Feldman et al. | May 1997 | A |
5630413 | Thomas et al. | May 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5632273 | Suzuki | May 1997 | A |
5634459 | Gardosi | Jun 1997 | A |
5634461 | Faithfull et al. | Jun 1997 | A |
5638593 | Gerhardt et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645059 | Fein et al. | Jul 1997 | A |
5645060 | Yorkey | Jul 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5660567 | Nierlich et al. | Aug 1997 | A |
5662105 | Tien | Sep 1997 | A |
5662106 | Swedlow et al. | Sep 1997 | A |
5666952 | Fuse et al. | Sep 1997 | A |
5671529 | Nelson | Sep 1997 | A |
5673692 | Schulze et al. | Oct 1997 | A |
5673693 | Solenberger | Oct 1997 | A |
5676139 | Goldberger et al. | Oct 1997 | A |
5676141 | Hollub | Oct 1997 | A |
5678544 | DeLonzor et al. | Oct 1997 | A |
5680857 | Pelikan et al. | Oct 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5685301 | Klomhaus | Nov 1997 | A |
5687719 | Sato et al. | Nov 1997 | A |
5687722 | Tien et al. | Nov 1997 | A |
5692503 | Keunstner | Dec 1997 | A |
5692505 | Fouts | Dec 1997 | A |
5709205 | Bukta | Jan 1998 | A |
5713355 | Richardson et al. | Feb 1998 | A |
5724967 | Venkatachalam | Mar 1998 | A |
5727547 | Levinson et al. | Mar 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5731582 | West | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743260 | Chung et al. | Apr 1998 | A |
5743263 | Baker, Jr. | Apr 1998 | A |
5746206 | Mannheimer | May 1998 | A |
5746697 | Swedlow et al. | May 1998 | A |
5752914 | DeLonzor et al. | May 1998 | A |
5755226 | Carim et al. | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5766125 | Aoyagi et al. | Jun 1998 | A |
5766127 | Pologe et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5772587 | Gratton et al. | Jun 1998 | A |
5774213 | Trebino et al. | Jun 1998 | A |
5776058 | Levinson et al. | Jul 1998 | A |
5776059 | Kaestle | Jul 1998 | A |
5779630 | Fein et al. | Jul 1998 | A |
5779631 | Chance | Jul 1998 | A |
5782237 | Casciani et al. | Jul 1998 | A |
5782756 | Mannheimer | Jul 1998 | A |
5782758 | Ausec et al. | Jul 1998 | A |
5786592 | Hök | Jul 1998 | A |
5790729 | Pologe et al. | Aug 1998 | A |
5792052 | Isaacson et al. | Aug 1998 | A |
5795292 | Lewis et al. | Aug 1998 | A |
5797841 | DeLonzor et al. | Aug 1998 | A |
5800348 | Kaestle | Sep 1998 | A |
5800349 | Isaacson et al. | Sep 1998 | A |
5803910 | Potratz | Sep 1998 | A |
5807246 | Sakaguchi et al. | Sep 1998 | A |
5807247 | Merchant et al. | Sep 1998 | A |
5807248 | Mills | Sep 1998 | A |
5810723 | Aldrich | Sep 1998 | A |
5810724 | Gronvall | Sep 1998 | A |
5813980 | Levinson et al. | Sep 1998 | A |
5817008 | Rafert et al. | Oct 1998 | A |
5817009 | Rosenheimer et al. | Oct 1998 | A |
5817010 | Hibl | Oct 1998 | A |
5818985 | Merchant et al. | Oct 1998 | A |
5820550 | Polson et al. | Oct 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5823952 | Levinson et al. | Oct 1998 | A |
5827182 | Raley et al. | Oct 1998 | A |
5830135 | Bosque et al. | Nov 1998 | A |
5830136 | DeLonzor et al. | Nov 1998 | A |
5830137 | Scharf | Nov 1998 | A |
5830139 | Abreu | Nov 1998 | A |
5839439 | Nierlich et al. | Nov 1998 | A |
RE36000 | Swedlow et al. | Dec 1998 | E |
5842979 | Jarman et al. | Dec 1998 | A |
5842981 | Larsen et al. | Dec 1998 | A |
5842982 | Mannheimer | Dec 1998 | A |
5846190 | Woehrle | Dec 1998 | A |
5851178 | Aronow | Dec 1998 | A |
5851179 | Ritson et al. | Dec 1998 | A |
5853364 | Baker, Jr. et al. | Dec 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5865736 | Baker, Jr. et al. | Feb 1999 | A |
5871442 | Madarasz et al. | Feb 1999 | A |
5873821 | Chance et al. | Feb 1999 | A |
5879294 | Anderson et al. | Mar 1999 | A |
5885213 | Richardson et al. | Mar 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
5891021 | Dillon et al. | Apr 1999 | A |
5891022 | Pologe | Apr 1999 | A |
5891024 | Jarman et al. | Apr 1999 | A |
5891025 | Buschmann et al. | Apr 1999 | A |
5891026 | Wang et al. | Apr 1999 | A |
5902235 | Lewis et al. | May 1999 | A |
5910108 | Solenberger | Jun 1999 | A |
5911690 | Rall | Jun 1999 | A |
5912656 | Tham et al. | Jun 1999 | A |
5913819 | Taylor et al. | Jun 1999 | A |
5916154 | Hobbs et al. | Jun 1999 | A |
5916155 | Levinson et al. | Jun 1999 | A |
5919133 | Taylor et al. | Jul 1999 | A |
5919134 | Diab | Jul 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5921921 | Potratz et al. | Jul 1999 | A |
5922607 | Bernreuter | Jul 1999 | A |
5924979 | Swedlow et al. | Jul 1999 | A |
5924980 | Coetzee | Jul 1999 | A |
5924982 | Chin | Jul 1999 | A |
5924985 | Jones | Jul 1999 | A |
5934277 | Mortz | Aug 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5954644 | Dettling et al. | Sep 1999 | A |
5960610 | Levinson et al. | Oct 1999 | A |
5961450 | Merchant et al. | Oct 1999 | A |
5961452 | Chung et al. | Oct 1999 | A |
5964701 | Asada et al. | Oct 1999 | A |
5971930 | Elghazzawi | Oct 1999 | A |
5978691 | Mills | Nov 1999 | A |
5978693 | Hamilton et al. | Nov 1999 | A |
5983122 | Jarman et al. | Nov 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5991648 | Levin | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5995856 | Mannheimer et al. | Nov 1999 | A |
5995858 | Kinast | Nov 1999 | A |
5995859 | Takahashi | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
5999834 | Wang et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6005658 | Kaluza et al. | Dec 1999 | A |
6006120 | Levin | Dec 1999 | A |
6011985 | Athan et al. | Jan 2000 | A |
6011986 | Diab et al. | Jan 2000 | A |
6014576 | Raley et al. | Jan 2000 | A |
6018673 | Chin et al. | Jan 2000 | A |
6018674 | Aronow | Jan 2000 | A |
6022321 | Amano et al. | Feb 2000 | A |
6023541 | Merchant et al. | Feb 2000 | A |
6026312 | Shemwell et al. | Feb 2000 | A |
6026314 | Amerov et al. | Feb 2000 | A |
6031603 | Fine et al. | Feb 2000 | A |
6035223 | Baker, Jr. | Mar 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6041247 | Weckstrom et al. | Mar 2000 | A |
6044283 | Fein et al. | Mar 2000 | A |
6047201 | Jackson, III | Apr 2000 | A |
6061584 | Lovejoy et al. | May 2000 | A |
6064898 | Aldrich | May 2000 | A |
6064899 | Fein et al. | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6073038 | Wang et al. | Jun 2000 | A |
6078833 | Hueber | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6081742 | Amano et al. | Jun 2000 | A |
6083157 | Noller | Jul 2000 | A |
6083172 | Baker, Jr. et al. | Jul 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6094592 | Yorkey et al. | Jul 2000 | A |
6095974 | Shemwell et al. | Aug 2000 | A |
6099481 | Daniels et al. | Aug 2000 | A |
6104938 | Huiku et al. | Aug 2000 | A |
6112107 | Hannula | Aug 2000 | A |
6113541 | Dias et al. | Sep 2000 | A |
6115621 | Chin | Sep 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6122535 | Kaestle et al. | Sep 2000 | A |
6133994 | Mathews et al. | Oct 2000 | A |
6134460 | Chance | Oct 2000 | A |
6135952 | Coetzee | Oct 2000 | A |
6144444 | Haworth et al. | Nov 2000 | A |
6144867 | Walker et al. | Nov 2000 | A |
6144868 | Parker | Nov 2000 | A |
6149481 | Wang et al. | Nov 2000 | A |
6150951 | Olejniczak | Nov 2000 | A |
6151107 | Schöllermann et al. | Nov 2000 | A |
6151518 | Hayashi | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6154667 | Miura et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6163715 | Larsen et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6173196 | Delonzor et al. | Jan 2001 | B1 |
6178343 | Bindszus et al. | Jan 2001 | B1 |
6181958 | Steuer et al. | Jan 2001 | B1 |
6181959 | Schöllermann et al. | Jan 2001 | B1 |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6188470 | Grace | Feb 2001 | B1 |
6192260 | Chance | Feb 2001 | B1 |
6195575 | Levinson | Feb 2001 | B1 |
6198951 | Kosuda et al. | Mar 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6213952 | Finarov et al. | Apr 2001 | B1 |
6217523 | Amano et al. | Apr 2001 | B1 |
6222189 | Misner et al. | Apr 2001 | B1 |
6226539 | Potratz | May 2001 | B1 |
6226540 | Bernreuter et al. | May 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6230035 | Aoyagi et al. | May 2001 | B1 |
6233470 | Tsuchiya | May 2001 | B1 |
6236871 | Tsuchiya | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6240305 | Tsuchiya | May 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6253098 | Walker et al. | Jun 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6256524 | Walker et al. | Jul 2001 | B1 |
6261236 | Grimblatov | Jul 2001 | B1 |
6263221 | Chance et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6263223 | Sheperd et al. | Jul 2001 | B1 |
6266546 | Steuer et al. | Jul 2001 | B1 |
6266547 | Walker et al. | Jul 2001 | B1 |
6272363 | Casciani et al. | Aug 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285894 | Oppelt et al. | Sep 2001 | B1 |
6285895 | Ristolainen et al. | Sep 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6298252 | Kovach et al. | Oct 2001 | B1 |
6308089 | Von der Ruhr et al. | Oct 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6330468 | Scharf | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6339715 | Bahr et al. | Jan 2002 | B1 |
6343223 | Chin et al. | Jan 2002 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6351658 | Middleman et al. | Feb 2002 | B1 |
6353750 | Kimura et al. | Mar 2002 | B1 |
6356774 | Bernstein et al. | Mar 2002 | B1 |
6360113 | Dettling | Mar 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6361501 | Amano et al. | Mar 2002 | B1 |
6363269 | Hanna et al. | Mar 2002 | B1 |
6370408 | Merchant et al. | Apr 2002 | B1 |
6370409 | Chung et al. | Apr 2002 | B1 |
6374129 | Chin et al. | Apr 2002 | B1 |
6377829 | Al-Ali et al. | Apr 2002 | B1 |
6381479 | Norris | Apr 2002 | B1 |
6381480 | Stoddart et al. | Apr 2002 | B1 |
6385471 | Mortz | May 2002 | B1 |
6385821 | Modgil et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6393310 | Kuenster | May 2002 | B1 |
6397091 | Diab et al. | May 2002 | B2 |
6397092 | Norris et al. | May 2002 | B1 |
6397093 | Aldrich | May 2002 | B1 |
6400971 | Finarov et al. | Jun 2002 | B1 |
6400972 | Fine | Jun 2002 | B1 |
6402690 | Rhee et al. | Jun 2002 | B1 |
6408198 | Hanna et al. | Jun 2002 | B1 |
6411832 | Guthermann | Jun 2002 | B1 |
6411833 | Baker, Jr. et al. | Jun 2002 | B1 |
6415236 | Kobayashi et al. | Jul 2002 | B2 |
6419671 | Lemberg | Jul 2002 | B1 |
6421549 | Jacques | Jul 2002 | B1 |
6430423 | DeLonzor et al. | Aug 2002 | B2 |
6430513 | Wang et al. | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6434408 | Heckel et al. | Aug 2002 | B1 |
6438399 | Kurth | Aug 2002 | B1 |
6449501 | Reuss | Sep 2002 | B1 |
6453183 | Walker | Sep 2002 | B1 |
6453184 | Hyogo et al. | Sep 2002 | B1 |
6456862 | Benni | Sep 2002 | B2 |
6461305 | Schnall | Oct 2002 | B1 |
6463310 | Swedlow et al. | Oct 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6466808 | Chin et al. | Oct 2002 | B1 |
6466809 | Riley | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6470200 | Walker et al. | Oct 2002 | B2 |
6480729 | Stone | Nov 2002 | B2 |
6487439 | Skladnev et al. | Nov 2002 | B1 |
6490466 | Fein et al. | Dec 2002 | B1 |
6496711 | Athan et al. | Dec 2002 | B1 |
6498942 | Esenaliev et al. | Dec 2002 | B1 |
6501974 | Huiku | Dec 2002 | B2 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505060 | Norris | Jan 2003 | B1 |
6505061 | Larson | Jan 2003 | B2 |
6505133 | Hanna et al. | Jan 2003 | B1 |
6510329 | Heckel | Jan 2003 | B2 |
6510331 | Williams et al. | Jan 2003 | B1 |
6512937 | Blank et al. | Jan 2003 | B2 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519484 | Lovejoy et al. | Feb 2003 | B1 |
6519486 | Edgar, Jr. et al. | Feb 2003 | B1 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6526301 | Larsen et al. | Feb 2003 | B2 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6544193 | Abreu | Apr 2003 | B2 |
6546267 | Sugiura et al. | Apr 2003 | B1 |
6549795 | Chance | Apr 2003 | B1 |
6553241 | Mannheimer et al. | Apr 2003 | B2 |
6553242 | Sarussi | Apr 2003 | B1 |
6553243 | Gurley | Apr 2003 | B2 |
6556852 | Schulze et al. | Apr 2003 | B1 |
6560470 | Pologe | May 2003 | B1 |
6564077 | Mortara | May 2003 | B2 |
6564088 | Soller et al. | May 2003 | B1 |
6571113 | Fein et al. | May 2003 | B1 |
6571114 | Koike et al. | May 2003 | B1 |
6574491 | Elghazzawi | Jun 2003 | B2 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587703 | Cheng et al. | Jul 2003 | B2 |
6587704 | Fine et al. | Jul 2003 | B1 |
6589172 | Williams et al. | Jul 2003 | B2 |
6591122 | Schmitt | Jul 2003 | B2 |
6591123 | Fein et al. | Jul 2003 | B2 |
6594511 | Stone et al. | Jul 2003 | B2 |
6594512 | Huang | Jul 2003 | B2 |
6594513 | Jobsis et al. | Jul 2003 | B1 |
6597931 | Cheng et al. | Jul 2003 | B1 |
6597933 | Kiani et al. | Jul 2003 | B2 |
6600940 | Fein et al. | Jul 2003 | B1 |
6606509 | Schmitt | Aug 2003 | B2 |
6606510 | Swedlow et al. | Aug 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6606512 | Muz et al. | Aug 2003 | B2 |
6615064 | Aldrich | Sep 2003 | B1 |
6615065 | Barrett et al. | Sep 2003 | B1 |
6618602 | Levin et al. | Sep 2003 | B2 |
6622034 | Gorski et al. | Sep 2003 | B1 |
6622095 | Kobayashi et al. | Sep 2003 | B2 |
6628975 | Fein et al. | Sep 2003 | B1 |
6631281 | Kästle | Oct 2003 | B1 |
6643530 | Diab et al. | Nov 2003 | B2 |
6643531 | Katarow | Nov 2003 | B1 |
6647279 | Pologe | Nov 2003 | B2 |
6647280 | Bahr et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6650918 | Terry | Nov 2003 | B2 |
6654621 | Palatnik et al. | Nov 2003 | B2 |
6654622 | Eberhard et al. | Nov 2003 | B1 |
6654623 | Kästle | Nov 2003 | B1 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kianl et al. | Dec 2003 | B2 |
6658277 | Wasserman | Dec 2003 | B2 |
6662030 | Khalil et al. | Dec 2003 | B2 |
6662033 | Casciani et al. | Dec 2003 | B2 |
6665551 | Suzuki | Dec 2003 | B1 |
6668182 | Hubelbank | Dec 2003 | B2 |
6668183 | Hicks et al. | Dec 2003 | B2 |
6671526 | Aoyagi et al. | Dec 2003 | B1 |
6671528 | Steuer et al. | Dec 2003 | B2 |
6671530 | Chung et al. | Dec 2003 | B2 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6671532 | Fudge et al. | Dec 2003 | B1 |
6675031 | Porges et al. | Jan 2004 | B1 |
6678543 | Diab et al. | Jan 2004 | B2 |
6681126 | Solenberger | Jan 2004 | B2 |
6681128 | Steuer et al. | Jan 2004 | B2 |
6681454 | Modgil et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6690958 | Walker et al. | Feb 2004 | B1 |
6694160 | Chin | Feb 2004 | B2 |
6697653 | Hanna | Feb 2004 | B2 |
6697655 | Sueppel et al. | Feb 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6699199 | Asada et al. | Mar 2004 | B2 |
6701170 | Stetson | Mar 2004 | B2 |
6702752 | Dekker | Mar 2004 | B2 |
6707257 | Norris | Mar 2004 | B2 |
6708048 | Chance | Mar 2004 | B1 |
6708049 | Berson et al. | Mar 2004 | B1 |
6709402 | Dekker | Mar 2004 | B2 |
6711424 | Fine et al. | Mar 2004 | B1 |
6711425 | Reuss | Mar 2004 | B1 |
6714803 | Mortz | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
6714805 | Jeon et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6719686 | Coakley et al. | Apr 2004 | B2 |
6719705 | Mills | Apr 2004 | B2 |
6720734 | Norris | Apr 2004 | B2 |
6721584 | Baker, Jr. et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725074 | Kästle | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6731963 | Finarov et al. | May 2004 | B2 |
6731967 | Turcott | May 2004 | B1 |
6735459 | Parker | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6745061 | Hicks et al. | Jun 2004 | B1 |
6748253 | Norris et al. | Jun 2004 | B2 |
6748254 | O'Neil et al. | Jun 2004 | B2 |
6754515 | Pologe | Jun 2004 | B1 |
6754516 | Mannheimer | Jun 2004 | B2 |
6760607 | Al-All | Jul 2004 | B2 |
6760609 | Jacques | Jul 2004 | B2 |
6760610 | Tschupp et al. | Jul 2004 | B2 |
6763255 | DeLonzor et al. | Jul 2004 | B2 |
6763256 | Kimball et al. | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6773397 | Kelly | Aug 2004 | B2 |
6778923 | Norris et al. | Aug 2004 | B2 |
6780158 | Yarita | Aug 2004 | B2 |
6785568 | Chance | Aug 2004 | B2 |
6792300 | Diab et al. | Sep 2004 | B1 |
6793654 | Lemberg | Sep 2004 | B2 |
6801797 | Mannheimer et al. | Oct 2004 | B2 |
6801798 | Geddes et al. | Oct 2004 | B2 |
6801799 | Mendelson | Oct 2004 | B2 |
6801802 | Sitzman et al. | Oct 2004 | B2 |
6802812 | Walker et al. | Oct 2004 | B1 |
6805673 | Dekker | Oct 2004 | B2 |
6810277 | Edgar, Jr. et al. | Oct 2004 | B2 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6819950 | Mills | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6825619 | Norris | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6829496 | Nagai et al. | Dec 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6836679 | Baker, Jr. et al. | Dec 2004 | B2 |
6839579 | Chin | Jan 2005 | B1 |
6839580 | Zonios et al. | Jan 2005 | B2 |
6839582 | Heckel | Jan 2005 | B2 |
6839659 | Tarassenko et al. | Jan 2005 | B2 |
6842635 | Parker | Jan 2005 | B1 |
6845256 | Chin et al. | Jan 2005 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6850789 | Schweitzer, Jr. et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6863652 | Huang et al. | Mar 2005 | B2 |
6865407 | Kimball et al. | Mar 2005 | B2 |
6873865 | Steuer et al. | Mar 2005 | B2 |
6879850 | Kimball | Apr 2005 | B2 |
6882874 | Huiku | Apr 2005 | B2 |
6889153 | Dietiker | May 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6909912 | Melker et al. | Jun 2005 | B2 |
6912413 | Rantala et al. | Jun 2005 | B2 |
6916289 | Schnall | Jul 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6931269 | Terry | Aug 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6939307 | Dunlop | Sep 2005 | B1 |
6941162 | Fudge et al. | Sep 2005 | B2 |
6947781 | Asada et al. | Sep 2005 | B2 |
6949081 | Chance | Sep 2005 | B1 |
6950687 | Al-Ali | Sep 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6963767 | Rantala et al. | Nov 2005 | B2 |
6971580 | Zhu et al. | Dec 2005 | B2 |
6982928 | Al-Ali | Jan 2006 | B2 |
6983178 | Fine et al. | Jan 2006 | B2 |
6985763 | Boas et al. | Jan 2006 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990426 | Yoon et al. | Jan 2006 | B2 |
6992772 | Block et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6993372 | Fine et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7006855 | Sarussi | Feb 2006 | B1 |
7006856 | Baker, Jr. et al. | Feb 2006 | B2 |
7016715 | Stetson | Mar 2006 | B2 |
7020507 | Scharf et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7024235 | Melker et al. | Apr 2006 | B2 |
7025728 | Ito et al. | Apr 2006 | B2 |
7027849 | Al-Ali et al. | Apr 2006 | B2 |
7027850 | Wasserman | Apr 2006 | B2 |
7035697 | Brown | Apr 2006 | B1 |
7039449 | Al-Ali | May 2006 | B2 |
7043289 | Fine et al. | May 2006 | B2 |
7047055 | Boaz et al. | May 2006 | B2 |
7047056 | Hannula et al. | May 2006 | B2 |
7060035 | Wasserman et al. | Jun 2006 | B2 |
7062307 | Norris et al. | Jun 2006 | B2 |
7067893 | Mills et al. | Jun 2006 | B2 |
7072701 | Chen et al. | Jul 2006 | B2 |
7072702 | Edgar, Jr. et al. | Jul 2006 | B2 |
7079880 | Stetson | Jul 2006 | B2 |
7085597 | Fein et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
7107088 | Aceti | Sep 2006 | B2 |
7113815 | O'Neil et al. | Sep 2006 | B2 |
7123950 | Mannheimer | Oct 2006 | B2 |
7127278 | Melker et al. | Oct 2006 | B2 |
7130671 | Baker, Jr. et al. | Oct 2006 | B2 |
7132641 | Schulz et al. | Nov 2006 | B2 |
7133711 | Chernoguz et al. | Nov 2006 | B2 |
7139599 | Terry | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7162288 | Nordstrom | Jan 2007 | B2 |
7190987 | Lindekugel et al. | Mar 2007 | B2 |
7198778 | Achilefu et al. | Apr 2007 | B2 |
7209775 | Bae et al. | Apr 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7236811 | Schmitt | Jun 2007 | B2 |
7248910 | Li et al. | Jul 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7263395 | Chan et al. | Aug 2007 | B2 |
7272426 | Scmid | Sep 2007 | B2 |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7295866 | Al-Ali et al. | Nov 2007 | B2 |
7305262 | Brodnick et al. | Dec 2007 | B2 |
7315753 | Baker, Jr. et al. | Jan 2008 | B2 |
20010005773 | Larsen et al. | Jun 2001 | A1 |
20010020122 | Steuer et al. | Sep 2001 | A1 |
20010021803 | Blank et al. | Sep 2001 | A1 |
20010039376 | Steuer et al. | Nov 2001 | A1 |
20010044700 | Kobayashi et al. | Nov 2001 | A1 |
20010051767 | Williams et al. | Dec 2001 | A1 |
20020026106 | Khalil et al. | Feb 2002 | A1 |
20020026109 | Diab et al. | Feb 2002 | A1 |
20020028990 | Sheperd et al. | Mar 2002 | A1 |
20020035318 | Mannheimer et al. | Mar 2002 | A1 |
20020038078 | Ito | Mar 2002 | A1 |
20020038079 | Steuer et al. | Mar 2002 | A1 |
20020042558 | Mendelson | Apr 2002 | A1 |
20020049389 | Abreu | Apr 2002 | A1 |
20020062071 | Diab et al. | May 2002 | A1 |
20020068859 | Knopp | Jun 2002 | A1 |
20020111748 | Kobayashi et al. | Aug 2002 | A1 |
20020123672 | Christophersom et al. | Sep 2002 | A1 |
20020128544 | Diab et al. | Sep 2002 | A1 |
20020133067 | Jackson, III | Sep 2002 | A1 |
20020133068 | Huiku | Sep 2002 | A1 |
20020156354 | Larson | Oct 2002 | A1 |
20020161287 | Schmitt | Oct 2002 | A1 |
20020161290 | Chance | Oct 2002 | A1 |
20020165439 | Schmitt | Nov 2002 | A1 |
20020173706 | Takatani | Nov 2002 | A1 |
20020173709 | Fine et al. | Nov 2002 | A1 |
20020190863 | Lynn | Dec 2002 | A1 |
20020198442 | Rantala et al. | Dec 2002 | A1 |
20020198443 | Ting | Dec 2002 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030023140 | Chance | Jan 2003 | A1 |
20030036690 | Geddes et al. | Feb 2003 | A1 |
20030045785 | Diab et al. | Mar 2003 | A1 |
20030055324 | Wasserman | Mar 2003 | A1 |
20030060693 | Monfre et al. | Mar 2003 | A1 |
20030073889 | Keilbach et al. | Apr 2003 | A1 |
20030073890 | Hanna | Apr 2003 | A1 |
20030100840 | Sugiura et al. | May 2003 | A1 |
20030132495 | Mills et al. | Jul 2003 | A1 |
20030135099 | Al-Ali | Jul 2003 | A1 |
20030139687 | Abreu | Jul 2003 | A1 |
20030144584 | Mendelson | Jul 2003 | A1 |
20030162414 | Schulz et al. | Aug 2003 | A1 |
20030171662 | O'Connor et al. | Sep 2003 | A1 |
20030176776 | Huiku | Sep 2003 | A1 |
20030181799 | Lindekugel et al. | Sep 2003 | A1 |
20030187337 | Tarassenko et al. | Oct 2003 | A1 |
20030195402 | Fein et al. | Oct 2003 | A1 |
20030197679 | Ali et al. | Oct 2003 | A1 |
20030212316 | Leiden et al. | Nov 2003 | A1 |
20030220548 | Schmitt | Nov 2003 | A1 |
20030220576 | Diab | Nov 2003 | A1 |
20030225323 | Kiani et al. | Dec 2003 | A1 |
20030225337 | Scharf et al. | Dec 2003 | A1 |
20030236452 | Melker et al. | Dec 2003 | A1 |
20030236647 | Yoon et al. | Dec 2003 | A1 |
20040006261 | Swedlow et al. | Jan 2004 | A1 |
20040010188 | Wasserman et al. | Jan 2004 | A1 |
20040024297 | Chen et al. | Feb 2004 | A1 |
20040024326 | Yeo et al. | Feb 2004 | A1 |
20040034293 | Kimball | Feb 2004 | A1 |
20040039272 | Abdul-Hafiz et al. | Feb 2004 | A1 |
20040039273 | Terry | Feb 2004 | A1 |
20040054269 | Rantala et al. | Mar 2004 | A1 |
20040054270 | Pewzner et al. | Mar 2004 | A1 |
20040054291 | Schulz et al. | Mar 2004 | A1 |
20040059209 | Al-Ali et al. | Mar 2004 | A1 |
20040059210 | Stetson | Mar 2004 | A1 |
20040064020 | Diab et al. | Apr 2004 | A1 |
20040068164 | Diab et al. | Apr 2004 | A1 |
20040087846 | Wasserman | May 2004 | A1 |
20040092805 | Yarita | May 2004 | A1 |
20040097797 | Porges et al. | May 2004 | A1 |
20040098009 | Boecker et al. | May 2004 | A1 |
20040107065 | Al-Ali et al. | Jun 2004 | A1 |
20040116788 | Chernoguz et al. | Jun 2004 | A1 |
20040116789 | Boaz et al. | Jun 2004 | A1 |
20040117891 | Hannula et al. | Jun 2004 | A1 |
20040122300 | Boas et al. | Jun 2004 | A1 |
20040122302 | Mason et al. | Jun 2004 | A1 |
20040127779 | Steuer et al. | Jul 2004 | A1 |
20040133087 | Ali et al. | Jul 2004 | A1 |
20040133088 | Al-Ali et al. | Jul 2004 | A1 |
20040138538 | Stetson | Jul 2004 | A1 |
20040138540 | Baker, Jr. et al. | Jul 2004 | A1 |
20040143172 | Fudge et al. | Jul 2004 | A1 |
20040147821 | Al-Ali et al. | Jul 2004 | A1 |
20040147822 | Al-Ali et al. | Jul 2004 | A1 |
20040147823 | Kiani et al. | Jul 2004 | A1 |
20040147824 | Diab et al. | Jul 2004 | A1 |
20040152965 | Diab et al. | Aug 2004 | A1 |
20040158134 | Diab et al. | Aug 2004 | A1 |
20040158135 | Baker, Jr. et al. | Aug 2004 | A1 |
20040162472 | Berson et al. | Aug 2004 | A1 |
20040171920 | Mannheimer et al. | Sep 2004 | A1 |
20040171948 | Terry | Sep 2004 | A1 |
20040176670 | Takamura et al. | Sep 2004 | A1 |
20040176671 | Fine et al. | Sep 2004 | A1 |
20040181133 | Al-Ali et al. | Sep 2004 | A1 |
20040181134 | Baker, Jr. et al. | Sep 2004 | A1 |
20040186358 | Chernow et al. | Sep 2004 | A1 |
20040199063 | O'Neil et al. | Oct 2004 | A1 |
20040204636 | Diab et al. | Oct 2004 | A1 |
20040204637 | Diab et al. | Oct 2004 | A1 |
20040204638 | Diab et al. | Oct 2004 | A1 |
20040204639 | Casciani et al. | Oct 2004 | A1 |
20040204865 | Lee et al. | Oct 2004 | A1 |
20040210146 | Diab et al. | Oct 2004 | A1 |
20040215069 | Mannheimer | Oct 2004 | A1 |
20040230106 | Schmitt et al. | Nov 2004 | A1 |
20040230107 | Asada et al. | Nov 2004 | A1 |
20040230108 | Melker et al. | Nov 2004 | A1 |
20040236196 | Diab et al. | Nov 2004 | A1 |
20040242980 | Kiani et al. | Dec 2004 | A1 |
20040249252 | Fine et al. | Dec 2004 | A1 |
20040257557 | Block et al. | Dec 2004 | A1 |
20040260161 | Melker et al. | Dec 2004 | A1 |
20040260186 | Dekker | Dec 2004 | A1 |
20040267103 | Li et al. | Dec 2004 | A1 |
20040267104 | Hannula et al. | Dec 2004 | A1 |
20040267140 | Ito et al. | Dec 2004 | A1 |
20050004479 | Townsend et al. | Jan 2005 | A1 |
20050010092 | Weber et al. | Jan 2005 | A1 |
20050020887 | Goldberg | Jan 2005 | A1 |
20050020894 | Norris et al. | Jan 2005 | A1 |
20050033128 | Ali et al. | Feb 2005 | A1 |
20050033129 | Edgar, Jr. et al. | Feb 2005 | A1 |
20050043599 | O'Mara | Feb 2005 | A1 |
20050043600 | Diab et al. | Feb 2005 | A1 |
20050049470 | Terry | Mar 2005 | A1 |
20050049471 | Aceti | Mar 2005 | A1 |
20050075550 | Lindekugel | Apr 2005 | A1 |
20050080323 | Kato | Apr 2005 | A1 |
20050101850 | Parker | May 2005 | A1 |
20050113656 | Chance | May 2005 | A1 |
20050168722 | Forstner et al. | Aug 2005 | A1 |
20050177034 | Beaumont | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050197548 | Dietiker | Sep 2005 | A1 |
20050203357 | Debreczeny et al. | Sep 2005 | A1 |
20050228248 | Dietiker | Oct 2005 | A1 |
20050267346 | Faber et al. | Dec 2005 | A1 |
20050277819 | Kiani et al. | Dec 2005 | A1 |
20050283059 | Iyer et al. | Dec 2005 | A1 |
20050284476 | Blanch et al. | Dec 2005 | A1 |
20060009688 | Lamego et al. | Jan 2006 | A1 |
20060015021 | Cheng | Jan 2006 | A1 |
20060020181 | Schmitt | Jan 2006 | A1 |
20060025660 | Swedlow et al. | Feb 2006 | A1 |
20060030763 | Mannheimer et al. | Feb 2006 | A1 |
20060052680 | Diab | Mar 2006 | A1 |
20060058594 | Ishizuka et al. | Mar 2006 | A1 |
20060058683 | Chance | Mar 2006 | A1 |
20060058691 | Kiani | Mar 2006 | A1 |
20060064024 | Schnall | Mar 2006 | A1 |
20060084852 | Mason et al. | Apr 2006 | A1 |
20060089547 | Sarussi | Apr 2006 | A1 |
20060106294 | Maser et al. | May 2006 | A1 |
20060195028 | Hannula et al. | Aug 2006 | A1 |
20060224058 | Mannheimer | Oct 2006 | A1 |
20060247501 | Ali | Nov 2006 | A1 |
20060258921 | Addison et al. | Nov 2006 | A1 |
20070032710 | Raridan et al. | Feb 2007 | A1 |
20070032712 | Raridan et al. | Feb 2007 | A1 |
20070032715 | Eghbal et al. | Feb 2007 | A1 |
20070073126 | Raridan, Jr. | Mar 2007 | A1 |
20070179386 | Michard et al. | Aug 2007 | A1 |
20080200775 | Lynn | Aug 2008 | A1 |
20090076462 | Kiani | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0615723 | Sep 1994 | EP |
0630203 | Dec 1994 | EP |
63275325 | Nov 1988 | JP |
2005034472 | Feb 2005 | JP |
WO9639927 | Dec 1996 | WO |
WO0021438 | Apr 2000 | WO |
WO0140776 | Jun 2001 | WO |
WO0176461 | Oct 2001 | WO |
WO0176471 | Oct 2001 | WO |
02075289 | Sep 2002 | WO |
WO03039326 | May 2003 | WO |
2006086085 | Aug 2006 | WO |
2008073855 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100249559 A1 | Sep 2010 | US |