Medical devices may be used during internal operations on a patient. During these operations, bodily fluids, such as blood, and/or tissue may come into contact with the medical device. Once blood and/or tissue come into contact with the medical device, the device may lose its sterility and may be contaminated. In general, medical devices may be constructed with little consideration for the potential of disassembly since the medical devices may be designed to be disposed of once contaminated after a single use. In some instances where portions may be made to be removable, they may generally consist of disposable parts for the device that detach to be thrown away before a new disposable part is used for a new patient. For some medical instruments lacking disposable parts, they may generally either be only used once or may need to be entirely resterilized before reuse.
With the advancement of the electronics industry, medical devices may be adapted to contain most, if not all, of the required components within the medical device. More specifically, some medical devices may be adapted to use an internal or attachable power source instead of requiring the device to be plugged into an external source by a cable. Merely exemplary devices that may be adapted to include a portable power source are disclosed in U.S. Pat. No. 6,500,176 entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,416,101 entitled “Motor-Driven Surgical Cutting and Fastening Instrument with Loading Force Feedback,” issued Aug. 26, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,738,971 entitled “Post-Sterilization Programming of Surgical Instruments,” issued Jun. 15, 2010, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0209990 entitled “Motorized Surgical Cutting and Fastening Instrument Having Handle Based Power Source,” published Aug. 20, 2009, issued as U.S. Pat. No. 8,657,174 on Feb. 25, 2014, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, the disclosure of which is incorporated by reference herein. Similarly, various ways in which medical devices may be adapted to include a portable power source are disclosed in U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
Electrically powered medical devices such as those referred to herein may require the use of high value or environmentally restricted disposable components to operate. The ability to reuse or reprocess these components over multiple uses may increase the value of the initial purchase by possibly spreading the cost of those components over the multiple uses. It may also be desirable in some settings to allow portable electronic components such as batteries to be recharged and/or be otherwise reprocessed between uses in sterile medical devices, without such electronic components having to be resterilized between uses in sterile medical devices, and without such devices contaminating sterile medical devices during re-use of the non-sterile electronic components. In addition or in the alternative, reclamation and reuse of the components may avoid or mitigate any environmental issues that may otherwise be associated with the disposal of the components after a single use. One potential approach may include reusing clean electrical components within multiple medical devices.
While several systems and methods have been made and used for component acceptance and release features for medical devices, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Medical Devices for Use with Insertable or Reclaimable Components
End effector (16) is coupled to control module (12) by another electrical connection (22). End effector (16) is configured to perform a desired function of medical device (10). By way of example only, such function may include cauterizing tissue, ablating tissue, severing tissue, ultrasonically vibrating, stapling tissue, or any other desired task for medical device (10). End effector (16) may thus include an active feature such as an ultrasonic blade, a pair of clamping jaws, a sharp knife, a staple driving assembly, a monopolar RF electrode, a pair of bipolar RF electrodes, a thermal heating element, and/or various other components. End effector (16) may also be removable from medical device (10) for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. In some versions, end effector (16) is modular such that medical device (10) may be used with different kinds of end effectors (e.g., as taught in U.S. Provisional Application Ser. No. 61/410,603, etc.). Various other configurations of end effector (16) may be provided for a variety of different functions depending upon the purpose of medical device (10) as will be apparent to those of ordinary skill in the art in view of the teachings herein. Similarly, other types of components of a medical device (10) that may receive power from power source (14) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Medical device (10) of the present example includes a trigger (18) and a sensor (20), though it should be understood that such components are merely optional. Trigger (18) is coupled to control module (12) and power source (14) by electrical connection (22). Trigger (18) may be configured to selectively provide power from power source (14) to end effector (16) (and/or to some other component of medical device (10)) to activate medical device (10) when performing a procedure. Sensor (20) is also coupled to control module (12) by an electrical connection (22) and may be configured to provide a variety of information to control module (12) during a procedure. By way of example only, such configurations may include sensing a temperature at end effector (16) or determining the oscillation rate of end effector (16). Data from sensor (20) may be processed by control module (12) to effect the delivery of power to end effector (16) (e.g., in a feedback loop, etc.). Various other configurations of sensor (20) may be provided depending upon the purpose of medical device (10) as will be apparent to those of ordinary skill in the art in view of the teachings herein. Of course, as with other components described herein, medical device (10) may have more than one sensor (20), or sensor (20) may simply be omitted if desired.
It should also be understood that control module (120) may be removed for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. Further, end effector (140) may also be removable from medical device (100) for servicing, testing, replacement, or any other purpose as will be apparent to one of ordinary skill in the art in view of the teachings herein. While certain configurations of an exemplary medical device (100) have been described, various other ways in which medical device (100) may be configured will be apparent to those of ordinary skill in the art in view of the teachings herein. By way of example only, medical devices (10, 100) and/or any other medical device referred to herein may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 6,500,176; U.S. Pat. No. 7,416,101; U.S. Pat. No. 7,738,971; U.S. Pub. No. 2006/0079874; U.S. Pub. No. 2007/0191713; U.S. Pub. No. 2007/0282333; U.S. Pub. No. 2008/0200940; U.S. Pub. No. 2009/0209990, issued as U.S. Pat. No. 8,657,174 on Feb. 25, 2014; U.S. Pub. No. 2010/0069940; and/or U.S. Provisional Application Ser. No. 61/410,603.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
It should also be understood that various teachings herein may be readily combined with various teachings in any of the following patent applications, all of which are filed on even date herewith and the disclosures of all of which are incorporated by reference herein: U.S. patent application Ser. No. 13/151,471, entitled “Medical Device Packaging with Charging Interface,” published as U.S. Pub. No. 2012/0112690 on May 10, 2012, issued as U.S. Pat. No. 9,000,720 on Apr. 7, 2015; U.S. patent application Ser. No. 13/151,481, entitled “Motor Driven Electrosurgical Device with Mechanical and Electrical Feedback,” published as U.S. Pub. No. 2012/0116379 on May 10, 2012; U.S. patent application Ser. No. 13/151,488, entitled “Packaging for Reclaimable Component of a Medical Device,” published as U.S. Pub. No. 2012/0111591 on May 10, 2012; U.S. patent application Ser. No. 13/151,498, entitled “Sterile Housing for Non-Sterile Medical Device Component,” published as U.S. Pub. No. 2012/0115007 on May 10, 2012; U.S. patent application Ser. No. 13/151,503, entitled “Sterile Medical Instrument Charging Device,” published as U.S. Pub. No. 2012/0116380 on May 10, 2012; U.S. patent application Ser. No. 13/151,509, entitled “Medical Device Packaging with Window for Insertion of Reusable Component,” published as U.S. Pub. No. 2012/0110824 on May 10, 2012; and U.S. patent application Ser. No. 13/151,515, entitled “Sterile Package System for Medical Device,” published as U.S. Pub. No. 2012/0305427 on Dec. 6, 2012. Various suitable ways in which teachings herein may be combined with teachings of the above-referenced patent applications, as well as various ways in which teachings of the above-referenced patent applications may be combined together with or without teachings herein, will be apparent to those of ordinary skill in the art.
II. Features for a Medical Device to Permit Sterile Insertion and/or Removal of a Non-Sterile Internal Component
For medical devices utilizing recoverable components, the ability to reuse those components over multiple uses may increase the value of the initial purchase by possibly spreading the cost of those components over the multiple uses. In addition or in the alternative, if environmental restrictions limit the disposal of certain components, the ability to remove those components from the device may permit the shipping of those components back to a manufacturer for recycling or proper disposal. One approach may include reusing non-sterile components within multiple devices by inserting the components into a medical device having a feature that permits the insertion of those components while maintaining the sterility of the medical device. Accordingly, the following examples relate to various illustrative ways in which to secure non-sterile components in medical devices with various features.
A. Medical Device with Threaded Covers
Housing (210) of medical device (200) of the present example further comprises a housing opening (230) sized to permit the passage of an insertable component through housing opening (230) and into component recess (220) of medical device (200). In the present example, housing opening (230) is circular in shape, though it should be understood that housing opening (230) may take a variety of geometrical configurations including rectangular, square, triangular, hexagonal, or any other configuration suitable for insertion of an insertable component into medical device (200) as will be apparent to one of ordinary skill in the art in light of the teachings herein. In the present example, two housing openings (230) are located on a rear portion of medical device (200), though it should be understood that housing openings (230) may be located at a variety of locations on housing (210) including the side, front, bottom, or top surfaces of housing (210) or any other suitable location as will be apparent to those of ordinary skill in the art in light of the teachings herein. Housing (210) of the present example further comprises device threading (240) encircling the perimeter of housing opening (230). Device threading (240) is configured to complement threading (310) of cap (300), as will be described below. It should be understood that device threading (240) is merely optional and other attachment configurations may be used to attach cap (300) to medical device (200). Merely exemplary alternative configurations include resilient snap-on members, bolt and nut combinations, friction fit attachments, or other suitable attachment configurations as will be readily apparent to one of ordinary skill in the art in view of the teachings herein. Various other configurations for housing opening (230) and/or device threading (240) will also be apparent to those of ordinary skill in the art in view of the teachings herein.
Each cap (300) is configured to seal its respective housing opening (230) of medical device (200) once the insertable components have been inserted into component recesses (220). Cap (300) may be made from a variety of materials including plastics, PETG, thermoplastic polymer resins, or any other suitable rigid material for use with cap (300) as will be apparent to one of ordinary skill in the art in light of the teachings herein. Cap (300) of the present example comprises a cap body (320) and cap threading (310). Cap body (320) is sized and configured such that when cap (300) is inserted into housing opening (230), cap (300) substantially seals component recess (220) of medical device (200). In the present example, cap body (320) is cylindrical in shape and is configured to correspond to housing opening (230), though it should be understood that cap body (320) may be any other geometric shape corresponding to housing opening (230) as will be apparent to those of ordinary skill in the art in light of the teachings herein. Cap threading (310) is configured to complement device threading (240) of medical device (200). It should be understood that cap (300) may alternatively be coupled to medical device (200) through a variety of other suitable configurations, including mechanical attachments such as snap-on or friction fit attachment, adhesive attachment; by adhesive attachments; or by any other suitable attachment method as will be apparent to those of ordinary skill in the art in view of the teachings herein.
Cap (300) may further comprise a cap seal (330) that is sized and configured to substantially conform to the shape of cap (300) at the interface between cap (300) and housing (210). In the present example, cap seal (330) is an o-ring type seal. Cap seal (330) is configured such that when cap (300) is coupled to medical device (200), cap seal (330) hermetically seals cap (300) with housing (210), thereby preventing fluid transfer into or out of component recess (220) of medical device (200). Cap seal (300) may be made from a variety of materials, including natural rubber, silicone, neoprene, polytetrafluoroethylene (or PTFE), or other suitable sealing materials and may be configured according to other suitable configurations as will be apparent to those of ordinary skill in the art in view of the teachings herein.
When a user desires to insert a non-sterile insertable component for use with medical device (200), initially caps (300) are detached from medical device (200) thereby exposing housing openings (230) and component recesses (220) therein. In the present example, caps (300) are unscrewed from device threading (240) of medical device (200). It should be understood that medical device (200) may be provided without caps (300) initially attached. With component recesses (220) exposed, a user may hold the medical device (200) while the non-sterile insertable components are inserted or dropped into component recesses (220), thereby limiting the potential for contamination of the exterior of medical device (200). Once the non-sterile insertable components are within component recesses (220) (e.g., a battery in the lower component recess (220) and an ultrasonic transducer in the upper component recess (220), etc.), the user reattaches caps (300) to seal the non-sterile insertable components within medical device (200). If cap seal (330) is provided, the user may tighten caps (300) to a desired torque to ensure that each seal (330) forms a hermetic seal. With the non-sterile insertable components secured within medical device (200) by caps (300), a user may use medical device (200) for a medical procedure, without the sterility of medical device (200) being compromised by the non-sterile insertable components. Of course, the insertable components may in fact be sterile before they are inserted in medical device (200).
To retrieve the non-sterile insertable components from used medical device (200), initially the user detaches caps (300) from used medical device (200), thereby exposing component recesses (220) that are accessible through housing openings (230). In the present example, caps (300) are unscrewed from device threading (240). To remove the non-sterile insertable components the user may either rotate used medical device (200) until the non-sterile insertable components drop out of component recesses (220) by the force of gravity, or the user's clean hand may retrieve the non-sterile insertable components from within component recesses (220). As a result, the non-sterile insertable components may be inserted and removed from medical device (200) while remaining clean (or at least free from contact with bodily fluids), which may permit a user to reuse those components multiple times and/or to retrieve the components for reclamation. Once the non-sterile insertable components are removed, medical device (200) may be disposed of or sent for reclamation. While some configurations for medical device (200) and cap (300) have been described, various other configurations may be provided as will be apparent to those of ordinary skill in the art in view of the teachings herein.
B. Medical Device with Snap-Fit Cover
To couple cover (420) to primary housing (410), cover (420) comprises a plurality of resilient cantilever members (430) and primary housing (410) comprises a plurality of recesses (440) configured to couple to resilient cantilever members (430). As shown in
When a user desires to insert an insertable component (450) for use with medical device (400), initially cover (420) is detached from primary housing (410) thereby exposing the component recess therein. In the present example, resilient cantilever members (430) of cover (420) are bent to permit insertable head (432) to decouple from retention portions (442) of recesses (440). It should be understood that medical device (400) may also be provided without cover (420) initially attached. In the present example, a user then couples insertable component (450) by mounting members (452) (such as screws) to primary housing (410). If mounting members (452) are not used, the user may simply place the insertable component (450) into the component recess of primary housing (410) prior to coupling cover (420). Once the insertable component (450) is within the component recess, the user reattaches cover (420) to seal the insertable component within medical device (400). In the present example, insertable heads (432) deform and then snap into retention portions (442) with resilient cantilever members (430) are inserted into recesses (440). With the insertable component (450) secured within medical device (400) by cover (420), a user then uses medical device (400) for a medical procedure. In the present example, cover (420) and primary housing (410) protect insertable component (450) from potential contamination while medical device (400) is in use.
To retrieve insertable component (450) from used medical device (400), initially the user detaches cover (420) from primary housing (410), thereby exposing insertable component (450) therein. In the present example, resilient cantilever members (430) are bent such that insertable heads (432) decouple from retention portions (442) of recesses (440). Alternatively, the user may break resilient cantilever members (430) while insertable heads (432) are still coupled within retention portions (442). Mounting members (452) of the present example are then detached from insertable component (450), thereby permitting insertable component (450) to be removed. The user may then tip insertable component (450) out of primary housing (410) or the user may remove insertable component (450) with a clean hand. As a result, insertable component (450) may be inserted and removed from medical device (400) while remaining clean (or at least substantially free of body fluids, etc.). This permits a user to reuse insertable component (450) multiple times and/or to retrieve insertable component (450) for reclamation. This also permits a non-sterile insertable component (450) to be used in medical device (400) without compromising the sterility of the exterior of medical device (400). While some configurations for medical device (400), primary housing (410), and cover (420) have been described, various other configurations may be provided as will be apparent to those of ordinary skill in the art in view of the teachings herein.
C. Medical Device with Hinged Door Closures
In the present example, insertion recess (530) is formed on a rear surface of primary housing (510), but it should be understood that insertion recess (530) may be located at any suitable location on primary housing (510) such as a top, side, front, rear, or bottom surface of primary housing (510). Additionally, primary housing (510) may further comprise a seal (not shown) encircling the perimeter of insertion recess (530) such that when door assembly (520) is in a closed position, the seal forms a hermetic seal between primary housing (510) and door (522). Alternatively, the seal may be attached to door (522) instead of primary housing (510). While some configurations for primary housing (510) have been described, various other configurations may be provided as will be apparent to those of ordinary skill in the art in view of the teachings herein.
Referring to
Referring back to
Initially, medical device (500) without insertable component (560) inserted therein is sterilized. In one exemplary sterilization technique, medical device (500) is placed in a field of radiation that can penetrate medical device (500), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on medical device (500) and within insertion recess (530). Alternatively, medical device (500) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that any other medical device referred to herein may be sterilized using any of the techniques referred to above and/or using any other suitable techniques.
When a user desires to use medical device (500), initially the door assembly (520) is either preset in the open position of
To retrieve insertable component (560) from within used medical device (500), initially resilient cantilever member (526) is decoupled from snap recess (540). This may be accomplished by simply applying a sufficient force to overcome the resistance within the recess or by actuating a slide release, if provided. Alternatively, resilient cantilever member (526) may be configured to break apart when a sufficient force is applied, thereby leaving a portion of resilient cantilever member (526) within snap recess (540) while door assembly (520) is actuated into the open position. As yet another merely illustrative alternative, a separate button or other actuator (e.g., release button (546), etc.) may be used to release cantilever member (526) from snap recess (540). Door assembly (520) is then secured in the open position by reinserting release member (526) into door release recess (548). When inserted therein, resilient detent feature (550) actuates and then retains release member (526) within door release recess (548). With door assembly (522) secured in the open position, the user may simply tip medical device (500) to permit gravity to slide insertable component (550) out of medical device (500). Alternatively, a separate person, such as a nurse, may remove the non-sterile, but clean (e.g., substantially free of body fluids, etc.), insertable component (560) from insertion recess (530). Insertable component (550) may then be reclaimed and/or recharged for reuse; or otherwise be disposed of separately from medical device (500). Thus, a non-sterile insertable component may be used with a medical device while maintaining the sterility of the exterior of the medical device and also not contaminating the insertable component when removed from a used device.
Alternative door assemblies may also be implemented with medical device (500). One specific exemplary alternative door assembly includes two doors hingedly attached to the sides of primary housing (510). The door assembly may be configured to be butterfly doors. Accordingly when the two doors close, the doors cooperatively couple to enclose insertion recess (530) of medical device (500). This alternative door assembly may include additional components, such as resilient hinges (528), release members (526), door release recesses (548), release buttons (546), and/or any other suitable components as previously described herein.
Yet another exemplary alternative door assembly includes a garage door type door assembly. In this configuration, the door comprises a flat planar member that is slidably mounted within medical device (500). Primary housing (510) comprises an interior door recess that is coplanar with and offset from a rear surface of primary housing (510). The interior door recess further comprises a pair of tracks into which a portion of the door may fit into and slidably travel along. Primary housing (510) may further include a resilient member within the door recess, such as a spring, that is configured to apply a force to actuate the door from an open position to a closed position. Accordingly, this alternative door may slide vertically along the tracks from an open position to a closed position when no force is applied to the door. Alternatively, the door may comprise a plurality of slats or segments and wheels. The slats or segments may be hingedly coupled to form a unidirectionally flexible sheet, with the wheels being configured to travel along a curved pair of tracks within primary housing. The door may thus move from a closed position in a first plane to an open position in a second plane that is substantially perpendicular to the first plane, folding along a curved path like a cover on a rolltop desk or a conventional garage door. The door may be resiliently biased to the closed position and a latch mechanism may be used to selectively retain the door in the open position. Accordingly, when the latch mechanism is actuated, the door is released and the resilient member urges the door to the closed position.
In some situations it may be desired to keep the medical device within a container while inserting the insertable component into the medical device. In such a configuration, the container may further protect the sterility of the exterior of the medical device while inserting a non-sterile insertable component into the medical device. Further still, it may be useful to be able to securely close the medical device while maintaining the sterility of the exterior of a cover or cap that encloses the insertable component within the medical device. Accordingly, the following examples relate to various illustrative ways in which to secure non-sterile components within medical devices while the medical device is still within a container.
Cap (620) is sized and configured to couple to a bottom surface of primary housing (610). In the present example, cap (620) is configured to frictionally fit to bottom surface of primary housing (610) in a closed position. Alternatively, cap (620) may further comprise a latch (not shown) to latch to a portion of primary housing (610). In yet a further example, cap (620) may comprise a resilient cantilever member (not shown) and primary housing (610) may comprise a complementary snap recess (not shown). The resilient cantilever member and snap recess may be constructed in accordance with at least some of the teachings of resilient cantilever member (430) and recess (440), as previously discussed herein, or the resilient cantilever member and snap recess may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. Cap (620) may alternatively include a piece of adhesive film that may adhere to primary housing (610) to seal insertable component (640) therein. Other suitable ways in which cap (620) may be secured to primary housing (610) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Cap (620) further comprises a resilient hinge (622) that hingedly attaches cap (620) to a portion of primary housing (610). Resilient hinge (622) in the present example is a spring-loaded hinge, though it should be understood that the resilient hinge (622) may have other configurations as will be apparent to those of ordinary skill in the art in light of the teachings herein. Resilient hinge (622) applies a rotational force on cap (620) to rotate cap (620) about resilient hinge (622) from an open position to the closed position. A seal (not shown) may further be attached to either cap (620) or primary housing (610) to further seal cap (620) to primary housing (610) when cap (620) is in the closed position. Both primary housing (610) and cap (620) may be made from a variety of materials including plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid or semi-rigid material for the primary housing (610) and cap (620). While some exemplary configurations for medical device (600) have been described, various other configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Container (650) comprises a device recess (660), a cap recess (670), a rim (652), and a container cover (680). Container (650) may be constructed in accordance with at least some of the teachings of U.S. patent application Ser. No. 13/151,515, entitled “Sterile Package System for Medical Device,” filed Jun. 2, 2011, published as U.S. Pub. No. 2012/0305427 on Dec. 6, 2012, the disclosure of which is incorporated by reference herein; or container (650) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. Container (650) may be made from a variety of materials including plastics, plastic film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. In the present example, device recess (660) is sized and configured to contain primary housing (610), while cap recess (670) is sized and configured to contain cap (620) when cap (620) is in the open position. In some versions, container (650) is formed as a blister pack.
Container cover (680) is sized and configured to cover both device recess (660) and cap recess (670) when container cover (680) is coupled to container (650). Container cover (680) may be made from a variety of materials including plastics, plastic peelable film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. Container cover (680) is configured to attach to rim (652) and seal container (650). By way of example only, container cover (680) may be attached by adhesive, such as cyanoacrylate or epoxy, to rim (652) of container (650). Alternatively, container cover (680) may be configured to snap on to rim (652). In yet a further exemplary configuration, container cover (680) may be heat sealed to rim (652). Alternatively, a second container cover (not shown) may be sized and configured to cover only cap recess (670), as will be later described herein in reference to
Initially, primary housing (610) is inserted into device recess (660) and cap (620) is inserted into cap recess (670) with cap (620) being held in the open position. In the present example, container cover (680) is then coupled to rim (652) to seal cap (620) within cap recess (670) and to also seal primary housing (610) in device recess (660). Container cover (680) restrains cap (620) from being rotated by resilient hinge (622) to the closed position. Container (650) containing medical device (600) is then sterilized. In one exemplary sterilization technique, container (650) is placed in a field of radiation that can penetrate container (650), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on primary housing (610), cap (620), and within insertion recess (630). Alternatively, container (650) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
Referring to
When the user is finished with used medical device (600), cap (620) is detached from primary housing (610) (or is at least opened to reveal insertion recess (630), etc.), and insertable component (640) is then removed from insertion recess (630). A user may either manually remove insertable component (640) or the user may tip medical device (600) over to allow gravity to slide out insertable component (640). Insertable component (640) may then be reclaimed and/or recharged for reuse; or may be disposed of separately from medical device (600). Thus, a non-sterile insertable component may be inserted into and used with medical device (600) while maintaining the sterility of the exterior of medical device (600), and without exposing the insertable component to body fluids or other fluids that may contaminate the exterior of medical device (600) during use of medical device (600).
Some versions may provide closing of a cap during the process of removing a container cover from the container, without necessarily resiliently biasing the cap.
Cap (720) may be constructed in accordance with at least some of the teachings of cap (620) as described herein. Cap (720) is sized and configured to couple to a bottom surface of primary housing (710). In the present example, cap (720) is configured to frictionally fit to bottom surface of primary housing (710) in a closed position, though other alternative suitable configurations may be provided as previously described herein. Cap (720) is coupled to primary housing (710) by a hinge (722). In one merely exemplary alternative, cap (720) may comprise a sliding door and primary housing (610) may comprise tracks on which the sliding door may slide from an open position to a closed position instead of rotating about hinge (722). Both primary housing (710) and cap (720) may be made from a variety of materials including plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid or semi-rigid material for the primary housing (710) and cap (720).
Container (750) comprises a device recess (760), a cap recess (770), a rim (752), a first container cover (780), and a second container cover (790). Container (750) may be constructed in accordance with at least some of the teachings of container (650) or U.S. patent application Ser. No. 13/151,515, entitled “Sterile Package System for Medical Device,” filed Jun. 2, 2011, published as U.S. Pub. No. 2012/0305427 on Dec. 6, 2012, the disclosure of which is incorporated by reference herein; or container (750) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. Container (750) may be made from a variety of materials including plastics, plastic film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. In the present example, device recess (760) is sized and configured to contain primary housing (710) and cap recess (770) is sized and configured to contain cap (720) when cap (720) is in the open position. In some versions, container (750) is formed as a blister pack.
First container cover (780) is sized and configured to cover both device recess (760) and cap recess (770) when coupled to container (750). Alternatively, first container cover (780) may be sized and configured to cover only device recess (760). First container cover (780) may be made from a variety of materials including plastics, plastic peelable film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. First container cover (780) is configured to attach to rim (752) to substantially seal primary housing (710) within device recess (760). By way of example only, first container cover (780) may be attached by adhesive, such as cyanoacrylate or epoxy, to rim (752) of container (750).
Second container cover (790) is sized and configured to cover only cap recess (770). In some versions, part of second container cover (790) also extends around the opening for device recess (760) yet defines an opening corresponding to the opening for device recess (760), to allow access to insertion recess (730) while second container cover (790) is still fully secured to container (750). Second container cover (790) may be made from a variety of materials including plastics, plastic peelable film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. Second container cover (790) attaches to rim (752) of container (750) and substantially seals cap (720) within cap recess (770). By way of example only, second container cover (790) may be attached by adhesive, such as cyanoacrylate or epoxy, to rim (752), though it should be understood that other suitable attachment methods may be provided as previously described herein. In the present example, container covers (780, 790) are formed as separate yet overlaid pieces. In some other versions, however, a single piece cover is used, with one portion of the single cover acting as first container cover (780) and another portion of the same single cover acting as second container cover (790). Thus, it should be understood that either container cover (780, 790) may be sized and configured to cover both cap recess (770) and device recess (760). In some such versions, a perforation, an additional line of adhesive, and/or some other feature may demarcate a boundary between recesses (760, 770), providing an interruption as the single cover is peeled from device recess (760) before the cover is peeled from cover recess (770).
Second container cover (790) of the present example further comprises a tab (792) coupled to a portion of second container cover (790) and a portion of cap (720). In the present example, tab (792) is a separate elongated flexible member having an adhesive on one side that adhesively couples to a top surface of cap (720) and to a portion of second container cover (790). Alternatively, tab (792) may be a single homogeneous continuum of material extending unitarily from second container cover (790). While a few exemplary configurations for medical device (700) and container (750) have been described, various other configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Initially primary housing (710) is inserted into device recess (760) and cap (720) is inserted into cap recess (770). In the present example, tab (792) is coupled to cap (720) before or while cap (720) is inserted into cap recess (770). Thus, tab (792) is underneath cap (720) while cap (720) is in cap recess (770). Second container cover (790) is then attached to a portion of rim (752) to seal cap (720) within cap recess (770) First container cover (780) is then attached to rim (752) to seal primary housing (710) in device recess (760). As noted above, a single piece of film or other form of cover may be used to provide both container covers (780, 790), if desired. Container (750) containing medical device (700) is then sterilized. In one exemplary sterilization technique, container (750) is placed in a field of radiation that can penetrate container (750), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on primary housing (710), cap (720), and within insertion recess (730). Alternatively, container (750) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
Referring to
When the user is finished with used medical device (700), cap (720) is detached from primary housing (710) and insertable component (740) is then removed from insertion recess (730). A user may either manually remove insertable component (740) or the user may tip medical device (700) over to allow gravity to slide out insertable component (740). Insertable component (740) may then be reclaimed and/or recharged for reuse; or be disposed of separately from medical device (700). Thus, a non-sterile insertable component may be inserted into and used with a medical device while maintaining the sterility of the exterior of the medical device; and may be further protected from body fluids or other fluids that may contact the exterior of the medical device.
In yet another exemplary alternative, an elastic member may be coupled to the cap to be stretched when the insertable component is inserted into the medical device.
Insertion recess (830) is defined at least in part by a base (832) and a sidewall (834). As shown in
Cap (820) may be constructed in accordance with at least some of the teachings of cap (620) as described herein. Cap (820) is sized and configured to couple to a bottom surface of primary housing (810). In the present example, cap (820) is configured to frictionally fit to bottom surface of primary housing (810) in a closed position, though other alternative suitable configurations may be provided as previously described herein. Cap (820) is coupled to primary housing (810) by a hinge (822). Both primary housing (810) and cap (820) may be made from a variety of materials including plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid or semi-rigid material for the primary housing (810) and cap (820).
In the present example, elastic member (824) is coupled to an interior portion of cap (820) and to base (832) of insertion recess (830). When cap (820) is in an open position, elastic member (824) is in a taut, but not stretched position. When insertable component (840) is inserted into insertion recess (830), insertable component (840) stretches elastic member (824) to a stretched position. With insertable component (840) secured within insertion recess (830) by latch member (839), elastic member (824) pulls on cap (820) to actuate cap (820) about hinge (822) from the open position to the closed position. In the present example, elastic member (824) is a rubber band, though it should be understood that other elastomeric materials may be utilized, including silicone rubbers, fluoroelastomers, ethylene propylene diene rubber (EPDM), nitrile rubbers, styrene-butadiene rubber, butyl rubber, chloroprene, polychloroprene, polybutadiene rubber, isoprene rubber, India rubber, and/or any other suitable elastomeric material or combinations of elastomeric materials as will be apparent to one of ordinary skill in the art in view of the teachings herein. It should also be understood that elastic member (824) need not necessarily elastic. For instance, a flexible yet inelastic strip of material in place of elastic member (824) may still pull cap (820) closed upon insertion of insertable component (840) into insertion recess (830). In some such versions, container (850) has only one cover (e.g., a single peelable film cover) instead of having two covers (880, 890) as described below.
Container (850) of this example comprises a device recess (860), a cap recess (870), a rim (852), a first container cover (880), and a second container cover (890). Container (850) may be constructed in accordance with at least some of the teachings of container (650), container (750), or U.S. patent application Ser. No. 13/151,515, entitled “Sterile Package System for Medical Device,” filed Jun. 2, 2011, published as U.S. Pub. No. 2012/0305427 on Dec. 6, 2012, the disclosure of which is incorporated by reference herein; or container (850) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. Container (850) may be made from a variety of materials including plastics, plastic film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. In the present example, device recess (860) is sized and configured to contain primary housing (810) and cap recess (870) is sized and configured to contain cap (820) when cap (820) is in the open position. In some versions, exemplary container (850) is formed as a blister pack.
First container cover (880) of the present example is sized and configured to cover both device recess (860) and cap recess (870) when coupled to container (850). Alternatively, first container cover (880) may be sized and configured to cover only device recess (860). First container cover (880) may be made from a variety of materials including plastics, plastic peelable film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. First container cover (880) is configured to attach to rim (852) to substantially seal primary housing (810) within device recess (860). By way of example only, first container cover (880) may be attached by adhesive, such as cyanoacrylate or epoxy, to rim (852) of container (850).
Second container cover (890) is sized and configured to cover only cap recess (870). Second container cover (890) may be made from a variety of materials including plastics, plastic peelable film, high density polyethylene fiber materials (such as Tyvek®), or any other suitable material to maintain sterility. Second container cover (890) attaches to rim (852) of container (850) and substantially seals cap (820) within cap recess (870). By way of example only, second container cover (890) may be attached by adhesive, such as cyanoacrylate or epoxy, to rim (852), though it should be understood that other suitable attachment methods may be provided as previously described herein. It should also be understood that a single piece of film or a single cap, etc., may serve as both first and second container covers (880, 890), as described above with respect to container covers (780, 790) or otherwise. While a few exemplary configurations for medical device (800) and container (850) have been described, various other configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
Initially primary housing (810) is inserted into device recess (860) and cap (820) is rotatably inserted into cap recess (870) about hinge (822). In the present example, when cap (820) is in the open position, elastic member (824) is taut. Second container cover (890) is then attached to a portion of rim (852) to seal cap (820) within cap recess (870). First container cover (880) is then attached to rim (852) to seal primary housing (810) in device recess (860). As noted above, a single piece of film or other form of cover may be used to provide both container covers (880, 890), if desired. Container (850) containing medical device (800) is then sterilized. In one exemplary sterilization technique, container (850) is placed in a field of radiation that can penetrate container (850), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on primary housing (810), cap (820), elastic member (824), and within insertion recess (830). Alternatively, container (850) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
Referring to
When the user is finished with used medical device (800), cap (820) is detached from primary housing (810). Cap (820) may be held in the open position manually by a user or cap (820) may be held open by some other means, such as reclamation container cover. With cap (820) held open, elastic member (824) is stretched into the stretched position again. In some versions where a flexible yet inelastic piece of material is used instead of elastic member (824), opening of cap (820) with insertable component (840) in medical device (800) may snap or tear the flexible yet inelastic piece of material. In the present example, stretched elastic member (824) applies a force to insertable component (840), which in turn pushes ledge (842) against latch member (839). When latch member (839) is moved to compress spring (838), either directly or by a slide release, ledge (842) is no longer restrained by latch member (839) and insertable component (840) may “pop out” of insertion recess (830) due to the bias provided by elastic member (824). If insertable component (840) does not completely exit insertion recess (830), a user may either manually remove insertable component (840) or the user may tip medical device (800) over to allow gravity to slide out insertable component (840). Insertable component (840) may then be reclaimed and/or recharged for reuse; or be disposed of separately from medical device (800). Thus, a non-sterile insertable component may be inserted into and used with a medical device while maintaining the sterility of the exterior of the medical device; and may be further protected from body fluids or other fluids that may contact the exterior of the medical device.
While various configurations for medical devices (500, 600, 700, 800) with insertable component features have been described, various other suitable configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
D. Alternative Closure Mechanisms for Medical Devices
In some situations it may be desired to mechanically couple an insertable component while inserting the insertable component into the medical device. In some such situations an insertion member, a cap, or a feature of the medical device may facilitate the coupling of the insertable component within the device. The following examples relate to various configurations for inserting an insertable component into a medical device and mechanically securing the insertable component therein, while several other examples will be apparent to those of ordinary skill in the art in view of the teachings herein.
Sterile flexible member (980) of the present example comprises a folded piece of material that forms a tubular portion extending from the proximal end (962) of primary housing (960). In the present example sterile flexible member (980) is shown attached by its distal end to the exterior of primary housing (960), though it should be understood that this is merely optional. Sterile flexible member (980) may be integrated with a portion of primary housing (960) or sterile flexible member (980) may be contained within a slot (not shown) formed in primary housing (960). In the present example, sterile flexible member (980) forms a flexible sock. Other suitable materials for sterile flexible member (980) include neoprene, nitrile rubber, silicone rubbers, fluoroelastomers, ethylene propylene diene rubber (EPDM), cloth, malleable plastics, or any other suitable flexible material as will be apparent to one of ordinary skill in the art in light of the teachings herein. Sterile flexible member (980) further comprises an end member (982), though it should be understood that this component is merely optional. End member (982) of the present example includes a weighted portion coupled to sterile flexible member (980) at a proximal end opposite the distal end. End member (982) may thus keep sterile flexible member in a folded over position by the weight of end member (982). In addition or in the alternative, end member (982) may comprise a circular elastomeric member, such as a rubber band, o-ring, or elastic band. In this configuration, when insertion tube (990) is inserted into sterile flexible member (980), the elastic end member (982) stretches around insertion tube (990) and retains insertion tube (990) within sterile flexible member by friction. Furthermore, when insertion tube (990) is removed, the elastic end member (982) may be sized to substantially close the proximal end of sterile flexible member (980) when the elastic end member (982) returns to a relaxed position. In yet a further configuration, end member (982) may comprise a circular rigid member sized to tightly fit insertion tube (990) therein. Further configurations for end member (982) will be apparent to one of ordinary skill in the art in view of the teachings herein.
Insertion tube (990) of the present example comprises a cylindrical member with an inner diameter at least equal to the diameter of insertion recess (970) and is sized to permit insertable component (940) to be inserted therethrough. It should be understood that insertion tube (990) may comprise other alternative geometric cross-sections, including rectangles, squares, triangles, or any other polygon that is suitable to permit insertable component (940) be inserted through insertion tube (990) and into insertion recess (970). In the present example, insertion tube (990) is a rigid member insertable into sterile flexible member (980), though it should be understood that insertion tube (990) may comprise a semi-rigid or flexible member as well. In the present example, rigid insertion tube (990) may be made from plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid material as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Insertion assembly (900) comprises insertable component (940) coupled to a handle (910). By way of example only, handle (910) may further comprise an attachment portion (920) and a grip portion (930). Attachment portion is configured to rigidly yet removably attach to a proximal end of insertable component (940). Exemplary attachments include by adhesives, such as cyanoacrylate, epoxy, or thermoplastics, by integral formation with an exterior portion of insertable component (940), or by any other suitable attachment as will be apparent to those of ordinary skill in the art in light of the teachings herein. Grip portion (930) is configured to be gripped by a user. In particular, grip portion (930) may include ridges or other grip-aiding formations to assist a user to grasp grip portion (930). This may be particularly useful if the user is wearing medical gloves while using insertion assembly (900). Insertable component (940) may further comprise a retrieval portion (not shown) such as a separate notch or recess in the proximal end of insertable component (940) such that a separate retrieval handle (not shown) may be used to remove insertable component (940) after use of medical device (950). The notch or recess may permit insertable component (940) to be turned to decouple insertable component (940) from locking portion (972) after use.
A separate closure member (984) is also provided for use after insertable component (940) is inserted into medical device (950). Closure member (984) is sized and configured to substantially seal sterile flexible member (980) together to encase insertable component (940) within sterile flexible member (984). Closure member (984) in the present example is an elastomeric member (such as a rubber band, o-ring, or elastic band) that fits around sterile flexible member (980) and compresses the folded portions of sterile flexible member (980) together. Alternatively, closure member (984) may comprise a draw string, a clothespin, clip, clamp, or other separable mechanical closure mechanism. Further still, closure member (984) may be integrated within sterile flexible member (984). Exemplary closure members in this configuration include zip-lock closures, adhesive patches, adhesive gum, thermoplastic or heat sealing members, pressure adhesives, buttons, zippers, snap fasteners, or any other suitable closure member as will be apparent to one of ordinary skill in the art in view of the teachings herein.
Initially, medical device (950), comprising primary housing (960) and sterile flexible member (980), is sterilized. In one exemplary sterilization technique, medical device (950) is placed in a field of radiation that can penetrate medical device (950), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on primary housing (960), sterile flexible member (980), and within insertion recess (970). Alternatively, medical device (950) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. In another alternative, insertion tube (990) may be inserted into sterile flexible member (980) prior to sterilization and insertion tube (990) may also be sterilized when medical device (950) is sterilized. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
When a user wants to use medical device (950), the user initially inserts insertion tube (990) into sterile flexible member (980) if this has not been previously done. The user then grasps insertion assembly (900) by grip portion (930) and guides insertable component (940) through insertion tube (990) and into insertion recess (970), as shown in
Once handle (910) is detached from insertable component (940), handle (910) may be removed and stored for reuse, if possible, or disposed of. With insertable component (940) contained within insertion recess (970), insertion tube (990) is removed from within sterile flexible member (980), as shown in
To remove insertable component (940), closure member (984) is initially removed from sterile flexible member (980). Sterile flexible member (980) is then opened and insertable component (940) may then be manually removed or slide out of sterile flexible member (980) by gravity. If insertable component (940) is coupled to locking portion (972) a separate retrieval handle (not shown) may couple to a retrieval portion (not shown) to turn insertable component (940) and decouple insertable component (940) from locking portion (972). Alternatively, handle (910) may be configured to assist with removal of insertable component (940) from locking portion (972). After being removed from medical device (950), insertable component (940) may be reclaimed and/or recharged for reuse; or be disposed of separately from medical device (950). Thus, a non-sterile insertable component may be inserted into and used with a medical device while maintaining the sterility of the exterior of the medical device; and may be further protected from body fluids or other fluids that may contact the exterior of the medical device.
In yet a further configuration it may be useful to have a zero-insertion-force (ZIF) mechanism for coupling the insertable component within the medical device. In some such configurations, a non-sterile user inserts a non-sterile insertable component into a recess within the device (using virtually no insertion force), and then a sterile user couples a cover to the medical device to thereby fully couple the insertable component within the device. One merely illustrative example of such a medical device (1000) is shown in
Insertion recess (1020) of the present example is located on a rear surface of primary housing (1010). Electrical connections (1030) extend from an inner surface of insertion recess (1020). In the present example, connections (1030) extend from the top surface of insertion recess (1020), though it should be understood that connections (1030) may be located on any surface of insertion recess (1020). Insertion recess (1020) is sized slightly larger than an insertable component (1040) such that when insertable component (1040) is inserted into insertion recess (1020), connections (1030) do not couple with component connections (1042), and nothing provides mechanical resistance against insertion of insertable component (1040) in insertion recess (1020). Insertable component (1040) comprises component connections (1042) located on a surface corresponding to connections (1030) when insertable component (1040) is inserted within insertion recess (1020). By way of example only, insertable component (1040) may comprise a power source, such as one of the types of batteries previously discussed herein, a plurality of batteries in the form of a battery pack, a control module, a printed circuit board, an ultrasonic transducer, and/or any other insertable component (1040) or combination of components as will be apparent to those of ordinary skill in the art in view of the teachings herein. In the present example, insertable component (1040) comprises a battery pack having two electrical component connections (1042) on a top surface of insertable component (1040). The component connections (1042) of the present example are configured to electrically couple to connections (1030) once cap (1050) is coupled to primary housing (1010).
Cap (1050) is sized and configured to couple to primary housing (1010) to seal insertable component (1040) therein. Cap (1050) may be constructed in accordance with at least some of the teachings of cover (420), as previously discussed herein, or cap (1050) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. Some merely exemplary features of cover (420) that may be readily incorporated into cap (1050) include resilient cantilever members (430). If resilient cantilever members (430) are included, primary housing (1010) may further comprise complementary recesses configured in accordance with at least some of the teachings of recesses (440) described above. Cap (1050) of the present example further comprises an angled ledge (1052). Angled ledge (1052) is sized such that when cap (1050) is coupled with primary housing (1010), angled ledge (1052) cams insertable component (1040) upwards within insertion recess (1020) to connect component connection (1042) to connections (1030). Cap (1050) may be made from a variety of materials including plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid or semi-rigid material for the cap (1050). Angled ledge (1052) may be formed as a single homogeneous continuum of material extending from cap (1050), or angled ledge (1052) may be a separable component that is mechanically attached to cap (1050).
Cap (1050) may further comprise a protrusion (not shown) that is located on a plane parallel to connections (1030). The protrusion may be a semi-rigid protrusion with openings sized to permit connections (1030) to extend therethrough. A top surface of the protrusion may further comprise an abrasive material, such as sand paper, a fine grit, rigid metal bristles, etc. When cap (1050) is coupled to primary housing (1010), the abrasive material wipes against connections (1030) to increase the electrical conductivity. Connections (1030) then extend through the openings of the protrusion to couple to component connections (1042). In yet another alternative, a pull tab (not shown) may be adhesively attached to connections (1030) or component connections (1042). The pull tab may be sized such that a first portion extends out of insertion recess (1020) after cover (1050) is attached. A second portion may extend in an opposite direction of the first portion and may further comprise an abrasive material. When cap (1050) is coupled to primary housing (1010), the pull tabs may prevent connections (1030) from coupling with component connections (1042). The pull tab may then be pulled, wiping the abrasive second portion across connections (1030) or component connections (1042). After the pull tab is removed, connections (1030) couple to component connections (1042). Of course, such abrasive features are merely optional.
In an exemplary alternative configuration, as shown in
In yet another exemplary configuration, primary housing (1010) may comprise tracks (not shown) extending vertically on the exterior of primary housing (1010). An alternative cap (not shown) may have corresponding protrusions that fit into the tracks and guide the cap to slidably couple with primary housing (1010). Primary housing (1010) may further comprise an opening or openings at the base of insertion recess (1020). The alternative cap may then comprise a corresponding protrusion (not shown) to push upon the bottom of insertable component (1040) when the cap is slid onto primary housing (1010). Thus, when the cap is coupled to primary housing (1010), the protrusion pushes insertable component (1040) upwards to couple component connections (1042) with connections (1030). It should be understood that a spring, or pair of springs, may be readily interchangeable with the protrusion of this alternative cap.
It should be understood from the foregoing that a non-sterile insertable component (1040) may be readily inserted into a medical device (1010) without compromising the sterility of the exterior of medical device; and may further be secured and sealed within medical device (1010) by a cap (1050, 1051). When the user is finished with medical device (1000), cap (1050, 1051) is removed and insertable component (1040) may simply be dropped out of insertion recess (1040) for recharging, reclamation, and/or any other purpose. Thus, in the foregoing exemplary configurations a non-sterile insertable component may be inserted into a medical device and subsequently coupled when a cap is attached to the medical device. The low force required by the exemplary ZIF connections permit a user to seal the medical device while limiting the potential for contamination from the non-sterile component contained therein. Furthermore, caps (1050, 1051) may protect insertable component (1040) from coming into contact with body fluids and/or other fluids encountered by medical device (1010) during use of medical device (1010).
While various configurations for medical device (1000) and cap (1050, 1051) have been described, various other configurations may be provided as will be apparent to those of ordinary skill in the art in view of the teachings herein.
It may also be desired in some settings for an integral feature of a medical device to provide insertion of an insertable component within the medical device.
The medical device (1100) shown in
Primary housing (1110) of the present example further comprises a pair of tracks (1130) and a lift assembly (1140). Tracks (1130) of the present example comprise vertical grooves within the interior of primary housing (1110). Exemplary tracks (1130) are further sized to fit a pair of complementary protrusions (1146) of lift assembly (1140), as will be discussed below. In one alternative, tracks (1130) may comprise a groove portion and a plurality of ball bearings contained within the groove portion to assist in the smooth sliding of protrusions (1146) along tracks (1130). In yet another alternative, tracks (1130) may comprise C-channel portions to accommodate a pair of wheels within tracks (1130). Yet other suitable configurations for tracks (1130) will be apparent to one of ordinary skill in the art in view of the teachings herein.
Lift assembly (1140) comprises a base portion (1142), a vertical portion (1144), and a pair of protrusions (1146). In the present example, base portion (1142) and vertical portion (1144) are formed as a single homogeneous continuum of material formed in an L shape. Base portion (1142) is sized to at least accommodate insertable component (1150) thereon. Base portion (1142) may further comprise a rim (not shown) extending around the perimeter of base portion (1142), thereby forming a recess into which insertable component (1150) may be inserted. Base portion (1142) may further comprise a cap (not shown) to be coupled to primary housing (1110) when lift assembly (1140) is fully inserted within primary housing (1110). The cap may be constructed in accordance with at least some of the teachings of cap (620), as previously discussed herein, or the cap may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein. One such feature of cap (620) that may be readily incorporated is to have the present cap frictionally fit to primary housing (1110). Vertical portion (1144) or base portion (1142) may also include an attachment (not shown) for securing insertable component (1150) thereto. This attachment may comprise a mechanical attachment (such as a snap-on fitting, an elastic band, or a latch, etc.) and/or the attachment may comprise an electrical attachment that may also secure the insertable component (1140) (such as a wire harness, a female electrical plug recess, or a male electrical protrusion, etc.). Protrusions (1146) extend outwardly from vertical portion (1144) and are sized and configured to fit within tracks (1130) of primary housing (1110). In the present example, protrusions (1146) are shown as simple rectangular protrusions that slide within tracks (1130). In one alternative, protrusions (1146) may further comprise wheels or ball bearings to further aid the sliding motion within tracks (1130). Lift assembly (1140) may be made from a variety of materials including plastics, polyethylene terephthalate glycol (or PETG), thermoplastic polymer resins, or any other suitable rigid or semi-rigid material for the lift assembly (1140).
To use medical device (1100) having a lift assembly (1140), initially medical device (1100) is sterilized. In one exemplary sterilization technique, medical device (1100) is placed in a field of radiation that can penetrate medical device (1100), such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on primary housing (1110), lift assembly (1140), and within insertion recess (1120). Alternatively, medical device (1100) may be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, electron beam sterilization, or steam. Various other suitable sterilization methods that may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein.
Insertable component (1140) is then placed upon base portion (1142). If insertable component (1140) is non-sterile, a non-sterile user, such as a nurse, may place insertable component (1140) on base portion (1142). The sterile user may then slide lift assembly (1140) into insertion recess (1120). If a cap is provided, then the cap may be coupled to primary housing (1110) to seal lift assembly (1140) an insertion component (1150) therein. In one merely exemplary alternative, lift assembly (1140) may further comprise an elastic member (not shown) coupled to primary housing (1110). In this configuration, the elastic member (such as a spring or rubber band) may be in a relaxed position when lift assembly (1140) is fully inserted into insertion recess (1120). When lift assembly (1140) is pulled down to place insertable component (1150) upon base portion (1142), elastic member stretches into a stretched position. Once the force pulling down lift assembly (1140) is removed, the elastic member may automatically return lift assembly (1140) up into insertion recess (1120). With the insertable component (1150) contained therein, the user may then used medical device (1100) for a medical procedure. A seal (not shown) may be positioned between base portion (1142) and primary housing (1110), hermetically sealing insertion recess (112) when lift assembly (1140) is in the closed position.
To remove insertable component (1150) from within insertion recess (1120) of a used medical device (1100), a user may pull lift assembly (1140) downward to expose insertable component (1150) on base portion (1142). The user may then remove insertable component (1150) for recharging, reclamation, and/or reuse; and/or dispose of insertable component (1150) separate from medical device (1100). Thus, in the configuration described, a non-sterile insertable component may be inserted into and used with a medical device while maintaining the sterility of the exterior of the medical device; and may be further protected from body fluids or other fluids that may contact the exterior of the medical device.
The medical device (1200) shown in
Primary housing (1210) of the present example further comprises a pair of hinge members (1230) and a pair of doors (1240). Hinge members (1230) are mounted to a bottom portion of primary housing (1210). Doors (1240) in the present example are L-shaped doors having a first portion (1242) and a second portion (1244). Doors (1240) are configured to rotate about hinge members (1230). In this configuration, when insertable component (1250) is pressed against the first portion (1242), as shown in
In yet another merely illustrative alternative, springs (not shown) may be attached at a first end to an interior portion of primary housing (1210) and the other end of each spring may be attached to a portion of the first portion of a corresponding door (1240). As with the resilient hinges, when doors (1240) are rotated to an open position, as in
With the insertable component (1250) contained therein, the user may use medical device (1200) for a medical procedure. To remove insertable component (1250) from within insertion recess (1220) of a used medical device (1200), the user rotates doors (1240) to release insertable component (1250). Doors (1240) may further comprise exterior protrusions or recesses (not shown) to aid the user's grasping of doors (1240). Alternatively, a button, slider, or other feature may provide actuation of doors (1240) to rotate doors (1240) to the open position. The user may then remove insertable component (1250) for recharging, reclamation, and/or reuse; or for disposal separate from medical device (1200). Thus, in the configuration described, a non-sterile insertable component may be inserted into and used with a medical device while maintaining the sterility of the exterior of the medical device; and may be further protected from body fluids or other fluids that may contact the exterior of the medical device.
E. Release Mechanisms for Removing Internal Components from Medical Devices
In some settings, it may be desirable to have a releasing feature to prevent an insertable component of a used medical device from touching contaminated portions of the used medical device after use in a procedure. By preventing contamination after releasing the insertable component, the user may be able to reuse the insertable component without having to clean or sterilize the insertable components between uses. By doing so, more medical procedures may be done because of the reduced the time required to prepare the insertable component between uses. Alternatively, if a number of insertable components are rotated in for use with medical devices (e.g., three battery packs per medical device—one being cleaned, one charging, and one in use), eliminating the step of cleaning or resterilization of the insertable components may reduce the number of insertable components needed to have an effective rotation (e.g., just two battery packs—one being charged and one in use). Accordingly, the following release features may be incorporated into a medical device to keep the insertable component clean (e.g., substantially free of body fluids or other fluids on the medical device) while releasing the component from the medical device.
Protective member (1340) of the present example comprises a plurality of segments (1342), though it should be understood that protective member (1340) may alternatively comprise a single piece (such as a length of flexible plastic or rubber) or protective member (1340) may have any other suitable configuration as will be apparent to those of ordinary skill in the art in light of the teachings herein. In the present example, segments (1342) are rigid plate members. However, segments (1342) may have other alternative forms, including, but not limited to, semi-rigid plates, rigid or semi-rigid rod-like links, ladder portions, flexible lengths of plastic or rubber, or any other suitable rigid, semi-rigid, and/or flexible segments or combinations thereof. In the present example, a first segment (1342) is attached at a first end to a portion of primary housing (1310). This attachment may comprise attachment by adhesive, by suitable mechanical coupling, by integral formation with the portion of primary housing (1310), or any other suitable attachment means. A subsequent segment (1342) is coupled to the first segment by a hinge member (1344). Hinge member (1344) of the present example is a butt hinge, though other suitable hinge members may be readily substituted, including piano hinges, barrel hinges, revolute joints, ball and socket joints, or any other suitable hinge member (1344) to allow rotation as will be apparent to one of ordinary skill in the art in view of the teachings herein. A series of successive segment (1342) and hinge member (1344) may be coupled to form protective member (1340). At a second end of protective member (1340) a final segment (1342) is attached to a portion of insertable component (1350). As with the attachment of the first segment (1342), the attachment to insertable component (1350) may comprise attachment by adhesive, by suitable mechanical coupling, by integral formation with the portion of insertion recess (1330), or any other suitable attachment means. Additionally, the final segment (1342) may further comprise a breakaway region (not shown), such as a plurality of perforations, to aid in the detachment of insertable component (1350) from final segment (1342). One merely exemplary alternative attachment may comprise mechanical coupling by an electrical plug. Alternatively, insertable component (1350) may not be attached to the final segment (1342).
Cap (1320) is sized and configured to be secured to primary housing (1310) to retain insertable component (1350) and protective member (1340) within insertion recess (1330). Cap (1320) may be constructed in accordance with at least some of the teachings of cap (300), cover (420), door assembly (520), or cap (620), as previously discussed herein, or cap (1320) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein.
In an initial state, the plurality of segments (1342) are folded about the exterior of insertable component (1350) and positioned within insertion recess (1330) of medical device (1300), as shown in
In another exemplary configuration, shown in
Protective members (1440) comprise a plurality of segments (1442) and hinge members (1444) that pivotably couple segments (1442) together. In the present example, segments (1442) comprise rigid plate members. However, segments (1442) may have other alternative forms, including, but not limited to, semi-rigid plates, flexible lengths of plastic or rubber, or any other suitable rigid, semi-rigid, and/or flexible segments or combinations thereof. Hinge members (1444) of the present example are butt hinges, though other suitable hinge members may be readily substituted, including piano hinges, barrel hinges, revolute joints or any other suitable hinge member (1444) to allow rotation as will be apparent to one of ordinary skill in the art in view of the teachings herein. Protective members (1440) are rotatably coupled to pivots (1412) at a first end of a first segment (1442). In the present example, first segments (1442) are coupled to pivots (1412) by a pivot pin, though other suitable pivots will be apparent to one of ordinary skill in the art in view of the teachings herein. A subsequent segment (1442) is rotatably coupled to the first segment (1442) by hinge member (1444).
Cap (1420) is sized and configured to be secured to primary housing (1410) to retain insertable component (1450) and protective members (1440) within insertion recess (1430). Cap (1420) may be constructed in accordance with at least some of the teachings of cap (300), cover (420), door assembly (520), or cap (620), as previously discussed herein, or cap (1420) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein.
In an initial state, the plurality of segments (1442) are alternately folded upon each other and positioned beneath insertable component (1450) within insertion recess (1430) of medical device (1400), as shown in
In yet another exemplary configuration, shown in
Chute (1540) of the present example comprises a length of flexible material (such as plastic film or thin rubber). While chute (1540) has an open bottom in the present example, it should be understood that chute (1540) may alternatively have a closed bottom such that chute (1540) forms a bag. In the present example, a top portion of chute (1540) is attached to a portion of primary housing (1510). This attachment may comprise attachment by adhesive, by suitable mechanical coupling, by integral formation with the portion of primary housing (1510), or any other suitable attachment means. The flexibility of chute (1540) allows chute (1540) to collapse within insertion recess (1530) with insertable component (1550) disposed therein. Cap (1520) is sized and configured to be secured to primary housing (1510) to retain insertable component (1550) and chute (1540) within insertion recess (1530). Cap (1520) may be constructed in accordance with at least some of the teachings of cap (300), cover (420), door assembly (520), or cap (620), as previously discussed herein, or cap (1520) may have any other suitable configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein.
In an initial state, chute (1540) is collapsed and positioned beneath (and/or adjacent to) insertable component (1550) within insertion recess (1530) of medical device (1500), as shown in
While various configurations for protective members have been described, it should be understood that some or all of portions of protective members (1340, 1440, 1540) may readily be interchangeable or used in combination as will be apparent to one of ordinary skill in the art in view of the teachings herein. Moreover, protective members (1340, 1440, 1540) may be readily incorporated into medical devices (200, 500, 600, 700, 800, 950, 1000, 1200) or any other suitable medical device as will be apparent to one of ordinary skill in the art in view of the teachings herein.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.
Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. This application also claims priority to U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1754806 | Stevenson | Apr 1930 | A |
3297192 | Swett | Jan 1967 | A |
3419198 | Pettersen | Dec 1968 | A |
3619671 | Shoh | Nov 1971 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4057220 | Kudlacek | Nov 1977 | A |
4535773 | Yoon | Aug 1985 | A |
4641076 | Linden et al. | Feb 1987 | A |
4662068 | Polonsky | May 1987 | A |
4666037 | Weissman | May 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
4717018 | Sacherer et al. | Jan 1988 | A |
4717050 | Wright | Jan 1988 | A |
4721097 | D'Amelio | Jan 1988 | A |
4768969 | Bauer et al. | Sep 1988 | A |
4800878 | Cartmell | Jan 1989 | A |
4844259 | Glowczewskie, Jr. et al. | Jul 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
5071417 | Sinofsky | Dec 1991 | A |
5107155 | Yamaguchi | Apr 1992 | A |
5144771 | Miwa | Sep 1992 | A |
5169733 | Savovic et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5246109 | Markle et al. | Sep 1993 | A |
5273177 | Campbell | Dec 1993 | A |
5277694 | Leysieffer et al. | Jan 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5322055 | Davison | Jun 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5358508 | Cobb et al. | Oct 1994 | A |
5361902 | Abidin et al. | Nov 1994 | A |
5429229 | Chester et al. | Jul 1995 | A |
5449370 | Vaitekumas | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5501607 | Yoshioka et al. | Mar 1996 | A |
5507297 | Slater et al. | Apr 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5580258 | Wakata | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5590778 | Dutchik | Jan 1997 | A |
5592065 | Oglesbee et al. | Jan 1997 | A |
5597531 | Liberti et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5630456 | Hugo et al. | May 1997 | A |
5690222 | Peters | Nov 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5741305 | Vincent et al. | Apr 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5800336 | Ball et al. | Sep 1998 | A |
5817128 | Storz | Oct 1998 | A |
5868244 | Ivanov et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5882310 | Marian, Jr. | Mar 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beupre | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5997531 | Loeb et al. | Dec 1999 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6051010 | Dimatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083223 | Baker | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6204592 | Hur | Mar 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6246896 | Dumoulin et al. | Jun 2001 | B1 |
6248238 | Burtin et al. | Jun 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6339368 | Leith | Jan 2002 | B1 |
6398755 | Belef et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6520185 | Bommannan et al. | Feb 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6609414 | Mayer et al. | Aug 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6626901 | Treat et al. | Sep 2003 | B1 |
6647281 | Morency | Nov 2003 | B2 |
6650975 | Ruffner | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6658301 | Loeb et al. | Dec 2003 | B2 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6717193 | Olewine et al. | Apr 2004 | B2 |
6730042 | Fulton et al. | May 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6761701 | Cucin | Jul 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6815206 | Lin et al. | Nov 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6838862 | Luu | Jan 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6869435 | Blake | Mar 2005 | B2 |
6923807 | Ryan et al. | Aug 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
7031155 | Sauciuc et al. | Apr 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083589 | Banko et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7150712 | Buehlmann et al. | Dec 2006 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7221216 | Nguyen | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7244024 | Biscardi | Jul 2007 | B2 |
7292227 | Fukumoto et al. | Nov 2007 | B2 |
7296804 | Lechot et al. | Nov 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7349741 | Maltan et al. | Mar 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7364554 | Bolze et al. | Apr 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7473145 | Ehr et al. | Jan 2009 | B2 |
7479152 | Fulton, III et al. | Jan 2009 | B2 |
7494492 | Da Silva et al. | Feb 2009 | B2 |
D594983 | Price et al. | Jun 2009 | S |
7563142 | Wenger et al. | Jul 2009 | B1 |
7583564 | Ketahara et al. | Sep 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7643378 | Genosar | Jan 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7766929 | Masuda | Aug 2010 | B2 |
7770722 | Donahoe et al. | Aug 2010 | B2 |
7770775 | Shelton et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780660 | Bourne et al. | Aug 2010 | B2 |
7815658 | Murakami | Oct 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7889489 | Richardson et al. | Feb 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7952873 | Glahn et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
8038025 | Stark et al. | Oct 2011 | B2 |
8040107 | Ishii | Oct 2011 | B2 |
8052605 | Muller et al. | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8075530 | Taylor et al. | Dec 2011 | B2 |
8097011 | Sanai et al. | Jan 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8177776 | Humayun et al. | May 2012 | B2 |
8195271 | Rahn | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8216212 | Grant et al. | Jul 2012 | B2 |
8221418 | Prakash et al. | Jul 2012 | B2 |
8240498 | Ramsey et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8267094 | Danek et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298253 | Charles | Oct 2012 | B2 |
8301262 | Mi et al. | Oct 2012 | B2 |
8344690 | Smith et al. | Jan 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8400108 | Powell et al. | Mar 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8444653 | Nycz et al. | May 2013 | B2 |
8449529 | Bek et al. | May 2013 | B2 |
8487487 | Dietz et al. | Jul 2013 | B2 |
8564242 | Hansford et al. | Oct 2013 | B2 |
8617077 | van Groningen et al. | Dec 2013 | B2 |
8641629 | Kurokawa | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030109802 | Laeseke et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040173487 | Johnson et al. | Sep 2004 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033195 | Fulton, III et al. | Feb 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060079829 | Fulton, III et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079877 | Houser et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060253176 | Caruso et al. | Nov 2006 | A1 |
20070027447 | Theroux et al. | Feb 2007 | A1 |
20070068943 | Ramsey et al. | Mar 2007 | A1 |
20070084742 | Miller et al. | Apr 2007 | A1 |
20070103437 | Rosenberg | May 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070207354 | Curello et al. | Sep 2007 | A1 |
20070261978 | Sanderson | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265620 | Kraas et al. | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080004656 | Livneh | Jan 2008 | A1 |
20080057470 | Levy et al. | Mar 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080150754 | Quendt | Jun 2008 | A1 |
20080161783 | Cao | Jul 2008 | A1 |
20080173651 | Ping | Jul 2008 | A1 |
20080188810 | Larsen et al. | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080221491 | Slayton et al. | Sep 2008 | A1 |
20080228104 | Uber, III et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080281301 | Deboer et al. | Nov 2008 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090043797 | Dorie et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090143797 | Smith et al. | Jun 2009 | A1 |
20090143798 | Smith et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090143801 | Deville et al. | Jun 2009 | A1 |
20090143802 | Deville et al. | Jun 2009 | A1 |
20090143803 | Palmer et al. | Jun 2009 | A1 |
20090143804 | Palmer et al. | Jun 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090240246 | Deville et al. | Sep 2009 | A1 |
20090253030 | Kooij | Oct 2009 | A1 |
20090264940 | Beale et al. | Oct 2009 | A1 |
20090275940 | Malackowski et al. | Nov 2009 | A1 |
20090281430 | Wilder | Nov 2009 | A1 |
20090281464 | Cioanta et al. | Nov 2009 | A1 |
20100016855 | Ramstein et al. | Jan 2010 | A1 |
20100021022 | Pittel et al. | Jan 2010 | A1 |
20100030218 | Prevost | Feb 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100076455 | Birkenbach et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100106144 | Matsumura et al. | Apr 2010 | A1 |
20100106146 | Boitor et al. | Apr 2010 | A1 |
20100125172 | Jayaraj | May 2010 | A1 |
20100152610 | Parihar et al. | Jun 2010 | A1 |
20100201311 | Lyell Kirby et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100249665 | Roche | Sep 2010 | A1 |
20100268221 | Beller et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20110009694 | Schultz et al. | Jan 2011 | A1 |
20110015660 | Wiener et al. | Jan 2011 | A1 |
20110058982 | Kaneko | Mar 2011 | A1 |
20110077514 | Ulric et al. | Mar 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110152901 | Woodruff et al. | Jun 2011 | A1 |
20110224668 | Johnson et al. | Sep 2011 | A1 |
20110247952 | Habach et al. | Oct 2011 | A1 |
20120179036 | Patrick et al. | Jul 2012 | A1 |
20120265230 | Laurent et al. | Oct 2012 | A1 |
20120283732 | Lam | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20130085330 | Ramamurthy et al. | Apr 2013 | A1 |
20130085332 | Ramamurthy et al. | Apr 2013 | A1 |
20130085397 | Ramamurthy et al. | Apr 2013 | A1 |
20130090528 | Ramamurthy et al. | Apr 2013 | A1 |
20130090530 | Ramamurthy et al. | Apr 2013 | A1 |
20130090552 | Ramamurthy et al. | Apr 2013 | A1 |
20130116690 | Unger et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
102008051866 | Oct 2010 | DE |
102009013034 | Oct 2010 | DE |
0897696 | Feb 1999 | EP |
0947167 | Oct 1999 | EP |
1330991 | Jul 2003 | EP |
1525853 | Apr 2005 | EP |
1535585 | Jun 2005 | EP |
1684396 | Jul 2006 | EP |
1721576 | Nov 2006 | EP |
1743592 | Jan 2007 | EP |
1818021 | Aug 2007 | EP |
1839599 | Oct 2007 | EP |
1868275 | Dec 2007 | EP |
1886637 | Feb 2008 | EP |
1943976 | Jul 2008 | EP |
1970014 | Sep 2008 | EP |
1997439 | Dec 2008 | EP |
2027819 | Feb 2009 | EP |
2090256 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
2165660 | Mar 2010 | EP |
2218409 | Aug 2010 | EP |
2243439 | Oct 2010 | EP |
2345454 | Jul 2011 | EP |
2425874 | Nov 2006 | GB |
2440566 | Feb 2008 | GB |
WO 9724072 | Jul 1997 | WO |
WO 0065682 | Feb 2000 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 2004113991 | Dec 2004 | WO |
WO 2005079915 | Sep 2005 | WO |
WO 2006023266 | Mar 2006 | WO |
WO 2007004515 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007090025 | Aug 2007 | WO |
WO 2007137115 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2008071898 | Jun 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2008107902 | Sep 2008 | WO |
WO 2008131357 | Oct 2008 | WO |
WO 2009018409 | Feb 2009 | WO |
WO 2009046394 | Apr 2009 | WO |
WO 2009070780 | Jun 2009 | WO |
WO 2009073608 | Jun 2009 | WO |
WO 2010030850 | Mar 2010 | WO |
WO 2010096174 | Aug 2010 | WO |
WO 2011059785 | May 2011 | WO |
WO 2011089270 | Jul 2011 | WO |
Entry |
---|
European Communication dated Feb. 19, 2014 for Application No. EP 11781972.2. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059212 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059215 dated May 8, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059217 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059218 dated May 7, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2011/059220 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059222 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059223 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059226 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059338 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059351 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059354 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059358 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059362 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059365 dated May 8, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059371 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059378 dated May 7, 2013. |
International Prelimiary Report on Patentability for Application No. PCT/US2011/059381 dated May 8, 2013. |
Office Action Non-Final dated Mar. 28, 2014 for U.S. Appl. No. 13/151,471. |
Office Action Non Final dated Mar. 18, 2014 for U.S. Appl. No. 13/151,498. |
Office Action Non Final dated Jun. 18, 2014 for U.S. Appl. No. 13/151,503. |
Office Action Final dated Jan. 29, 2014 for U.S. Appl. No. 13/151,509. |
Office Action Non-Final dated Feb. 14, 2014 for U.S. Appl. No. 13/274,480. |
Restriction Requirement dated Dec. 9, 2013 for U.S. Appl. No. 13/274,496. |
Office Action Non-Final dated Feb. 6, 2014 for U.S. Appl. No. 13/274,496. |
Office Action Final dated May 15, 2014 for U.S. Appl. No. 13/274,496. |
Restriction Requirement dated Mar. 28, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Non-Final dated Jun. 19, 2014 for U.S. Appl. No. 13/274,507. |
Office Action Final dated Jun. 12, 2014 for U.S. Appl. No. 13/274,516. |
Office Action Non-Final dated Jan. 6, 2014 for U.S. Appl. No. 13/275,514. |
Office Action Final dated Feb. 28, 2014 for U.S. Appl. No. 13/275,547. |
Office Action Final dated Mar. 21, 2014 for U.S. Appl. No. 13/276,673. |
Notice of Allowance dated Jun. 2, 2014 for U.S. Appl. No. 13/276,687. |
Office Action Non-Final dated Feb. 28, 2014 for U.S. Appl. No. 13/276,745. |
International Search Report and Written Opinion dated Jul. 6, 2012 for PCT/US2011/059381. |
Office Action Non-Final dated Aug. 6, 2013 for U.S. Appl. No. 13/151,471. |
Restriction Requirement dated Jul. 5, 2013 for U.S. Appl. No. 13/151,488. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/151,498. |
Restriction Requirement dated Jun. 24, 2013 for U.S. Appl. No. 13/151,509. |
Office Action Final dated Aug. 16, 2013 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Sep. 12, 2013 for U.S. Appl. No. 13/274,805. |
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Final dated Aug. 29, 2013 for U.S. Appl. No. 13/275,563. |
Office Action Non-Final dated Aug. 19, 2013 for U.S. Appl. No. 13/276,673. |
Office Action Non-Final dated Jun. 12, 2013 for U.S. Appl. No. 13/276,687. |
U.S. Appl. No. 13/151,509, filed Jun. 2, 2011, Smith et al. |
U.S. Appl. No. 13/176,875, filed Jul. 6, 2011, Smith et al. |
U.S. Appl. No. 13/269,870, filed Oct. 10, 2011, Houser et al. |
U.S. Appl. No. 13/269,883, filed Oct. 10, 2011, Mumaw et al. |
U.S. Appl. No. 13/269,899, filed Oct. 10, 2011, Boudreaux. |
U.S. Appl. No. 13/270,667, filed Oct. 11, 2011, Timm et al. |
U.S. Appl. No. 13/270,684, filed Oct. 11, 2011, Madan et al. |
U.S. Appl. No. 13/270,701, filed Oct. 11, 2011, Johnson et al. |
U.S. Appl. No. 13/271,352, filed Oct. 12, 2011, Houser et al. |
U.S. Appl. No. 13/271,364, filed Oct. 12, 2011, Houser et al. |
U.S. Appl. No. 13/274,480, filed Oct. 17, 2011, Mumaw et al. |
U.S. Appl. No. 13/274,496, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/274,507, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/274,516, filed Oct. 17, 2011, Haberstich et al. |
U.S. Appl. No. 13/274,540, filed Oct. 17, 2011, Madan. |
U.S. Appl. No. 13/274,805, filed Oct. 17, 2011, Price et al. |
U.S. Appl. No. 13/274,830, filed Oct. 17, 2011, Houser et al. |
U.S. Appl. No. 13/275,495, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,514, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,547, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/275,563, filed Oct. 18, 2011, Houser et al. |
U.S. Appl. No. 13/276,660, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,673, filed Oct. 19, 2011, Kimball et al. |
U.S. Appl. No. 13/276,687, filed Oct. 19, 2011, Price et al. |
U.S. Appl. No. 13/276,707, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,725, filed Oct. 19, 2011, Houser et al. |
U.S. Appl. No. 13/276,745, filed Oct. 19, 2011, Stulen et al. |
U.S. Appl. No. 13/277,328, filed Oct. 20, 2011, Houser et al. |
Dietz, T. et al., Partially Implantable Vibrating Ossicular Prosthesis, Transducers'97, vol. 1, International Conference on Solid State Sensors and Actuators, (Jun. 16-19, 1997) pp. 433-436 (Abstract). |
“System 6 Aseptic Battery System,” Stryker (2006) pp. 1-2. |
International Search Report and Written Opinion dated Jan. 26, 2012for Application No. PCT/US2011/059212. |
International Search Report and Written Opinion dated Feb. 2, 2012for Application No. PCT/US2011/059378. |
International Search Report dated Feb. 2, 2012for Application No. PCT/US2011/059354. |
International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/059351. |
International Search Report dated Feb. 13, 2012for Application No. PCT/US2011/059217. |
International Search Report dated Feb. 23, 2012 for Application No. PCT/US2011/059371. |
International Search Report dated Mar. 15, 2012 for Application No. PCT/US2011/059338. |
International Search Report dated Mar. 22, 2012for Application No. PCT/US2011/059362. |
International Search Report dated Apr. 4, 2012 for Application No. PCT/US2011/059215. |
International Search Report dated Apr. 11, 2012 for Application No. PCT/US2011/059381. |
International Search Report dated Apr. 18, 2012 for Application No. PCT/US2011/059222. |
International Search Report dated May 24, 2012 for Application No. PCT/US2011/059378. |
International Search Report dated Jun. 4, 2012 for Application No. PCT/US2011/059365. |
International Search Report dated Jun. 12, 2012 for Application No. PCT/US2011/059218. |
Communication from International Searching Authority dated Feb. 6, 2012for Application No. PCT/US2011/059362. |
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059222. |
Communication from International Searching Authority dated Jan. 24, 2012 for Application No. PCT/US2011/059215. |
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059378. |
Machine Translation of the Abstract of German Application No. DE 102009013034. |
Machine Translation of German Application No. DE 102008051866. |
U.S. Appl. No. 12/576,776, filed Oct. 9, 2009, Boudreaux et al. |
U.S. Appl. No. 13/151,471, filed Jun. 2, 2011, Stulen et al. |
U.S. Appl. No. 13/151,481, filed Jun. 2, 2011, Yates et al. |
U.S. Appl. No. 13/151,488, filed Jun. 2, 2011, Shelton, IV et al. |
U.S. Appl. No. 13/151,498, filed Jun. 2, 2011, Felder et al. |
U.S. Appl. No. 13/151,503, filed Jun. 2, 2011, Madan et al. |
U.S. Appl. No. 13/151,512, filed Jun. 2, 2011, Houser et al. |
U.S. Appl. No. 13/151,515, filed Jun. 2, 2011, Felder et al. |
Notice of Allowance dated Dec. 6, 2013 for U.S. Appl. No. 13/151,471. |
Office Action Final dated Nov. 21, 2013 for U.S. Appl. No. 13/151,498. |
Office Action Non-Final dated Sep. 26, 2013 for U.S. Appl. No. 13/151,509. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Nov. 21, 2013 for U.S. Appl. No. 13/271,352. |
Office Action Non-Final dated Dec. 6, 2013 for U.S. Appl. No. 13/274,516. |
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Final dated Nov. 26, 2013 for U.S. Appl. No. 13/274,830. |
Office Action Final dated Dec. 5, 2013 for U.S. Appl. No. 13/275,495. |
Notice of Allowance dated Nov. 12, 2013 for U.S. Appl. No. 13/276,687. |
Office Action Final dated Sep. 27, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Final dated Nov. 8, 2013 for U.S. Appl. No. 13/276,745. |
International Search Report dated Jan. 26, 2012 for Application No. PCT/US11/059220. |
International Search Report dated Feb. 1, 2012 for Application No. PCT/US11/059223. |
International Search Report dated Jan. 12, 2012 for Application No. PCT/US11/059226. |
International Search Report dated May 29, 2012 for Application No. PCT/US11/059358. |
Restriction Requirement dated Dec. 11, 2012 for U.S. Appl. No. 13/151,481. |
Office Action Non-Final dated Feb. 15, 2013 for U.S. Appl. No. 13/151,481. |
Office Action Final dated Jun. 7, 2013 for U.S. Appl. No. 13/151,481. |
Restriction Requirement dated Mar. 13, 2013 for U.S. Appl. No. 13/151,509. |
Restriction Requirement dated Feb. 28, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Apr. 26, 2013 for U.S. Appl. No. 13/270,667. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/274,516. |
Restriction Requirement dated Feb. 25, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/274,540. |
Office Action Non-Final dated Apr. 1, 2013 for U.S. Appl. No. 13/274,805. |
Restriction Requirement dated Apr. 29, 2013 for U.S. Appl. No. 13/274,830. |
Restriction Requirement dated Apr. 4, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated May 31, 2013 for U.S. Appl. No. 13/275,495. |
Office Action Non-Final dated May 17, 2013 for U.S. Appl. No. 13/275,547. |
Office Action Non-Final dated Feb. 1, 2013 for U.S. Appl. No. 13/275,563. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,660. |
Office Action Non-Final dated Jun. 3, 2013 for U.S. Appl. No. 13/246,660. |
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/276,673. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,687. |
Restriction Requirement dated Feb. 21, 2013 for U.S. Appl. No. 13/276,707. |
Office Action Non-Final dated May 6, 2013 for U.S. Appl. No. 13/276,707. |
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,725. |
Restriction Requirement dated Dec. 21, 2012 for U.S. Appl. No. 13/276,745. |
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/276,745. |
US Office Action, Notice of Allowance, dated Aug. 19, 2014 for U.S. Appl. No. 13/151,471. |
US Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,471. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/151,481. |
US Office Action, Non-Final, dated Nov. 7, 2014 for U.S. Appl. No. 13/151,488. |
US Office Action, Notice of Allowance, dated Aug. 6, 2014 for U.S. Appl. No. 13/151,498. |
US Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,498. |
US Office Action, Non-Final, dated Nov. 6, 2014 for U.S. Appl. No. 13/151,503. |
US Office Action, Non-Final, dated Jul. 9, 2014 for U.S. Appl. No. 13/151,509. |
US Office Action, Notice of Allowance, dated Oct. 28, 2014 for U.S. Appl. No. 13/151,509. |
US Office Action, Restriction Requirement, dated Jul. 11, 2014 for U.S. Appl. No. 13/269,870. |
US Office Action, Non-Final, dated Jan. 5, 2015 for U.S. Appl. No. 13/269,870. |
US Office Action, Non-Final, dated Jul. 29, 2014 for U.S. Appl. No. 13/270,667. |
US Office Action, Notice of Allowance, dated Dec. 17, 2014 for U.S. Appl. No. 13/270,667. |
US Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/270,684 |
US Office Action, Non-Final, dated Oct. 9, 2014 for U.S. Appl. No. 13/270,684 |
US Office Action, Restriction Requirement, dated Sep. 11, 2014 for U.S. Appl. No. 13/270,701. |
US Office Action, Non-Final, dated Dec. 16, 2014 for U.S. Appl. No. 13/270,701. |
US Office Action, Restriction Requirement, dated Sep. 25, 2014 for U.S. Appl. No. 13/271,352. |
US Office Action, Restriction Requirement, dated Oct. 2, 2013 for U.S. Appl. No. 13/274,480. |
US Office Action, Final, dated Jul. 17, 2014 for U.S. Appl. No. 13/274A80. |
US Office Action, Final, dated Aug. 22, 2014 for U.S. Appl. No. 13/274,496. |
US Office Action, Non-Final, dated Oct. 8, 2014 for U.S. Appl. No. 13/274,516. |
US Office Action, Non-Final, dated Aug. 26, 2014 for U.S. Appl. No. 13/274,540. |
US Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,540. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/274,805. |
US Office Action, Notice of Allowance, dated Nov. 28, 2014 for U.S. Appl. No. 13/274,805. |
US Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,805. |
US Office Action, Non-Final, dated Oct. 22, 2014 for U.S. Appl. No. 13/274,830. |
US Office Action, Non-Final, dated Sep. 9, 2014 for U.S. Appl. No. 13/275,514. |
US Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/275,547. |
US Office Action, Non-Final, dated Oct. 23, 2014 for U.S. Appl. No. 13/275,563. |
US Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/276,660. |
US Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/276,673. |
US Office Action, Notice of Allowance, dated Sep. 12, 2014 for U.S. Appl. No. 13/276,687. |
US Office Action, Notice of Allowance, dated Dec. 23, 2014 for U.S. Appl. No. 13/276,687. |
US Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/276,725. |
US Office Action, Notice of Allowance, dated Oct. 7, 2014 for U.S. Appl. No. 13/276,745. |
US Office Action, Notice of Allowance, dated Dec. 19, 2014 for U.S. Appl. No. 13/276,745. |
US Office Action, Restriction Requirement, dated Sep. 24, 2014 for U.S. Appl. No. 13/277,328. |
US Office Action, Non-Final, dated Dec. 8, 2014 for U.S. Appl. No. 13/277,328. |
Number | Date | Country | |
---|---|---|---|
20120110810 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61410603 | Nov 2010 | US | |
61487846 | May 2011 | US |