The present disclosure relates to medical imaging devices and methods using black silicon photodetectors.
State-of-the-art X-ray and gamma ray imaging modalities typically use detectors based on a combination of a scintillator and a photodetector. The scintillator converts high-energy radiation into visible light, then the photodetector converts the visible photons into an electrical signal, which usually is amplified by front-end readout electronics.
Two main nuclear medicine modalities are positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Commercial PET and SPECT detectors typically use an inorganic scintillator material in combination with a photomultiplier tube and pulse-counting readout electronics. In recent years, detectors based on semiconductor detectors such as silicon PIN diodes, silicon drift diodes, or avalanche diodes (APDs) have become available and are the subject of current development activities in industry and academia.
X-ray computed tomography (CT) systems commonly use detectors containing scintillator material and silicon PIN diodes. Charge-integrating front-end electronics produce detector signals that are proportional to total charge during a given read-out interval.
In all these imaging modalities, the signal-to-noise ratio depends critically on the conversion efficiency of the scintillator, the quantum efficiency (QE) for detecting the visible photons, and the noise of the read-out electronics. High signal levels can be obtained by use of avalanche photodiode and photo-multiplier tube detectors. The intrinsic gain of these detectors provides beneficial signal-to-noise ratios, which may be aided by integration of a first amplification stage of the read-out electronics at a location very close to the detector. However, avalanche photodiodes and photo-multiplier tubes require extreme drive voltages in excess of 300 Volts (V). The high voltages impose the need for special drive circuitry. The overall system is thus burdened with high cost and complexity. In addition, the direct integration of CMOS read-out circuitry on the photodiode wafer is not feasible when these high drive voltages are needed.
A need therefore exists for improved medical imaging devices and methods with higher resolution detectors that operate with lower drive voltages.
The above needs are fulfilled, at least in part, by receiving high energy radiation from a patient body, i.e., gamma rays emitted from the patient body, such as for computed tomography, or X-rays transmitted through the patient body, such as for PET and SPECT, converting the received radiation into visible light, exposing the visible light to a black silicon photodetector to produce an electrical signal, and generating an image of the patient body from the electrical signal. The high energy radiation may be directed to scintillator pixels, which may be in registration with pixel locations on the black silicon photodetector. In addition, the black silicon photodetector may include a plurality of sub-pixels for each scintillator pixel. The detector may further include CMOS structures integrated with the black silicon photodetector pixel locations. A low reverse bias voltage, for example about 3 Volts, may be applied to the photodetector for detection of the radiation.
The above needs are further fulfilled by a medical imaging device, which includes a high-energy radiation source, such as X-rays or gamma rays, a scintillator, a black silicon photodetector optically coupled to the scintillator, and a read-out circuit coupled to the black silicon photodetector. The black silicon photodetector may include pixel locations, which may be in registration with pixels of the scintillator. The black silicon photodetector may further include subpixels for each pixel of the scintillator. The read-out circuit may further include CMOS components integrated with the black silicon photodetector pixel locations. The black silicon photodetector may include a silicon wafer substrate with black silicon photodiodes and the CMOS components integrated on the silicon wafer substrate. Alternatively, the CMOS structures may be vertically integrated with the black silicon photodetector pixels. The black silicon photodetector elements may be formed on a first surface of the silicon wafer, a second silicon wafer may be bonded to a second surface of the first silicon wafer, and the CMOS components may be formed on the second silicon wafer. In addition, a wavelength shifting layer may be located between the scintillator and the black silicon photodetector. With the integration of the CMOS components with the black silicon photodiodes on the silicon wafer, digitization of the electrical signal from the detector may be performed on the silicon wafer to generate an image of the patient.
Additional aspects and technical effects of the present disclosure will become readily apparent to those skilled in the art from the following detailed description wherein embodiments of the present disclosure are described simply by way of illustration of the best mode contemplated to carry out the present disclosure. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawing and in which like reference numerals refer to similar elements and in which:
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of exemplary embodiments. It should be apparent, however, that exemplary embodiments may be practiced without these specific details or with an equivalent arrangement. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring exemplary embodiments.
Black silicon refers to a modified silicon surface layer, where a standard silicon wafer surface is turned into a black absorber material by treatment with femtosecond (fs) laser pulses in the presence of a sulfur-containing gas such as sulfur hexafluoride (SF6) or hydrogen sulfide (H2S) (or by incorporating other dopants, e.g., Oxygen (0), Selenium (Se), or Tellurium (Te)). Similar surface modifications by wet-chemical etching or plasma etching are also known. The results of black-silicon formation by fs laser irradiation are the formation of peak-like silicon microstructures at the surface, as illustrated at 101 in
The described surface modification also leads to the formation of a n/n+ heterojunction between the bulk crystalline silicon and the modified black silicon layer. Applying a reverse bias voltage to this junction via suitable contacts leads to a photodetector device, which has the additional advantage of photoconductive gain which can be as high as 1200 at only a 3V reverse bias. The photoconductive gain is related to the formation of interband states by the doping. This photoconductive gain yields a photosensor with a large responsivity and high signal-to-noise ratio.
Adverting to
As illustrated in
In
In
Electrical contacts are not shown in any of
In another exemplary embodiment, the black silicon diode pixels may be monolithically integrated with the first part of the read-out electronics on the same wafer. As schematically illustrated in
Returning briefly to
Integration of the CMOS structures with the black silicon elements is possible because the manufacturing methods for the black silicon layer are compatible with state-of-the-art CMOS processes, and the low bias voltages (e.g., 3V) are compatible with CMOS wafer voltage ranges. Such an active pixel device layout is particularly beneficial for applications such as CT, where there are often many hundred small pixels (about 1 mm2 or smaller) integrated in one detector module. Integration of the CMOS structures with the photodetector elements allows the digitization of the analog detector response to be performed on the substrate itself without need of requiring further electronics. Components integrated in the CMOS parts of the wafer may, for example, include a preamplifier, signal shaper, analog-to-digital converter, comparator, and/or pulse counter.
As illustrated in
Adverting to
Two further exemplary embodiments are illustrated in
Embodiments of the present disclosure, using a black silicon photodetector in a scintillator based detector module to measure X-rays and gamma rays for medical imaging, have several advantages which address different needs for Angiography, Fluoroscopy, Radiographic Systems, CT, PET, SPECT, or combined PET/CT, SPECT/CT, or PET/SPECT detectors. Specifically, the disclosed embodiments can achieve several technical effects, including providing a high absorption of visible photons, due to a high quantum efficiency of the detector and, in turn, to good quantum statistics and improved energy resolution in a pulse-counting detector or, alternatively, an improved signal-to-noise ratio in a charge-integrating detector. Also, a photoconductive gain of the order of several hundred or thousand can be achieved, which improves the signal-to-noise level by amplifying the signal even before the actual read-out circuit and reduces the needed level of further amplification. In addition, the gain is achieved at low bias voltages (in contrast to avalanche photodiodes), which enables a compatibility with CMOS structures on the same wafer. This can give rise to highly integrated, active pixel designs, which are particularly suitable for high count-rate applications, using very small sub-pixel sizes and a digital processing of the sub-pixel outputs to yield an overall pixel signal. The present disclosure enjoys industrial applicability in various medical imaging devices.
In the preceding description, the present disclosure is described with reference to specifically exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present disclosure, as set forth in the claims. The specification and drawings are, accordingly, to be regarded as illustrative and not as restrictive. It is understood that the present disclosure is capable of using various other combinations and embodiments and is capable of any changes or modifications within the scope of the inventive concept as expressed herein.
This application claims priority from a U.S. Provisional titled “Black-Silicon Based Detector For X-ray and Gamma-ray Imaging” having U.S. Ser. No. 61/078,494, the entire contents of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61078494 | Jul 2008 | US |