1. Technical Field
The present invention relates to a medicine-supplying device capable of supplying medicines of different shapes and, sizes, such as tablets and capsules, one by one, and a medicine-counting device equipped with the medicine-supplying device.
2. Description of the Related Art
A supplying device for aligning and supplying small articles has been well known (Refer to Japanese Examined Patent Application Publication No. 1-51403, for example).
The supplying device has a disc-like first rotator rotated by a first driving means and an annular second rotator rotated by a second driving means. A first rotary shaft of the first rotator is disposed to tilt at a predetermined angle, and a second rotary shaft of the second rotator is disposed to vertically extend. The upper end of the tilted first rotator is on the same level as the inner circumference of the second rotator. A frame wall that surrounds the outer circumference of the first rotator is integral with the inner circumference of the second rotator.
In the supplying device thus configured, rotation of the first rotator causes a supplied object to move from the upper end to the second rotator. Then, a restricting body provided on the second rotator allows only a supplied object in a predetermined orientation to pass to the downstream side, and causes a supplied object in other orientations to fall from the inner circumference of the second rotator onto the first rotator. This can prevent collision between supplied objects.
However, when the conventional supplying device is used to supply medicines, two or more supplied medicines may simultaneously pass the restricting body, and be supplied to a guiding part to a discharge port abreast in the radial direction. This disadvantageously generates clogging at an inlet of the guiding part.
An object of the present invention is to provide a medicine-supplying device and a medicine-counting device for discharging medicines one by one reliably and efficiently.
To solve the problem, according to the present invention,
a medicine-supplying device includes:
a rotator configured to discharge a medicine to an outer diameter side by rotation;
a medicine shape-specifying unit configured to specify medicine shape;
a control unit configured to rotate the rotator at a rotational speed specified based on the medicine shape specified by the medicine shape-specifying unit according to a speed table associating the medicine shape with the rotational speed of the rotator.
Even at the same rotational speed of the rotator, depending on the medicine shape, some medicines are smoothly discharged from a dispensing part, while other medicines are hardly discharged. With the configuration, by setting the rotational speed of the rotator depending on the medicine shape in consideration of variation in a conveying state by the rotator due to variation in the medicine shape, medicines can be discharged one by one reliably and efficiently.
To solve the problem, according to the present invention,
a medicine-supplying device includes:
a rotator configured to discharge a medicine to an outer diameter side by rotation;
a detection unit configured to detect an interval between discharges of the medicine from the rotator;
a control unit configured to rotate the rotator at a rotational speed specified based on the medicine interval detected by the detection unit according to a speed table associating the medicine interval detected by the detection unit with the rotational speed of the rotator for setting the medicine interval to a desired value.
With this configuration, since the rotational speed of the rotator is changed depending on the medicine interval, for example, medicines of any shape can be discharged at a constant interval. Thereby, medicines can be discharged one by one reliably and efficiently.
To solve the problem, according to the present invention,
a medicine-counting device includes:
a rotator configured to discharge a medicine to an outer diameter side by rotation;
a detection unit configured to detect the medicine discharged from the rotator;
a medicine shape-specifying unit configured to specify medicine shape;
a control unit configured to rotate the rotator at a rotational speed specified based on the medicine shape specified by the medicine shape-specifying unit according to a speed table associating the medicine shape with the rotational speed of the rotator, and to stop the rotator when the number of discharged medicines detected by the detection unit reaches the number of prescribed medicines in prescription data.
With this configuration, by setting the rotational speed of the rotator depending on the medicine shape, medicines can be discharged one by one reliably and efficiently. As a result, the problem that the detection unit cannot count medicines due to too large or too small interval can be prevented, achieving correct counting.
To solve the problem, according to the present invention,
a medicine-counting device includes:
a rotator configured to discharge a medicine to an outer diameter side by rotation;
a detection unit configured to detect the medicine discharged from the rotator;
a control unit configured to rotate the rotator at a rotational speed specified based on an interval between the medicines detected by the detection unit according to a speed table associating the medicine interval detected by the detection unit with the rotational speed of the rotator, and to stop the rotator when the number of discharged medicines detected by the detection unit reaches the number of prescribed medicines in prescription data.
With this configuration, the rotational speed of the rotator can be controlled to directly set the suitable medicine interval on the basis of the interval between medicines detected by the detection unit. Accordingly, the detection unit can detect medicines at a desired interval at all times irrespective conditions such as the medicine shape, achieving precise and efficient counting.
Preferably, the medicine shape-specifying unit specifies the medicine shape by selecting a planar shape and a side shape of the medicine.
With this configuration, the medicine shape can be automatically specified with ease merely by selecting the shape in two directions viewed from the top and side.
A medicine volume-specifying unit configured to specify a reference volume of the medicine is further provided, and
according to a medicine volume coefficient table associating the medicine shape with a medicine volume coefficient, the control unit may count the number of discharged medicines as 1 when a product of the medicine volume coefficient specified based on the shape specified by the medicine shape-specifying unit and the reference volume specified by the medicine volume-specifying unit is equal to or exceeds a medicine volume calculated based on a detection signal from the detection unit.
A medicine volume-specifying unit configured to specify a reference volume of the medicine is further provided, and
according to a medicine volume coefficient table associating the rotational speed of the rotator with a medicine volume coefficient, the control unit may count the number of discharged medicines as 1 when a product of the medicine volume coefficient specified based on the rotational speed determined according to the speed table and the reference volume specified by the medicine volume-specifying unit exceeds a medicine volume calculated based on a detection signal from the detection unit.
The reference volume described herein means a volume measured by any of various publicly-known methods or a volume presented by pharmaceutical manufacturers, for a medicine. A medicine volume acquired by dispensing a medicine through rotation of the rotator, and calculating the volume of the dispensed medicine on the basis of the detection signal from the detection unit may be used. In this case, the calculated volume may be used from the second discharge of prescription onward.
With the configuration, the number of discharged medicines can be correctly detected depending on the medicine shape or the rotational speed of the rotator, preventing excessive discharging by mistake.
A medicine volume-specifying unit configured to specify a reference volume of the medicine is further provided, and
according to a foreign-material volume coefficient table associating the medicine shape with a foreign-material volume coefficient, the control unit does not count the number of discharged medicines when a product of the foreign-material volume coefficient specified based on the shape specified by the medicine shape-specifying unit and the reference volume specified by the medicine volume-specifying unit exceeds a medicine volume calculated based on a detection signal from the detection unit.
A medicine volume-specifying unit configured to specify a reference volume of the medicine is further provided, and
according to a foreign-material volume coefficient table associating the rotational speed of the rotator with a foreign-material volume coefficient, the control unit does not count the number of discharged medicines when a product of the foreign-material volume coefficient specified based on the rotational speed according to the speed table and the reference volume specified by the medicine volume-specifying unit exceeds a medicine volume calculated based on a detection signal from the detection unit.
With the configuration, the number of discharged medicines can be correctly detected depending on the medicine shape or the rotational speed of the rotator, preventing insufficient discharging by mistake.
Preferably, according to a slowdown table associating the medicine shape with a number of remaining medicines to be discharged, with which the rotational speed of the rotator starts to be decreased, the control unit decreases the rotational speed of the rotator when a value acquired by subtracting the number of discharged medicines from the number of prescribed medicines in the prescription data reaches the number of remaining medicines to be discharged, which is specified based on the shape specified by the medicine shape-specifying unit.
With this configuration, before discharging of the last medicine, the rotational speed of the rotator can be decreased, thereby preventing discharging of the medicine after stop of the rotator by mistake.
Preferably, the number of remaining medicines to be discharged is varied depending on the medicine shape.
The number of remaining medicines to be discharged may be varied depending on the rotational speed of the rotator.
With the configuration, the speed of the rotator can be decreased with the number of remaining medicines to be discharged, which is suitable for the medicine conveying state, thereby more suitably preventing the medicine from being discharged by mistake after stop of the rotator.
The control unit may decrease the rotational speed of the rotator in multiple stages.
With this configuration, the rotational speed of the rotator can be controlled more finely, thereby achieving efficient discharge while preventing excessive discharge.
Preferably, the control unit reversely rotates the rotator when the number of discharged medicines detected by the detection unit reaches the number of prescribed medicines in the prescription data.
With this configuration, discharge of even medicines that easily move after stop of the rotator can be reliably prevented.
Preferably, a vertically-movable height-restricting member provided above the rotator, and a medicine height-specifying unit configured to specify a reference height of the medicine are further provided, and according to a height correction table associating the medicine shape with a height correction coefficient, the control unit adjusts the position of the height-restricting member on the basis of the height correction coefficient specified based on the shape specified by the medicine shape-specifying unit and the reference height specified by the medicine height-specifying unit.
With this configuration, the medicine can be efficiently discharged by correcting the gap size while restricting the height of the medicine that can be conveyed on the rotator by using the height-restricting member.
Preferably, a width-restricting member provided on an upper face of the rotator so as to be movable in the radial direction of the rotator, and a medicine width-specifying unit configured to specify a reference width of the medicine are further provided, and according to a width correction table associating the medicine shape with a width correction coefficient, the control unit adjusts the position of the width-restricting member on the basis of the width correction coefficient specified based on the shape specified by the medicine shape-specifying unit and the reference width specified by the medicine width-specifying unit.
With this configuration, the medicine can be efficiently discharged by correcting the width while restricting the width of the medicine that can be conveyed on the rotator by using the width-restricting member.
According to the present invention, since the rotational speed of the rotator is set depending on the specified medicine shape, the medicine can be conveyed at the speed suitable for the medicine shape, enabling precise and efficient counting of discharged medicines.
An embodiment of the present invention will be described below with reference to appended figures. In following description, terms representing specific directions and positions (for example, “upper”, “lower”, “side”, “end”) are used as necessary. The terms are used to facilitate understanding of the invention with reference to figures, and do not intend to limit the technical scope of the present invention. The following description is illustrative, and does not intend to limit the present invention, and its applications and uses.
(1. Overall configuration)
As shown in
(1-1. Drug-Supplying Device)
As shown in
(1-1-1. Frame)
As shown in
(1-1-2. First Rotator)
The first rotator 23 is disc-like, and is tilted in the partition wall 18 so as to close the bottom of the partition wall 18. That is, as shown in
A gear 27 is coupled to the lower end of the first rotary shaft 24 of the first rotator 23. The gear 27 engages with a gear 29 coupled to an output shaft of the first driving motor 28 so as to be rotatable about the first rotary shaft 24. The first rotary shaft 24 and the first driving motor 28 are attached to the rotating bracket 30 (See
(1-1-3. Second Rotator)
The annular second rotator 35 is rotatably disposed on the upper end of the partition wall 18 so as to be located above the first rotator 23. As shown in
As shown in
(1-1-4. Height-Restricting Body)
As shown in
A screw member 47 penetrates the screw hole 46 of the height-restricting body 41. The screw member 47 is supported rotatably and unmovably in the axial direction with a bracket fixed to the upper plate of the exterior main body 11. A gear 48 is coupled to a lower end of the screw member 47. The gear 48 engages with a gear 50 of a height-adjusting motor 49 as a height-adjusting means. The height-adjusting motor 49 rotates the screw member 47, thereby height-adjusting a distance between the height-restricting body 41 and the upper face of the second rotator 35 to become about the same height as a medicine. A medicine-detecting sensor 51 for detecting medicines passing below the height-restricting body 41 is arranged downstream from the height-restricting body 41.
(1-1-5. Width-Restricting Body)
The width-restricting body 52 is disposed above the second rotator 35 downstream from the height-restricting body 41 in the medicine conveying direction. The width-restricting body 52 has a rectangular part 53 extending tangent to the outer circumference of the second rotator 35. Since the arranging member 44 of the height-restricting body 41 bypasses the rectangular part 53, the rectangular part 53 can reciprocate its longitudinal direction without interfering with the arranging member 44. In the width-restricting body 52, a width-restricting part 54 is connected to the downstream side of the rectangular part 53 in the medicine conveying direction. The width-restricting part 54 includes a first curved face 55 having a larger diameter than the inner circumference 36 of the second rotator 35. Thus, the distance between the first curved face 55 and the inner circumference 36 of the second rotator 35 partially becomes the narrowest in the circumferential direction. A width between the inner circumference 36 of the second rotator 35 and the first curved face 55, with which a medicine can pass (the narrowest width between the inner circumference 36 of the second rotator 35 and the first curved face 55) is defined as a conveyance width. In the width-restricting body 52, the outer guide 57 constituting the medicine guiding part 65 is connected to the downstream side of the width-restricting part 54 of the first curved face 55 in the medicine conveying direction. The outer guide 57 extends tangent to the first curved face 55, and extends orthogonal to the rectangular part 53.
The curvature radius of the first curved face 55 may be varied between the upstream side and the downstream side in the medicine conveying direction. Specifically, the curvature radius on the upstream side may be smaller than the curvature radius on the downstream side, and be larger than the curvature radius of the outer edge of the first rotator 23. As shown in
A coupling member 58 is coupled to the width-restricting part 54 of the width-restricting body 52 to extend in parallel to the rectangular part 53. As shown in
In this embodiment, the diameter (curvature radius) of the first curved face 55 of the width-restricting part 54 is set such that the width between the outer guide 57 and the inner guide 66 is twice (2W) as large as the conveyance width W between the width-restricting part 54 and the inner circumference 36 of the second rotator 35. The conveyance width W is set to ½ of the width of a conveyed medicine. For elliptical and oval medicines in a plan view, the medicine width is the width in the lateral direction. The conveyance width W is not limited to ½ of the medicine width, and is preferably, ½ of the medicine width or more and the medicine width or less.
The medicine guiding part 65 serves to guide medicines passing the width-restricting part 54 of the width-restricting body 52 to a below-mentioned medicine-dispensing member 73 as a medicine discharge port. As shown in
In the medicine-counting device, as shown in
As shown in
The shutter 74 is disposed on the inner side of an outlet of the medicine-dispensing member 73. The shutter 74 can rotate between a horizontally-extending discharge stopping position and a downwardly-tilted discharge permitting position by a driving motor 75. At the discharge stopping position, the shutter 74 closes the outlet of the medicine-dispensing member 73 to prevent discharge of medicines into the medicine-detecting unit 70. At the discharge permitting position, the shutter 74 opens the outlet of the medicine-dispensing member 73 to permit discharge of medicines into the medicine-detecting unit 70.
(1-2. Switch Valve Unit)
As shown in
As shown in
(1-3. Control Unit)
The medicine-counting device including the medicine-supplying device operates according to an instruction of the control unit 83 as shown in
The memory 87 stores various data including prescription data issued by the doctor, medicine data (medicine name, medicine ID, effect, etc.), patient data (patient name, patient ID, etc.), and various data tables therein. Examples of the various data tables include a correction table, an SP (Speed) table, an SD (SlowDown) table, a medicine volume coefficient table, a foreign-material volume coefficient table. The various data may be stored in a storage means (hard disc, memory, or other storage medium) of any device communicably connected to the medicine-supplying device, in place of the memory 87.
The correction table shows a correction ratio with respect to a provisional height-restricting position and a provisional width-restricting position, which is determined by below-mentioned automatic adjusting processing. The correction ratio is used to increase a gap between the height-restricting body 41 located at the provisional height-restricting position and the second rotator 35, and a gap between the outer guide 57 formed integral with the width-restricting body 52 located at the provisional width-restricting position and the inner guide 66, with respect to the medicine size, by a constant ratio, thereby providing a margin for each gap to allow the medicine to pass without any problem. The correction ratio defined in the correction table may be changed depending on the medicine shape. This is due to that even medicines having the same width and height have varying optimal gap depending on the shape. In the case where the gap between the height-restricting body 41 and the second rotator 35 or the gap between the outer guide 57 and the inner guide 66 is large, as shown in
The SP table is provided for each of medicines of different shapes. As shown in Table 1, in each table, the rotational speed of the second rotator 35 is set for (associated with) an interval between medicines sequentially detected by the medicine-detecting unit 70. For medicines of certain shape, the rotational speed of the second rotator 35 may be predetermined through an experiment such that the medicine interval becomes a desired constant value. Even when the detected medicine interval is the same, different medicine shapes may be associated with different rotational speeds of the second rotator 35.
Ka (a=1, 2, . . . ): medicine interval
Sb (b=1, 2, . . . ): rotational speed of the second rotator 35 (For example, S1 is different from S2)
In the SP table, the rotational speed of the second rotator 35 is set depending on the medicine shape. However, the rotational speed of the second rotator 35 may be set such that the medicine interval detected by the medicine-detecting unit 70 becomes a desired value (range) based on differences thereof. Specifically, the rotational speed of the second rotator 35 may be increased with an increase in the medicine interval, and be set such that the medicine interval (time required from detection of one medicine to detection of a next medicine in the detecting unit 70) becomes the desired value (range) when the second rotator 35 is rotated at the rotational speed. Each value (range) may be predetermined through an experiment or the like. This can advantageously set the medicine interval directly to the desired value (range).
In the SD table, setting (associating) is performed depending on the medicine shape, and in each SD table, the number of remaining medicines to be discharged, with which the rotational speed of the second rotator 35 starts to be decreased, is set depending on the range of the interval between medicines sequentially detected by the medicine-detecting unit 70. Table 2 is an SD table in which the rotational speed of the second rotator 35 is decreased in two stages. The SD table includes the number of remaining medicines to be discharged used next time in the case where the number of actually discharged medicines (for example, may be calculated based on a measured weight of the medicine container 1 or acquired directly from a detection result of the medicine-detecting unit 70) exceeds a prescribed number contained in prescription data irrespective of the decrease in the rotational speed of the second rotator 35 at the predetermined number of remaining medicines to be discharged. That is, N(1) in Table 2 is used first time, and N(2) is used when the prescribed number does not match the actual discharged number at the first discharge, and N(3) is used when the prescribed number does not match the actual discharged number at the second discharge (The same applies hereafter).
Dx1 (x1=1, 2, . . . ): medicine interval (As the value of x1 is larger, the interval becomes larger). Each row represents a range of values larger than each interval. Specifically, D1 corresponds to a range of D1 or less, and D2 corresponds to a range of D1 to D2.
N(x2)x3-1, x3-2 (x2, x3=1, 2, . . . ): the number of remaining medicines to be discharged (As the value of x2, x3 is larger, the number of remaining medicines to be discharged becomes larger. The
The SD table is set depending on the medicine shape and however, may be set depending on the rotational speed of the second rotator 35.
As shown in Table 3, in medicine volume coefficient table, setting (associating) is performed depending on the medicine shape. In detecting a medicine passing the medicine-detecting unit 70, an actually-measured value (volume of the medicine detected by the medicine-detecting unit 70) is different from the actual medicine volume. Thus, a medicine volume coefficient for correcting the difference is set (In Table 3, a right table and a left table show lists of respective medicine volume coefficients of medicines of different shapes). That is, a volume (calculated value) found by multiplying a below-mentioned medicine reference volume by the medicine volume coefficient set depending on the rotational speed of the second rotator 35 is a maximum value determined to be one medicine. For example, since it is more difficult to determine the number of medicines as the interval between the medicines passing the medicine-detecting unit 70 is smaller, a small value is adopted as the medicine volume coefficient. When the actually-measured value exceeds the calculated value found by multiplying the reference volume by the medicine volume coefficient, the number of medicines is determined to be two.
The reference volume is a value measured by the medicine-detecting unit 70 for a newly handled medicine, the volume of which is not stored in the storing unit (memory 87), and is a value stored in the storing unit (memory 87) for a previously handled medicine. In the case of using the medicine volume measured by the medicine-detecting unit 70 as the medicine volume, the medicine-detecting unit 70 and the control unit 83 that calculates the medicine volume according to the detection signal constitute a medicine volume-specifying unit of the present invention. The medicine volume may be the value measured by the medicine-detecting unit 70, as well as a medicine volume previously measured by another publicly-known detector. A medicine volume supplied from pharmaceutical manufacturers may be used. In this case, the storing unit (memory 87) storing the medicine volume and the control unit 83 invoking the related data from the storing unit constitute the medicine volume-specifying unit of the present invention.
In the medicine volume coefficient table, the medicine volume coefficient is associated depending on the medicine shape and however, may be associated depending on the rotational speed of the second rotator 35.
Sy1-y2 (y1, y2=1, 2, . . . ): rotational speed of the second rotator (y1 depends on the medicine shape. As the value of y2 is larger, the rotational speed increases).
DCy3-y4 (y3, y4=1, 2, . . . ): medicine volume coefficient (y3 depends on the medicine shape).
As shown in Table 4, the foreign-material volume coefficient table is set (associated) depending on the medicine shape. In detecting medicines passing the medicine-detecting unit 70, to prevent external perturbations and wrong determination that a chipped medicine is regarded as one complete medicine, a foreign-material volume coefficient to be multiplied by the actual medicine volume is set. For example, the foreign-material volume coefficient of oval tablets is a maximum value, and the foreign-material volume coefficients of deformed tablets, capsules, and ellipsoidal tablets are smaller values in descending order. However, for the ellipsoidal tablets, the foreign-material volume coefficient varies according to whether the rotational speed of the second rotator 35 is large or not.
Sz1-z2 (z1, z2=1, 2, . . . ): the rotational speed of the second rotator (z1 depends on the medicine shape. As the value of z2 is larger, the rotational speed increases).
ECz3-z4 (z3, z4=1, 2, . . . ): medicine volume coefficient (z3 depends on the medicine shape).
In the foreign-material volume coefficient table, the foreign-material volume coefficient is associated depending on the medicine shape and however, as in the medicine volume coefficient table, the foreign-material volume coefficient may be associated depending on the rotational speed of the second rotator 35.
(2. Operation)
Next, operations of the medicine-counting device thus configured will be described below.
(2-1. Initial Operation)
As shown in flow chart of
Subsequently, the operator manipulates the operational panel 84 to specify the shape of medicines prescribed as follows. First, shapes (planar shapes) of various medicines when viewed from above are displayed on the operational panel 84 (Step S7).
When the medicine shape is specified, medicines are injected into a medicine injecting space defined by the first rotator 23 and the partition wall 18, and the number of prescribed medicines is inputted, medicine-discharging processing is started.
In this case, at injection of the medicines, the rotators 23 and 35 are previously rotated until the medicine-detecting sensor 51 detects a first medicine. This can reduce time from the injection to dispense of the medicines. A medicine-detecting sensor may be provided in front of the dispensing part 78, and medicines may be conveyed to a position in front of the place between the inner guide 66 of the medicine guiding part 65 and the outer guide 57 in the conveying direction.
(2-2. Drug-Discharging Processing)
In the medicine-discharging processing, as shown in
(2-2-1. Angle-Adjusting Processing for First Rotator)
The angle-adjusting processing for the first rotator 23 is executed depending on the number, size, and shape of injected medicines. That is, the angle of the first rotator 23 is adjusted according to the number and shape of the medicines, such that the medicines can smoothly move from the first rotator 23 to the second rotator 35. Specifically, in the case where the number of injected medicines is large, the tilt angle of the first rotator 23 is set sharp (near vertical) such that the storage space between the partition wall 18 and the first rotator 23 and the second rotator 35 becomes large. In the case of round medicines that roll (rotate) on the upper face of the first rotator 23, and do not move to the second rotator 35 even when the first rotator 23 is rotated, the tilt angle of the first rotator 23 is set obtuse (near horizontal).
In the angle-adjusting processing, a medicine detector may be disposed on the moving part 37 of the second rotator 35 or another place to automatically adjust the angle. In this case, the angle-adjusting processing may be executed in a first stage of the automatic adjusting processing. The tilt angle may be adjusted to be decreased when it is determined that no medicine is present on the second rotator 35.
(2-2-2. Automatic Adjusting Processing)
In the automatic adjusting processing, for medicines that has not been counted, such as new medicines, the memory 87 has not stored volume data on the medicines. Thus, the medicine volume is measured as follows. The interval between medicines passing the medicine-detecting unit 70 is measured, the rotational speed of the second rotator 35 and the control method are decided, and they are associated with data on the medicines (here, medicine ID) and stored in the memory 87.
As shown in
In this state, as shown in
Then, the height-restricting body 41 is gradually moved upward (Step S23). When the medicine-detecting sensor 51 detects a medicine passing the height-restricting body 41 (Step S24), the movement of the height-restricting body 41 is stopped (Step S25), and this position is defined as the provisional height-restricting position (restricting height). Then, the provisional height-restricting position is stored in the memory 87 (Step S26). Simultaneously, an image of medicines near the height-restricting body 41 is taken with the third camera 89c (Step S27).
Subsequently, the width-restricting body 52 is moved outward to gradually extend (Step S28). When the sensor or the medicine-detecting unit 70 provided downstream from the width-restricting body 52 detects a medicine (Step S29), the movement of the width-restricting body 52 is stopped (Step S30), and the position is defined as the provisional width-restricting position (provisional conveyance width). Then, the provisional width-restricting position is stored in the memory 87 (Step S31). In this case, the provisional height-restricting position of the height-restricting body 41 and the provisional width-restricting position of the width-restricting body 52 are stored in association with the medicine 1D read with the bar code reader.
Next, a correction value with respect to the provisional height-restricting position and the provisional width-restricting position are determined based on the medicine shape specified in the initial operation according to the correction table (Step S32). Then, the height-restricting position and the width-restricting position are determined by adjusting the provisional height-restricting position and the provisional width-restricting position on the basis of the determined correction value (Step S33). By providing the gap through which the medicine passes with a slight margin in this manner, the medicine can be smoothly discharged.
When the positions of the height-restricting body 41 and the width-restricting body 52 are determined in this manner, as shown in
That is, the line sensors (71A, 72A) to (71D, 72D) of the medicine-detecting unit 70 detect the medicine falling due to its self-weight (constant speed) in four different directions. Then, the volume including width and height of the passing medicine is determined on the basis of input values of the light-receiving parts 72A to 72D. Specifically, the width of the medicine is determined in the four different directions on the basis of the inputs of the light-receiving elements of the light-receiving parts 72A to 72D. Since the vertical height of the light-receiving parts 72A and 72B of the upper housing 70A is different from that of the light-receiving parts 72C and 72D of the lower housing 70B, in consideration of a detecting time difference due to falling, the horizontal cross-sectional shape of the falling medicine can be correctly determined based on the width determined by the light-receiving parts 72A to 72D. By repeating this determination every predetermined time, the horizontal cross-sectional shape every predetermined time can be determined. After that, the volume (three-dimensional shape) including the shape of the falling medicine is calculated based on the horizontal cross-sectional shape every predetermined time.
In this case, since the second rotator 35 is rotated at the constant low speed 3 (reference speed), it is hard to cause a failure that stacked medicines are discharged by mistake. For this reason, below-mentioned processing for preventing wrong detection is not executed. When all medicines are dispensed, an average value of the measured medicine volume (actually-measured values) is calculated and defined as the medicine reference volume, and this medicine reference volume is stored in the memory 87 in association with the medicine ID. However, it is preferred that the reference volume is stored in the memory 87 when the number of dispensed medicines exceeds a certain value such as 30. The small number of dispensed medicines is susceptible to a detection error. When the number of dispensed medicines exceeds a certain value such as 30, by calculating the average value of the actually-measured values, the detection error can be prevented to achieve correct determination. A threshold may be calculated by multiplying the largest calculated volume by the medicine volume coefficient.
The interval of medicines sequentially passing the medicine-detecting unit 70 is found (Step S35).
That is, time required to start detection of a next medicine after no falling medicine is detected by the medicine-detecting unit 70 is calculated.
After the calculation of the medicine volume and the interval, the SP table is selected according to the medicine shape determined in the initial operation (Step S36). Then, with reference to the selected SP table, the rotational speed of the second rotator 35 is determined based on the calculated medicine interval (Step S37). When the interval between medicines passing the medicine-detecting unit 70 is larger than a preset reference range (which can be found through an experiment and so on), the rotational speed is set to a large value so as to reduce medicine counting time. On the contrary, when the interval is smaller than the reference range, the rotational speed is set to a small value so as to prevent wrong medicine counting. The rotational speed thus determined is stored in the memory 87 in association with the medicine ID.
The medicine volume coefficient table is selected depending on the medicine shape determined in the initial operation (Step S38). In this case, if in the medicine volume coefficient table, the medicine volume coefficient is set depending on the rotational speed of the second rotator 35, the medicine volume coefficient table may be selected depending on the changed rotational speed of the second rotator 35.
Then, with reference to the selected medicine volume coefficient table, the medicine volume coefficient for determining one medicine is determined based on the rotational speed of the second rotator 35 (Step S39). When the medicine volume coefficient is determined in this manner, the medicine reference volume is multiplied by the medicine volume coefficient to find the volume determined to be one medicine (medicine calculated value) (Step S40), and the calculated value is stored in the memory 87 in association with the medicine ID.
Further, the foreign-material volume coefficient table is selected according to the medicine shape determined in the initial operation (Step S41). In this case, if in the foreign-material volume coefficient table, the foreign-material volume coefficient is set depending on the rotational speed of the second rotator 35, the foreign-material volume coefficient table may be selected based on the changed rotational speed of the second rotator 35.
Then, with reference to the selected foreign-material volume coefficient table, the foreign-material volume coefficient for determining a foreign material such as debris is determined based on the calculated medicine interval (Step S42). When the foreign-material volume coefficient is determined as described above, the medicine reference volume is multiplied by the foreign-material volume coefficient to find the volume determined to be the foreign material (foreign material calculated value), and this value is stored in the memory 87 in association with the medicine ID (Step S43).
Further, the SD table is selected according to the medicine shape determined in the initial operation (Step S44). In this case, if the SD table is selected according to the rotational speed of the second rotator 35, the SD table may be selected based on the changed rotational speed of the second rotator 35.
Then, according to the selected SD table, the number of medicines (the number of remaining medicines to be discharged), with which the rotational speed of the second rotator 35 starts to be decreased, is determined in two stages (first remaining number and second remaining number) on the basis of the detected medicine interval, and the number of remaining medicines to be discharged is stored in the memory 87 in association with the medicine ID (Step S45). That is, the number of remaining medicines to be discharged becomes the determined first remaining number, thereby setting the medicine-discharging speed of the medicine guiding part 65 to a first speed. After that, the number of remaining medicines to be discharged becomes the determined second remaining number, thereby setting the medicine-discharging speed to a second speed that is slower than the first speed.
The memory 87 stores volume data on the medicines that has been counted. Thus, the medicine ID (bar code) printed on the medicine bottle is read with the bar code reader 88, and the restricting height of the height-restricting body 41 and the conveyance width of the width-restricting body 52, which are associated with medicines corresponding to the ID, are invoked from the memory 87. Then, positions of the height-restricting body 41 and the width-restricting body 52 are adjusted to the values.
Stored information of the restricting height and the conveyance width may be displayed on the monitor 89 to be viewable by the operator, and may be fine-tuned as needed, and the fine-tuned restricting height and conveyance width may be overwritten.
(2-2-3. Counting Processing)
For firstly counted medicines such as new medicines and previously counted medicines, as shown in flow chart of
When the actually-measured value is smaller than the medicine calculated value (Step S52: YES), the actually-measured value is compared with the foreign material calculated value stored in the memory 87 (Step S54). When the actually-measured value is the foreign material calculated value or less (Step S54: NO), it is determined that the detected material is a foreign material, counting is not performed. This can prevent wrong detection of external perturbations and foreign material (including chipped medicine). When the actually-measured value is larger than the foreign material calculated value (Step S54: YES), it is determined that one medicine passes the medicine-detecting unit 70, and 1 is added to the number of discharged medicines (Step S55).
When the number of remaining medicines to be discharged reaches the first remaining number stored in the memory 87 (Step S56), the discharge speed of the medicine guiding part 65, that is, the rotational speed of the second rotator 35 is decreased to the first speed (Step S57). After that, when the number of remaining medicines to be discharged reaches the second remaining number (Step S58), the rotational speed is decreased to the second speed that is slower than the first speed (Step S59). This is set in consideration with the rolling amount of the medicine at stop of the second rotator 35, which varies depending on the medicine shape. For example, for round medicines, the movement immediately after stop of rotation of the second rotator 35 is large and thus, an unplanned medicine may be discharged by mistake. Such wrong detection can be prevented by starting to decrease the rotational speed earlier. For box-like medicines, since the movement immediately after stop of rotation of the second rotator 35 is small, the medicines can be efficiently discharged by deferring the time to start to decrease the rotational speed. By decreasing the discharge speed in two stages, medicines can be discharged at a relatively high speed until the last medicine is discharged, thereby further increasing the discharge efficiency.
In this case, by changing the volume to be determined as one medicine with the decrease in the rotational speed according to the medicine volume coefficient table, highly accurate detection can be achieved at all times.
The discharge speed is decreased in the two stages and however, may be decreased in one stage or three or more stages.
When the number of actually discharged medicines is larger than a prescribed number, the number of medicines with which the rotational speed of the second rotator 35 is started to be decreased (the number of remaining medicines to be discharged) is changed according to the SD table. That is, the initial N(0)1-1, 1-2 is changed to N(1)1-1, 1-2 next time. Similarly, the number of remaining medicines to be discharged may be sequentially changed such that the actual discharged number matches the prescribed number. Thereby, as the counting processing is executed, wrong discharge (more than the prescribed number) can be reliably prevented next.
The variation in the medicine-counting device may be considered. That is, the rotational speed of the second rotator 35 of even the medicine-counting devices of the same model slightly varies due to a processing error or an assembling error of each component. In this case, values in each of the data tables may be previously determined in the medicine-counting device through an experiment or the like, and may be used. Values in each of the data tables, which are determined for a certain medicine-counting device, are defined as reference data, and deviation from the reference data in other medicine-counting devices may be calculated.
When the remaining number of prescribed medicines reaches a predetermined value, the height restricted by the height-restricting body 41 and the conveyance width restricted by the width-restricting body 52 are slightly increased. Preferably, the height and the conveyance width are changed with a decrease in the rotational speed of the second rotator 35. This can prevent slow-down of the rotation of the second rotator 35 to lower the medicine discharge efficiency. However, the increase ratio of the height and the conveyance width is previously set to be a smaller value as two medicines are discharged more easily depending on the medicine shape.
For rollable round medicines (it is determined whether or not medicines are rollable on the basis of the selected medicine shape), when the number of prescribed medicines (prescribed number) is counted, the second rotator 35 may be reversely rotated for a predetermined time. This can reliably prevent wrong medicine discharge. The reverse rotation may be performed before the number of discharged medicines reaches the prescribed number, for example, when medicines less than the prescribed number of medicines by n are dispensed.
In the case where no detection signal is inputted from the medicine-detecting sensor 51 and the medicine-detecting unit 70 during discharge of medicines due to entrapment of medicines and so on, the rotational speed of the second rotator 35 may be increased until a detection signal is re-inputted, or the second rotator 35 may be reversely rotated and then, positively rotated again.
After that, when the prescribed number of discharged medicines is counted (Step S60), discharge finishing processing is executed as follows (Step S61).
That is, as shown in
When dispensing of medicines is finished, the medicine container 1 is placed on the inspection table. At this time, as shown in
At this time, as shown in
(2-2-4. Conveying Operation of Disc-Like Tablet X)
Next, an operation of conveying a disc-like tablet X as a type of medicine by use of the medicine-supplying device will be specifically described. The operation of conveying the disc-like tablet X also applies to round medicines.
As shown in
The tablets X moved onto the second rotator 35 are moved toward the medicine guiding part 65, and are restricted their movement to the downstream side by the height-restricting body 41. For example, an upper tablet of moving tablets X in a vertically stacked state contacts the guide face 43 of the height-restricting body 41 to fall onto the second rotator 35 or fall from the inner circumference 36 onto the first rotator 23.
The tablets X passing the height-restricting body 41 contact the first curved face 55 of the width-restricting body 52 that restricts the conveyance width, thereby moving toward the inner circumference 36 of the second rotator 35. Since the conveyance width of the second rotator 35 is ½ of the medicine width due to the presence of the first curved face 55 of the width-restricting body 52, only the tablets X in contact with the width-restricting body 52 can pass from the width-restricting body 52 to the downstream side. That is, in the case where two tablets X are conveyed side by side in the radial direction, the inner tablet X is pressed by the outer tablet X in contact with the width-restricting body 52, and falls from the inner circumference 36 of the second rotator 35 onto the first rotator 23. Even when the tablets X are not aligned in the radial direction, the tablet X having the gravity center located inside of the inner circumference 36 of the second rotator 35 falls from the inner circumference 36 onto the first rotator 23. For this reason, other tablet X that is not in contact with the width-restricting body 52 is not conveyed to the downstream side.
The tablets X passing the first curved face 55 of the width-restricting body 52 are stably conveyed in a second curved face 56 having a larger conveyance width. Then, the tablets are conveyed to between the inner guide 66 of the medicine guiding part 65 and the outer guide 57, aligned and moved to the outlet and then, discharged to the medicine-detecting unit 70. At this time, the tablets X1 protruding inward from the inner circumference 36 of the second rotator 35 contact the end of the inner guide 66 to be guided between the inner guide and the outer guide 57 or fall from the inner circumference 36 on to the first rotator 23. Only the tablets X passing the medicine guiding part 65 are supplied to the medicine-detecting unit 70 through the medicine-dispensing member 73 as the medicine discharge port.
(2-2-5. Conveying Operation of Capsule Y)
Next, an operation of conveying a capsule Y that is different from the disc-like tablet X in shape and size will be specifically described. The operation of conveying the capsule Y also applies to non-round tablets such as ellipsoidal tablets.
As shown in
The capsules Y moved onto the second rotator 35 move toward the medicine guiding part 65, and are restricted in their movement to the downstream side by the height-restricting body 41, and moving capsules Y in a vertically stacked state fall onto the second rotator 35 or fall from the inner circumference 36 onto the first rotator 23.
The capsules Y passing the height-restricting body 41 contact the first curved face 55 of the width-restricting body 52 that restricts the conveyance width, are moved toward the inner circumference 36 of the second rotator 35, and corrected in position such that the longitudinal sides extend in the medicine conveying direction. Then, only the capsules Y in contact with the width-restricting body 52 pass from the width-restricting body 52 to the downstream, and the capsules Y that are not in contact with the width-restricting body 52 fall from the inner circumference 36 of the second rotator 35 onto the first rotator 23. Since the conveyance width of the second rotator 35 is about ½ of the width of the capsule Y1, the gravity center of the capsule Y1 that cannot be corrected in position by contact with the first curved face 55 is located inside of the inner circumference 36 of the second rotator 35 and therefore, the capsule Y1 cannot keep its balance and falls from the inner circumference 36 of the second rotator 35 onto the first rotator 23.
The capsules Y passing the first curved face 55 of the width-restricting body 52 are stably conveyed in the second curved face 56 having the larger conveyance width. Then, the capsules Y are conveyed to between the inner guide 66 of the medicine guiding part 65 and the outer guide 57, aligned and moved to the outlet one by one, and discharged to the medicine-detecting unit 70. At this time, the capsule Y2 that cannot be corrected in position contacts the end of the inner guide 66, thereby being corrected in position and guided to between the inner guide and the outer guide 57 or falling from the inner circumference 36 onto the first rotator 23. Only the capsules Y passing the medicine guiding part 65 are supplied to the medicine-detecting unit 70 through the medicine-dispensing member 73 as the medicine discharge port.
Unlike the disc-like tablet X, the capsules Y are not flat and thus, are in point-contact or line-contact with the second rotator 35 and easily rotate while moving on the second rotator 35. Accordingly, after passing the width-restricting body 52, such non-flat medicines as the capsules Y may change their orientation on the second rotator 35 before reaching a medicine guiding part 65, and fall onto the first rotator 23. Thus, as shown in
As described above, in the medicine-supplying device of the present invention, since medicines can be aligned one by one using the height-restricting body 41 and the width-restricting body 52 and supplied to the medicine guiding part 65, the medicines can be reliably passed through the medicine guiding part 65 one by one, and discharged from the medicine-dispensing member 73 to the outside without causing any problem such as clogging. Since the many conveyed medicines are not held back by the restricting bodies 41, 52 and the medicine guiding part 65, but fall onto the first rotator 23, clogging at the restricting bodies 41, 52 as well as collision between the medicines can be reliably prevented. This can also prevent chipping of medicines. Especially since the conveyance width of the second rotator 35 is restricted to ½ of the medicine width by the width-restricting body 52, non-circular medicines in a plan view cannot pass there unless the longitudinal side extends in the medicine conveying direction. Therefore, clogging at the inlet of the medicine guiding part 65 can be reliably prevented.
Since the height-restricting body 41 can adjust the restricting height, and the width-restricting body 52 can adjust the conveyance width of the second rotator 35, various medicines of different shapes and sizes can be supplied. Further, since the width-restricting body 52 and the outer guide 57 of the medicine guiding part 65 are integrated with each other and can be simultaneously adjusted, it is possible to improve the workability in adjustment and reduce the number of parts. Moreover, since the restricting bodies 41 and 52 can be automatically adjusted in this embodiment, the convenience can be greatly enhanced without requiring any operator's adjustment.
Further, since the inner guide 66 of the medicine guiding part 65 has the upwardly-inclined tilted edge 68, the medicine moved in the state protruded inward from the inner circumference 36 of the second rotator 35 can be reliably prevented from being clogged at the inlet of the medicine guiding part 65. With this configuration, when non-circular medicines in a plan view are conveyed in a slightly-tilted state, the medicines can be corrected in position or allowed to fall onto the first rotator 23, which is especially effective. Further, since the tilt angle of the first rotary shaft 24 of the first rotator 23 can be adjusted, medicines can be reliably conveyed to the moving part 37 by rotation of the first rotator 23, and moved onto the second rotator 35.
In the medicine-counting device using the medicine-supplying device, medicines of different shapes and sizes can be reliably discharged to the outside one by one, and the discharged medicines can be detected by the medicine-detecting unit 70 and counted by the control unit 83. As a result, a predetermined number of medicines can be reliably dispensed and prescribed to the patient. The switch valve unit 76 disposed at the container attachment part 13 has the dispensing part 78 connected to the medicine container 1 for the patient and the collecting part 79 connected to the collecting container 2, improving workability in prescription. Moreover, the pivoting members 80A and 80B as switch valves cause both the dispensing part 78 and the collecting part 79 to close at the suspending position when the number of prescribed medicines are counted, thereby preventing extra medicines from being dispensed to the medicine container 1. When the pivoting members 80A and 80B are located at the collecting position for the collecting container 2 later, medicines held upstream from the pair of pivoting members 80A and 80B can be flicked to the collecting part 79 by elastic restoration of the elastic parts 81, thereby reliably preventing excessive dispensing of medicines to the medicine container 1 through the dispensing part 78.
The third camera 89c provided along with the height-restricting body 41 in the exterior body 10 blocks the movement of the height-restricting body 41. For this reason, as shown in
Similarly, the height-restricting body 41 may be provided on the upper cover 14 rather than in the exterior body 10. With this configuration, when the upper cover 14 is opened relative to the exterior body 10 to clean the upper faces of the first rotator 23 and the second rotator 35, the height-restricting body 41 moves with the upper cover 14. Thus, even when the width-restricting body 52 is moved outside of the second rotator 35 in the radial direction, the width-restricting body 52 does not interfere with the height-restricting body 41. Accordingly, the width-restricting body 52 never hits against the height-restricting body 41 to break the height-restricting body 41. Preferably, the height-restricting body 41 is integrated with an elastic material such as rubber on the side of the second rotator 35. With this configuration, at closing of the upper cover 14 relative to the exterior main body 11, even when the user's hand is present between the height-restricting body 41 and the second rotator 35, or a medicine is present on the second rotator 35, it is possible to prevent a failure that the height-restricting body 41 inflicts a wound on the user's hand or breaks the medicine.
The present invention is not limited to the configuration described in the embodiment, and may be variously modified. For example, in the embodiment, the medicine volume is measured based on the detection signal from the medicine-detecting unit 70 and however, the medicine volume may be previously measured using other publicly-known measuring means, or may be the volume provided from pharmaceutical manufacturers.
In the embodiment, the medicine-detecting sensor 51 for detecting medicines passing the height-restricting body 41 and the medicine-detecting sensor for detecting medicines in front of the dispensing part 78 are provided and however, these medicine-detecting sensors may be provided at following positions.
Preferably, the medicine-detecting sensor is provided at each of a first position on the second rotator 35 restricted by the width-restricting body 52, a second position downstream from the height-restricting body 41 in the rotating direction of the second rotator 35, and a third position upstream from the second position in the rotating direction of the second rotator. Hereinafter, the medicine-detecting sensor at the first position is described as a first sensor 101, the medicine-detecting sensor at the second position is described as a second sensor 102, and the medicine-detecting sensor at the third position is described as a third sensor 103 (See
In the embodiment, the control unit 83 controls driving of each member and however, as shown in
In the embodiment, after the initial operation, the medicine-discharging processing including the automatic adjusting processing and the counting processing is executed and however, as shown in
(Remaining Medicine-Detecting Processing)
The remaining medicine-detecting processing may be executed before the initial operation. The remaining medicine-detecting processing will be described below with reference to flow charts of
In the remaining medicine-detecting processing, when power is turned on to activate the medicine-counting device, as shown in
Subsequently, as shown in
Here, a count value C of a repeat counter is cleared (Step S116), and when the second rotator 35 stops, it is determined whether or not the count value C is 3 (Step S117). When the count value is not 3, as shown in
The second rotator 35 repeats its positive rotation and reverse rotation, medicines can be moved to the outer circumference without being accumulated at the rib 35a (See
After that, when the count value C becomes 3 (Step S117: YES), as shown in
During the processing in each of Steps S118 to S123, it is determined whether or not the second sensor 102 detects any medicine at all times (Step S124).
When no medicine is detected (non-existence of remaining medicine), Steps S118 to S123 are continued, and after completion of Step S123, the height-restricting body 41 and the width-restricting body 52 are moved to the respective closed positions (Step S125) and then, “non-existence of remaining medicine” is transmitted to the first control unit 104 (Step S126). As shown in below-mentioned
On the contrary, when the medicine is detected (existence of remaining medicine), as shown in
As described above, the medicine-supplying device capable of executing the remaining medicine-detecting processing has following features.
That is, the medicine-supplying device includes:
a first rotator configured to positively rotate about a first rotary shaft to convey a medicine in a circumferential direction and an outer diameter direction;
a second rotator located on the outer circumferential side of the first rotator, the second rotator positively and reversely rotating about a second rotary shaft to convey the medicine in the circumferential direction;
a dispensing part disposed on the outer diameter side of the second rotator, the dispensing part discharging the conveyed medicine;
a height-restricting body disposed upstream from the dispensing part in the rotational direction of the second rotator, the height-restricting body having an adjustable distance from an upper face of the second rotator;
a width-restricting body disposed between the dispensing part and the height-restricting body, the width-restricting body having an adjustable distance from an inner edge of the second rotator; and
a control unit configured to move the height-restricting body and the width-restricting body to respective maximum opened positions before a counting processing, and to execute remaining medicine-detecting processing of reversely rotating the second rotator to move the width-restricting body to a closed position and then, positively rotating the width-restricting body.
With this configuration, medicine clogging, if occurs, can be eliminated by reversely rotating the second rotator in the state where the height-restricting body and the width-restricting body are moved to the respective maximum opened positions. In the case where the second rotator is positively rotated, the width-restricting body may be moved to the closed position to detect possible remaining medicines.
(Imaging Processing)
The second control unit 105 enables imaging processing of causing a medicine camera 106 (corresponding to the third camera 89c in the embodiment) to take an image of medicines after the automatic adjusting processing, and storing the image.
In the imaging processing, as shown in flow chart of
Subsequently, it is determined whether or not an imaging condition (as described later, selection of a lighting member to be used from a plurality of lighting members, or adjustment of focus of the camera) in an imaging region is set (Step S134). When the imaging condition is set, as shown in
After that, it is determined whether or not the second sensor 102 detects a medicine (Step S136). When no medicine is detected (Step S136: NO), it is determined as a normal state, and as shown in
On the contrary, when the second sensor 102 detects a medicine in Step S136, it is determined as an abnormal state where the medicine is present at an improper position and as shown in
In Step S134, the imaging condition can be set as follows.
For example, the imaging condition is set by selecting among a plurality of lighting members (for example, LEDs not shown) for lighting the region that can be imaged with the medicine camera 106 (imaging region). The plurality of lighting members are vertically aligned in a part of the outer wall 20 upstream from the height-restricting body 41 in the rotational direction of the second rotator 35. Imaging conditions can be freely set by the user. Here, an image adjusting screen including an image 121 taken with the medicine camera 106 as shown in
The medicine camera 106 may have an autofocus function, or may set a focal length for each medicine in consideration with an effect of the medicine thickness. Preferably, the focal length may be manually set for each medicine type at first imaging, and thereafter automatically set. The focal length set once may be stored in association with the medicine, and the stored data may be used at next imaging. At this time, by operating a “focus” button 123 on the image identifying screen to select either “high” or “low”, the focal position can be placed on an upper side or lower side.
As described above, the medicine-supplying device capable of executing the imaging processing has following features.
That is, the medicine-supplying device includes:
a first rotator configured to positively rotate about a first rotary shaft to convey a medicine in a circumferential direction and an outer diameter direction;
a second rotator located on the outer circumferential side of the first rotator, the second rotator positively rotating about a second rotary shaft to convey the medicine in the circumferential direction;
a dispensing part disposed on the outer diameter side of the second rotator, the dispensing part discharging the conveyed medicine;
a restricting body disposed upstream from the dispensing part in a positive rotational direction of the second rotator, the restricting body being configured to restrict passage of the medicine;
an imaging unit configured to image an imaging region located upstream from the restricting body in the positive rotational direction of the second rotator; and
a control unit configured to cause the restricting body to restrict movement of the medicine and positively rotate the second rotator, thereby causing the imaging unit to take an image of the imaging region in the state where the medicine is located in the imaging region.
With this configuration, the imaging unit can reliably image the medicine in the state where the medicine is located in the imaging region.
Preferably, the control unit executes the clog-eliminating processing of moving the restricting body to the maximum opened position and reversely rotating the second rotator and then, executing the imaging processing.
Preferably, the control unit executes the clog-eliminating processing plural times.
With the configuration, since medicines can be imaged after elimination of clogging of medicines, the medicines can be imaged in a more suitable state, and the flow can be smoothly shifted to subsequent medicine-dispensing processing.
Irradiating units for irradiating the imaging region are preferably provided.
Preferably, an irradiating condition can be set by selecting the irradiating unit to be used out of a plurality of the irradiating units, and the control unit causes the selected imaging unit to take an image according to the set irradiating condition.
With this configuration, the irradiating unit can irradiate the imaging region according to the irradiating condition suitable for imaging medicines using the imaging unit.
(Imaging Omitting Mode)
The imaging processing may be omitted unless mandated by law.
(Counting Processing)
The counting processing may have a plurality of modes as described below. That is, as shown in flow charts of
(1) A normal dispensing count mode of dispensing a predetermined number of medicines supplied from the medicine bottle to the medicine-counting device according to the prescription into the medicine container 1 for the patient.
(2) A recount mode of reconfirming the number of medicines dispensed into the medicine container 1 in the normal dispensing count mode by using another medicine-counting device
(3) A stock count mode of counting the number of all medicines supplied from the medicine bottle to the medicine-counting device, and confirming the stock stored in the medicine bottle.
The normal dispensing count mode will be described below.
That is, in the normal dispensing count mode, first, the dispensing display LED 107a of the operation display part is flashed (Step S152). When an instruction is made from the first control unit 104 (Step S153: YES), as shown in
As shown in
Subsequently, it is determined whether or not the medicine container 1 is disposed at a medicine-dispensing position (Step S159), when the medicine container 1 is disposed at the position, as shown in
That is, when the number of remaining medicines to be discharged reaches the first remaining number stored in the memory 87 (Step S161), the discharge speed (rotational speed of the second rotator 35) of the medicine guiding part 65 is lowered to the first speed (Step S162). After that, when the number of remaining medicines to be discharged reaches the second remaining number (Step S163), the discharge speed is lowered to the second speed that is slower than the first speed (Step S164).
When the number of discharged medicines reaches a predetermined number before reaching the scheduled number of dispensed medicines (Step S165), as shown in
It is determined whether or not medicines are special medicines (Step S167). That is, in the case of rollable medicines such as round medicines, as shown in
In the recount mode, the second rotator 35 is positively rotated at a constant speed to the end without executing the slowdown processing of the second rotator 35 in Steps S161 to S164. Since the recount mode is performed to recount the number of counted medicines for confirmation, and there is no possibility that an extra medicine is dispensed at the last dispense as in the normal dispensing count mode, a high priority is given to reduction in counting time.
Also in the stock count mode like the recount mode, the second rotator 35 is positively rotated at the constant speed to the end without executing the slowdown processing of the second rotator 35 in Steps S161 to S164. However, in the stock count mode, below-mentioned stockout-determining processing is not executed.
As described above, the medicine-supplying device capable of executing one of the above-mentioned three modes has following features.
That is, the medicine-supplying device includes:
a rotator configured to positively rotate about a rotary shaft to convey a medicine in a circumferential direction;
a dispensing part disposed on the outer diameter side of the rotator;
a counting unit configured to count the number of medicines dispensed from the dispensing part; and
a control unit configured to positively rotate the rotator on the basis of prescription data, and to execute a normal dispensing mode of lowering the rotational speed of the rotator when a count value of the counting unit reaches a predetermined value, and stopping the positive rotation of the rotator when the count value reaches a prescribed number in the prescription data.
With this configuration, medicines can be automatically dispensed based on the number of prescribed medicines in the prescription data. Since the rotational speed of the rotator is lowered before the count value reaches the prescribed number, dispensing of medicines more than the number of prescribed medicines can be prevented.
Preferably, the control unit further performs the recount mode of positively rotating the rotator at a constant speed, counting all medicines discharged from the dispensing part with the counting unit, and determining whether or not the count value matches the prescribed number in the prescription data.
With this configuration, since the rotational speed of the rotator is not lowered, the number of dispensed medicines can be confirmed at high speed.
Preferably, the control unit further performs the stock count mode of positively rotating the rotator at a constant speed, and counting all medicines discharged from the dispensing part with the counting unit.
Preferably, an imaging unit capable of imaging the prescription and a standing medicine solution bottle that stores liquid medicine, and a storing unit are further provided, and the control unit further performs a liquid medicine mode of storing the image taken with the imaging unit along with information for specifying the liquid medicine in the storing unit.
With this configuration, since the medicine solution bottle in the standing position is imaged, the level of the liquid medicine can be captured as image data. Further, since the prescription is also imaged, the prescription and the liquid medicine are associated with each other in the image.
Preferably, in the counting processing, a soiled state of a count sensor of the medicine-detecting unit 70 is first checked.
That is, a maximum A/D value of the count sensor is detected, and it is determined whether or not the maximum A/D value exceeds a soil detecting level. When the maximum A/D value exceeds the soil detecting level, it is determined that the count sensor becomes soiled, and a warning is issued to the first control unit 104. After cleaning of the count sensor, release processing (for example, operation of a release button) is executed, and in response to a release command from the first control unit 104, the maximum A/D value of the count sensor is detected again. Then, it is determined whether or not the maximum A/D value exceeds a soil release level set to be a smaller value than the soil detecting level. The warning is issued again when the maximum A/D value does not fall below the soil release level, and warning release is performed when the maximum A/D value falls below the soil release level. By providing a difference between the soil detecting level and the soil release level, frequent switching between the warning issuance and the warning release can be prevented.
In the counting processing, the medicine-detecting unit 70 detects the medicine volume. At this time, for example, as shown in
(Stockout-Determining Processing)
In the stockout-determining processing, as shown in flow chart of
When the number of times that the medicine-detecting unit 70 does not detect the medicine is not two or more, the width-restricting body 52 is moved to increase the width (here, 1.2 times) (Step S173). Then, the first rotator 23 is stopped, and the second rotator 35 is reversely rotated at the maximum speed for a predetermined time (here, 1 second) (Step S174). Further, the first rotator 23 and the second rotator 35 are positively rotated at the speed designated by the first control unit 104 (Step S175). This can eliminate the failure that a remaining medicine cannot be discharged due to clogging or the like.
When the number of times that the medicine-detecting unit 70 does detect the medicine is two or more (Step S172: YES), it is determined as stockout, and the first rotator 23 and the second rotator 35 are stopped (Step S176). In this case, the stockout may be informed to the user.
Since the first rotator 23 and the second rotator 35 are positively rotated at the speed designated by the first control unit 104, when the designated speed is low, a period from the time when the medicine-detecting unit 70 does not detect a medicine to the time when reverse rotation of the second rotator 35 is started (reverse rotation time) or to the time when stockout is determined (determination time) may be set long. For example, when the designated speed is set to the lowest speed, the reverse rotation time may be 3 to 6 seconds, and the determination time may be set to 6 to 11 seconds.
(Drug Bottle-Dispensing Processing)
When the medicine bottle (or the medicine container 1. The same applies hereinafter) is displaced from a dispensing position as a dispensing destination, this displacement is addressed by the medicine bottle-dispensing processing as follows.
A medicine bottle-detecting sensor not shown detects whether or not the medicine bottle is disposed at a proper position that is the dispensing position. In the medicine bottle-dispensing processing, as shown in flow chart of
At this time, it is determined whether or not an instruction to collect medicines remaining in the medicine-counting device is made (medicine collecting instruction is issued) (Step S183). The medicine collecting instruction means an instruction to collect all medicines remaining in the medicine-counting device, and is transmitted from the first control unit 104 to the second control unit 105.
When the medicine collecting instruction is issued (Step S183: YES), it is determined whether or not information on the remaining medicines (here, medicine volume) is present (Step S184). The medicine information is an average value of volume measured from the start of counting to counting of a set number, and medicine information is not defined until the count reaches the set number. That is, in this case, the medicine information is not present.
When the medicine information is present (Step S184: YES), if the medicine bottle is not detected for a predetermined time (here, 1 second) (Step S185), the medicine information is transmitted to the first control unit 104 (Step S186) to finish the medicine bottle-dispensing processing. When no medicine information is present (Step S183: NO), the medicine bottle-dispensing processing is finished.
On the contrary, when the medicine collecting instruction is not issued (Step S183: NO), if the medicine bottle is not detected for a predetermined time (here, 1 second) (Step S187), the current medicine count value is transmitted to the first control unit 104 (Step S188) to finish the medicine bottle-dispensing processing.
(Collecting Processing)
When the normal dispensing count mode, the recount mode, or the stock count mode is finished to collect (discharge) medicines remaining in the medicine-supplying device, the first collecting processing is executed if information on the remaining medicines is present, and the second collecting processing is executed if the information on the remaining medicines is not present.
(First Collecting Processing)
In the first collecting processing, as shown in flow chart in
When the medicine collecting preparation is made, in response to the detection signal outputted from the medicine bottle-detecting sensor on the basis of setting of the medicine bottle at the dispensing position (Step S194), as shown in
Then, when the medicine-detecting unit 70 can detect any medicine within a predetermined time (here, 3 seconds) (Step S196: YES), the flow returns to Step S195 to continue the collecting processing.
On the contrary, when the medicine-detecting unit 70 cannot detect any medicine within the predetermined time (Step S196: NO), it is determined whether or not the medicine bottle is displaced (Step S197).
When the medicine bottle is not displaced, as shown in
When the medicine bottle is displaced, the first collecting processing is finished.
During the series of first collecting processing, in response to the detection signal from the medicine bottle-detecting sensor, it is determined whether or not the medicine bottle is displaced from the dispensing position at all times. When no detection signal is inputted to determine that the medicine bottle is displaced from the dispensing position, as shown in
(Second Collecting Processing)
Also in the second collecting processing like the first collecting processing, as shown in a flow chart of
When the medicine collecting preparation is made, it is determined whether or not no detection signal of the medicine bottle is inputted from the medicine bottle-detecting sensor (not shown), that is, the medicine bottle is displaced from the dispensing position (Step S215).
When the medicine bottle is not displaced, as shown in
At this time, it is determined whether or not medicine-detecting unit 70 does not detect any medicine for the first time (Step S220). In the first time, the flow returns to Step S215 to repeat the processing (See
When the medicine bottle is displaced, the second collecting processing is finished.
By performing the collecting operation twice at different positions of the width-restricting body 52, all remaining medicines can be dispensed into the medicine bottle.
(Cleaning Mode)
In the case where the type of counted medicines is changed, especially, from medicines that can easily generate powders, a cleaning mode can be performed.
(Liquid Medicine Mode)
For liquid medicine, for example, when the prescription contains liquid medicine, the prescription and a medicine solution bottle storing the related liquid medicine can be imaged together using a below-mentioned side camera 108. In this case, the side camera 108 is pivoted from above to the near side, and images the prescription and the standing medicine solution bottle together. The level of the liquid medicine in the medicine solution bottle can be imaged, and the image along with data on the prescription can be recorded.
(Box Counting Mode)
When a medicine packed in a box is supplied, a bar code reader 89 reads a bar code on the box. Then, photograph data on the medicine corresponding to the read bar code is fetched and displayed on a screen. Thus, the user can visually check whether or not the medicine is proper. The photograph data and the medicine data (name or the like) may be transmitted to the first control unit 104 and stored. In the absence of a bar code, a code number or the like may be manually inputted.
The medicine-counting device in the embodiment may be also configured as follows. In the medicine-counting device in
For example, during check of remaining medicines, both of the dispensing display LED 107a and the collecting display LED 107b are flashed. Thus, the user can easily recognize that the operating mode of the medicine-counting device is the initial collecting processing merely by viewing the operation display part 107. Although a large space cannot be ensured at the dispensing position due to the presence of the medicine bottle, the current mode can be clearly indicated to the user by merely providing the dispensing display LED 107a and the collecting display LED 107b and setting various lighting patterns of the LEDs.
The medicine-supplying device is provided with the side camera 108 as shown in
Imaging with the side camera 108 located above may be performed as follows. That is, as shown in
The second rotator 35 in the medicine-supplying device may have a plurality of radially-extending protrusions (or dents) formed at predetermined intervals on its upper face in the circumferential direction. That is, the continuous irregularities on the upper face of the second rotator 35 in the circumferential direction prevents medicine slippage during positive rotation of the second rotator 35, achieving smooth discharging. The upper face of the second rotator 35 is tilted relative to the horizontal plane at a predetermined angle (here, 0.5 to 1 degree, preferably 1 degree). Through the tilt, the discharge port is located at the highest position of the second rotator 35. This can effectively prevent a medicine from being discharged through the discharge port by mistake, especially two medicines from being discharged together.
The height-restricting body 41 and the width-restricting body 52 in the medicine-supplying device can be reversed in position. A configuration for simultaneously restricting height and width can be adopted.
The first control unit 104 in the medicine-supplying device can be connected to another medicine-supplying device via a network. That is, by connecting a plurality of medicine-supplying devices with each other via the network, data acquired by the medicine-supplying device can be centrally administrated. For example, by centrally administrating calibration data such as medicine volume, which is acquired in the counting processing, each medicine-supplying device can be properly controlled.
As shown in
As represented by an arrow H in
In the case of providing the tilted part 57a or the tilted part 66a, even for spheroidal medicines having the same width, the distance between the inner guide 66 and the outer guide 57 is varied depending on the ratio of a major axis to a minor axis. This is due to that the position where the medicine contacts the inner guide 66 or the outer guide 57 varies according to the ratio. Thus, a width correction coefficient may be decided according to the ratio.
In this embodiment, since the rotational speed of the second rotator 35 is determined depending on the medicine shape, a following problem can be eliminated.
That is, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2012-064100 | Mar 2012 | JP | national |
2012-211369 | Sep 2012 | JP | national |
This application claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 14/954,864 filed Nov. 30, 2015 entitled Medicine-Supplying Device And Medicine-Counting Device, which claims priority under 35 U.S.C. § 120 as a continuation of U.S. patent application Ser. No. 14/386,774, filed Sep. 19, 2014 entitled Medicine-Supplying Device And Medicine-Counting Device, which is a U.S. national phase application under 35 U.S.C. § 371 of International Application No. PCT/JP2013/057154, filed on Mar. 14, 2013 entitled Drug-Supplying Device And Drug-Counting Device, which claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2012-064100, filed on Mar. 21, 2012; and Ser. No. 14/386,774 also claims priority to Japanese Patent Application No. 2012-211369, filed on Sep. 25, 2012; all of which are hereby expressly incorporated by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5369940 | Soloman | Dec 1994 | A |
5884408 | Boyer et al. | Mar 1999 | A |
20030111484 | Pearson et al. | Jun 2003 | A1 |
20040118753 | Belway et al. | Jun 2004 | A1 |
20060167586 | Kobayashi et al. | Jul 2006 | A1 |
20060225383 | Cobb et al. | Oct 2006 | A1 |
20070043469 | Draper | Feb 2007 | A1 |
20080283540 | Kulberg et al. | Nov 2008 | A1 |
20100300041 | Kim | Dec 2010 | A1 |
20120324828 | Yasunaga | Dec 2012 | A1 |
20130144431 | Tidhar et al. | Jun 2013 | A1 |
20150190312 | Yuyama et al. | Jul 2015 | A1 |
20160167866 | Omura | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
57-023516 | Feb 1982 | JP |
01-51403 | Nov 1989 | JP |
WO2012099189 | Jul 2012 | WO |
Entry |
---|
European Patent Office, Supplementary Partial European Search Report issued in European Patent Application No. EP 13 76 3592, dated Oct. 29, 2015, total 5 pages. |
International Preliminary Report on Patentability in PCT/JP2013/057154, dated Oct. 2, 2014, Authorized Officer Mineko Mohri of the International Bureau of WIPO. |
Number | Date | Country | |
---|---|---|---|
20170224587 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14954864 | Nov 2015 | US |
Child | 15438543 | US | |
Parent | 14386774 | US | |
Child | 14954864 | US |