The present invention relates to a medium accumulating device and, for example, a medium accumulating device advantageously applied to automatic transaction devices disposed in financial facilities.
In recent years, automatic transaction devices typified by automated teller machines (ATM) in financial facilities have been installed in various sites such as banks, station premises and convenience stores. Customers can make various operations on the display screen displayed on an automatic transaction device under a variety of situations to make transactions including making money deposit and withdraw and inquiring balances.
Such an automatic transaction device is provided with a bill storing/discharging depository that stores and discharges bills. A bill accumulating mechanism in the conventional bill storing/discharging depository is generally provided with a transfer path such that bills are transferred onto a bill accumulation table in the horizontal direction. The bills transferred over the transfer path in the horizontal direction are vertically accumulated on the bill accumulation table in the horizontal position thereof.
Japanese Patent Laid-Open Publication No. 2010-128536 proposes a bill accumulating mechanism in which a bill accumulation table has an inclined surface provided, on which bills will be accumulated in the inclined position thereof. The accumulation of bills in the inclined position allows the length of the bill storage in the direction of the width of bills to be shorter than the length of a side of the bills in the direction of transferring the bills, thereby reducing the thickness of the bill storage.
In the bill accumulating mechanism according to the conventional art, the stage, i.e. accumulation table, for accumulating bills thereon is vertically moved by means of a driving belt or spring. Therefore, in order to detect whether or not a bill is put on the accumulation table, it is necessary to provide an assembly of light emitter-optical sensor that forms an optical path in the same direction as the moving direction of the accumulation table such that a bill can be sensed whatever position the accumulation table may occupy.
However, if the accumulation table is adapted for moving a longer distance, the light emitter and optical sensor are separated accordingly by a longer distance, which requires an expensive, higher-sensitive sensor, resulting in an increase in costs. By contrast, if the optical sensor is provided so as to form its optical path in a direction different from the moving direction of the accumulation table, it does not require such a longer distance between the light emitter and the optical sensor that accords to the moving distance of the accumulation table. However, the accumulation table may take its position such that the accumulation table does not interfere with the optical path of the sensor, thus the sensor failing to sense the accumulation table, which is a disadvantage.
It is an object of the present invention to provide a new and improved medium accumulating device.
It is another object of the present invention to provide a medium accumulating device with a simple configuration, which can determine whether or not a medium such as a bill is accumulated on an accumulation table whatever position the accumulation table may occupy.
In accordance with the present invention, a medium accumulating device includes an accumulation table having a surface at least partially supporting an accumulated medium, an elastic member movably supporting the accumulation table in an accumulating direction of the medium, and an accumulation table detector detecting lowering of the accumulation table.
In that case, the accumulation table detector may be configured to detect whether or not the accumulation table lowers below a predetermined position.
The accumulation table may have a surface inclined with respect to a lifting and lowering direction of the accumulation table.
The medium accumulating device may further include a medium detector that can detect whether or not the medium is accumulated on the accumulation table when the accumulation table is located above the predetermined position. In that case, the medium accumulating device may further include a determiner using a detection result of the accumulation table detector and a detection result of the medium detector to determine whether or not the medium is accumulated on the accumulation table. In that case further, the determiner may be configured to determine that the medium is accumulated on the accumulation table when the accumulation table lowers below the predetermined position or it is detected that the medium is accumulated on the accumulation table.
The determiner may be configured to determine that no medium is accumulated when the accumulation table is located above the predetermined position and it is detected that no medium is accumulated on the accumulation table.
The accumulation table detector may include a first set of light-emitter and optical sensor that form an optical path in a direction intersecting the lifting and lowering direction of the accumulation table, and the medium detector may include a second set of light-emitter and optical sensor that form an optical path in the direction intersecting the lifting and lowering direction of the accumulation table. In that case, the accumulation table detector and the medium detector may be provided on one side with respect to the accumulation table, and the medium accumulating device may further include a first light-guiding member guiding a first optical path to the optical sensor of the first set, and a second light-guiding member guiding a second optical path to the optical sensor of the second set.
The accumulation table may include a light-blocking member blocking the first optical path when the accumulation table is located above the predetermined position.
The accumulation table may include a light-guiding member guiding a first optical path to the optical sensor of the first set when the accumulation table is located above the predetermined position.
The accumulation table detector may include a set of light-emitter and optical sensor that form an optical path in a direction intersecting a lifting and lowering direction of the accumulation table, and the medium accumulating device may include a light-blocking member lowering to a position where the light-blocking member blocks the optical path as the accumulation table lowers. In that case, the accumulation table detector may be configured to detect whether or not the optical path passes a medium accumulating area of the accumulation table and the medium is accumulated on the accumulation table.
The medium accumulating device may further include a determiner using a detection result of the accumulation table detector to determine whether or not a medium is accumulated on the accumulation table.
According to the present invention, it is possible to provide a medium accumulating device which is simpler in configuration and capable of determining whether or not media such as bills are accumulated whatever position the accumulation table may occupy.
The objects and features of the present invention will become more apparent from consideration of the following detailed description taken in conjunction with the accompanying drawings in which:
Next, embodiments of a medium accumulating device according to the present invention will be described in detail with reference to appended figures. In the present application, like constituents are given the same reference numerals and repetitive description thereon will be avoided.
In this application, a plurality of constituents having substantially the same functional configuration may be distinguished from each other by adding different subscripts to the same reference numeral. For example, as described later,
With the embodiments of the invention that will be described below, media to be accumulated on an accumulation table are bills, which are merely an example and the present invention is not to be limited to the embodiments. For example, media to be accumulated on the accumulation table may be magnetic cards or IC (Integrated Circuit) cards such as cash cards or credit cards, bankbooks, securities, or tickets for transport or events such as railway tickets, boat tickets, boarding tickets or coupons.
Referring first to
The automatic transaction device 1 is installed in various spots such as banks and stations, and in this embodiment, is a terminal device connected to a central processing system such as a server or a host computer of a financial facility over a telecommunications network 501,
The card/statement handler 11 is a functional section that receives or discharges a magnetic card or an IC card, such as a cash card, that is, a plastic card, not shown, for use in transaction, and discharges a paper strip, i.e. statement, not shown also, on which details of transaction are recorded. The bankbook handler 12 is a functional section that receives or discharges a bankbook, not shown, for use in transaction. The bill inlet/outlet port 13 is a functional section that receives or ejects bills. The coin inlet/outlet port 14 is a functional section that receives or ejects coins. The bill inlet/outlet port 13 and the coin inlet/outlet port 14 are provided with respective shutters, both not shown, which are driven by a driver or drivers to mechanically shield against the outside.
The operation/display 10 includes a display section that displays a display screen guiding operations to the customer, and a customer operating section that detects the customer's manipulation. The function of the display section is implemented by, for example, a cathode ray tube (CRT) display device, a liquid crystal display (LCD) device or an organic light-emitting diode (OLED) device. The function of the customer operating section is implemented by, for example, a touch panel or a mechanical button, not shown. In the automatic transaction device 1 in the instant embodiment, the functions of the display section and the customer operating section are integrated with each other, but the functions of the display section and the customer operating section may be separated from each other.
The card/statement handler 11 is a functional section that reads data from a magnetic card or IC card, such as a cash card the customer presents, and prints transaction details on a paper strip to issues and discharge it as a transaction statement. The bankbook handler 12 is a functional section that prints the content of the transaction made by the automatic transaction device 1 on a bankbook inserted by the customer.
The bill inlet/outlet port 13 is a functional section that counts bills to be returned to the customer or bills to be withdrawn on a withdrawal transaction according to the denominations of bill, and transfers bills to the position where the customer can take the bills. The bill inlet/outlet port 13 also has a function to inspecting bills entered by the customer on a deposit transaction, and counting the bills according to the denominations of bill to store the bills in the automatic transaction device 1.
The coin inlet/outlet port 14 is a functional section that inspects coins entered by the customer on a deposit transaction, and counts the coins according to the denominations of coin to store the coins in the automatic transaction device 1. The coin inlet/outlet port 14 also has a function of counting coins to be withdrawn on a withdrawal transaction, and transfers the coins to the position where the customer can take the coins.
The controller 15 has an overall control function of generally controlling operations of the entire automatic transaction device 1. The controller 15 includes, for example, functions of a communication control that controls communication between the communicator 19 and a host computer, not shown, and a display control that controls display screens to be displayed on the operation/display 10. The controller 15 further includes a determiner 20, which is a functional section that is responsive to sensor results of an accumulation table sensor 37 and a medium sensor 38, described later,
The hard disc drive (HDD) 16 is a storage device that stores control program sequences, files and the like, which are necessary for operating the automatic transaction device 1.
The maintenance console 17 is an interface for the clerk, and has the functions of displaying information such as failures and troubles of the respective sections of this device, and of accepting a clerk's operation for addressing the failures or troubles of those sections.
The vein authenticator 18 is an authenticator for confirming personal identification. In the instant embodiment, the customer is identified by reading a vein pattern of a customer's palm and comparing the read vein pattern with a vein pattern recorded in advance on the IC chip, not shown, of a cash card inserted into the card/statement handler 11 by the customer.
The communicator 19 is an interface with a host computer for transmitting and receiving information necessary for transaction to and from the host computer over a telecommunications line 501. The information necessary for transaction includes, for example, customer information such as an account number, a password and a balance in account of the customer, and information on transaction content, such as the deposited or withdrawn amount of money.
Subsequently, referring to
The customer serving section 31 functions as an inlet section that separates bills put by the customer one by one on a deposit transaction and transfers the bills to, for example, the discriminator 32. The customer serving section 31 collects bills to be returned to the customer or bills to be delivered to the customer on a withdrawal transaction.
The discriminator 32 determines the real/counterfeit, denomination and damage of bills transferred from the customer serving section 31, as well as detects a transfer failure and counts the bills whose denomination has been established. In the context, the denomination of bill is directed to the denomination of bills predominantly circulating in one region, such as 1000-yen, 5000-yen and 10000-yen bills.
The temporary storage 33 is a functional section that temporarily holds a bill discriminated to be acceptable by the discriminator 32 on a deposit transaction until the deposit is established.
The bill storage cassettes 34A, 34B and 34C are storages that store bills entered in the customer serving section 31 by the customer. Bills to be withdrawn to the customer are also stored in the bill storage cassettes 34A, 34B and 34C to be taken out therefrom.
The reject cassette 35 is a storage section that stores bills which would the discriminator 32 has determined not be fed to the customer on a withdrawal or deposit transaction but to be collected. For example, the discriminator 32 may be configured to discriminate bills of denomination unfixed, specified denomination, damaged or dirtied as bills to be collected. The bills stored in the reject cassette 35 will be taken out and collected by the operator. Such a reject cassette 35 and the automatic transaction device 1 having such a reject cassette 35 are specific to automated teller machines, which are adapted to accumulate bills as media, and are a mere example of medium accumulating device according to the present invention.
The left bill depository 36 is a storage that stores bills left by the customer on a withdrawal or deposit transaction.
The accumulation table sensor 37 is an optical sensor that senses the accumulation table 164,
A specific configuration that detects whether or not a bill is put on the accumulation table 164 in the reject cassette 35 will be described in comparison with comparative examples. First, the reject cassette that accumulates a medium in its horizontal position will be described with reference to
Since the reject cassette 100 is a cassette that is dedicated for accumulation as described above and would not feed out accumulated bills, no electrical component is provided in a medium accumulation space 105 but as shown in
In the reject cassette 100 in Comparative Example 1, the bills 301 are drawn from the transfer path, not shown, by the driving roller 101 and the idle roller 102 into the cassette 100 to be accumulated on the accumulation table 104. The accumulation table 104 is supported by the stage spring 103, and guided by a sliding groove and a shaft, not shown, to be lowered in the direction of an arrow 107 by the self-weight of the accumulated bills 301,
The residue detectors 201 and 202 provided in the reject cassette 100 form respective optical paths 109 and 111 in substantially the same direction as the moving direction of the accumulation table 104, and are arranged so that the optical paths 109 and 111 pass respective, optically transparent holes 113 and 115, which are provided in the accumulation table 104. Accordingly, when the accumulation table 104 is located at any position in a vertical direction 107, that is, at any height, the optical path 109 or 111 is blocked while the bills 301 are accumulated on the accumulation table 104, so that it can be determined that the bills 301 exist in the cassette 100.
In the reject cassettes 100 and 110 in the above-mentioned comparative examples, the width of the reject cassette, which corresponds to the side of the bill 301 in the transfer direction, when viewed from the accumulating direction 107 of the bills 301, that is, from above in the figures, needs to be equivalent to the sum of the width of the transfer path, larger one of the widths of the driving roller and the idle roller, and the width of the bill storing section (accumulation table), which would restrict the miniaturization.
By contrast, in Comparative Example 3, an accumulation table 124 has its bill accumulating surface inclined as shown in
In this Comparative Example, a residue detector 221 including a light-emitter 221a and an optical sensor 221b as well as a residue detector 222 including a light-emitter 222a and an optical sensor 222b are provided so as to form the respective optical paths 109 and 111 in the same direction as the moving, that is, lifting and lowering direction 107 of the accumulation table 124. Thus, as in Comparative Example 1, when the accumulation table 104 is located at any position in the vertical direction 107, the optical path 109 or 111 is blocked while the bills 301 are accumulated on the accumulation table 124, so that it can be determined that the bills 301 exist in the cassette 120.
In a reject cassette 130 in Comparative Example 4, as shown in
The thin reject cassettes 130 and 140 in Comparative Examples 3 and 4 are configured so as to accumulate the bills 301 in the inclined position thereof. Such accumulation in the inclined position can decrease the required width of the accumulation space 105, implementing the thinner reject cassette. Now, the height of the accumulation space 105, which is required for the accumulation in the inclined position, will be described as compared to the height required for the accumulation in the horizontal position.
First, the height of the accumulation space, which is required for the accumulation in the horizontal position, will be described with reference to
The height of the accumulation space 105, which is required when the same number of bills 301 as the example shown in
[Expression 1]
B sin θ+H/cos θ, (1)
where 0≦θ≦90°, 0<sin θ<1 and 0<cos θ<0.
Thus, with the thin reject cassettes 120 and 130 that accumulate the bills 301 in the inclined position, as the angle θ of the bills 301 is larger, the width of the accumulation space 105 can be smaller, but the height of the accumulation space 105 needs to be larger. Accordingly, with the thin reject cassette 120 that is shorter in the width direction and longer in the height direction, the distance between the light-emitter and the optical sensor on each of the optical paths 109 and 111 formed by the residue detectors 221 and 222, respectively, is longer than that in the example shown in
Thus, in Comparative Example 5 shown in
Now, a reject cassette 150 in accordance with Comparative Example 6 shown in
Alternatively, an actuator, not shown, that raises and lowers the accumulation table 144 may be added, and the upper surface of the uppermost accumulated bills 301 may be controlled in height so as to fall within the optical path 109 formed by the residue detector.
However, any of the above-mentioned configurations in Comparative Example 6 disadvantageously cause an increase in costs and space of the device.
Thus, taking account of those circumstances, the Inventor made the present invention. In accordance with embodiments of the present invention, it is detected an accumulation table on which bills are accumulated is lowered, thereby making it possible to determine whether or not media are accumulated on the accumulation table. Embodiments of the present invention will be described in detail.
Outside the reject cassette 35-1, there is provided a bill sensor 38 including a set of light-emitter 38a and optical sensor 38b, which forms an optical path 109 in a direction intersecting the moving direction 107 of the accumulation table 164 and detects whether or not bills 301 are accumulated. Outside of the reject cassette 35-1, there is also provided an accumulation table sensor 37 including a set of light-emitter 37a and optical sensor 37b, which also detects the lowering of the accumulation table 164. Constituents of the reject cassette 35-1 will be described below.
The driving roller 161 and the idle roller 162 are feeder members that draw the bills 301 from the transfer path, not shown. The stage spring 163 is an elastic member that supports the accumulation table 164. Although
The accumulation table 164 has its inclined surface 164a inclined with respect to the lifting and lowering direction 107 of the accumulation table 164. The inclined surface 164a may be sufficient to at least partially support the accumulated bills 301,
As shown in
As described above, the reject cassette 35-1 in accordance with the present embodiment is arranged, as shown in
The bill sensor 38 includes, as described above, the light-emitter 38a and the optical sensor 38b. The light-emitter 38a and the optical sensor 38b are, as shown in
In the embodiment shown in
As can be seen from
By contrast, when the detection results of the accumulation table sensor 37 and bill sensor 38 shows “dark” and “bright”, respectively, the determiner 20 determines that no bill 301 is accumulated on the accumulation table 164. In other words, when the accumulation table sensor 37 senses that the accumulation table 164 is located above the predetermined position, and the bill sensor 38 does not sense that the bills 301 are accumulated, the determiner 20 determines that no bill 301 is accumulated on the accumulation table 164.
Subsequently, referring to
When no bill 301 is accumulated on the accumulation table 164 of the reject cassette 35-1, as shown in
Then, as shown in
However, depending on the weight or thickness of the bills 301, for example, when the bills 301 are wet, as shown in
However, when the operator removes all of the bills 301 from the reject cassette 35-1, the bill weight becomes zero, and the accumulation table 164 is raised to a stopper, not shown, by the repulsive force of the stage spring 163 and returns to its home position. At the home position, as shown in
In summary, in the instant embodiment, it is detected whether or not the accumulation table 164 lowers below the predetermined position depending on whether or not the optical path 117 formed by the accumulation table sensor 37 is blocked by the stage detector 165. In the embodiment, when the accumulation table 164 lowers below the predetermined position, the determiner 20 determines that the bills exist in any case. Depending on the weight of the bills 301, however, when the accumulation table 164 does not lower below the predetermined position, the bills 301 may be accumulated on the accumulation table 164 as shown in
In the instant embodiment, the optical paths 109 and 111 of the sensors 37, 38 may be formed in a direction that is different from the lifting and lowering direction 107 of the accumulation table 164, in which case the determiner 20 can correctly determine whether or not the bills 301 are accumulated, irrespective of the position of the accumulation table 164 or the bill accumulation state.
In accordance with the present embodiment, whether or not the accumulated bills 301 are accumulated on the accumulation table 164 can be correctly determined with a small number of sensors without providing, as in Comparative Example 6 shown in
In the present embodiment, since the optical path 109 of the sensor need not be parallel to the lifting and lowering, that is, moving direction 107 of the accumulation table 164, the sensors may be applied to the thin cassette 120,
In the instant embodiment, since the optical path 109 of the sensor can be formed in a direction that is different from the lifting and lowering direction 107 of the accumulation table 164, the sensor optical path is not affected by the driving roller 161 and the idle roller 162, and therefore, the sensor can be freely arranged in position.
Well,
On one side of the reject cassette 35-2, that is, on the left side in
Since the driving roller 161, the idle roller 162, the stage spring 163, the accumulation table 164 and the stage detector 165 may be the same as the first embodiment, the description thereof will not be repeated.
The first prism 171 is an optical element which has its side shaped as illustrated and refracts the light beam 109 emitted from the light-emitter 38a of the bill sensor 38 to guide the latter to the optical sensor 38b. The second prism 173 is also an optical element that has its side shaped as illustrated and refracts the light beam 111 from the light-emitter 37a of the accumulation table sensor 37 to guides the latter to the optical sensor 37b. The prisms 171 and 173 may be fixedly provided at a position that does not move with movement of the accumulation table 164, for example, on the housing of the cassette 35-2.
As described above, in the instant embodiment, the provision of the prisms 171 and 173 that guide the light beams 109 and 111, respectively, renders both of the sensors 37 and 38 arranged on one side of the reject cassette 35-2. That makes the mounting space for the sensors 37 and 38 decreased approximately half as much as the first embodiment, further reducing the size of the entire device. The bill sensor 38, thus including the first prism 171, alone causes the two optical paths 109 to be formed so as to intersect with the moving direction 107 of the accumulation table 164. This can further reduce the number of sensors, thereby reducing costs of the entire device.
The determiner 20 shown in
Subsequently, a state transition during the accumulation of the bills 301 in the reject cassette 35-2, that is, lowering of the accumulation table 164 will be described with reference to
Then, as shown in
After that, as shown in
As in the earlier-described embodiment, depending on the weight or thickness of the bills 301, for example, when the bills 301 are wet, as shown in
Now, when the operator removes all of the bills 301 from the reject cassette 35-2, the bill weight becomes zero, and the accumulation table 164 is raised to the stopper, not shown, by the repulsive force of the stage spring 163 and returns to its home position. At the home position, as shown in
In summary, in the present embodiment, the provision of the prisms 171 and 173 that guide the optical paths 109 and 117, respectively, allows the sensors 38 and 37 to be arranged in one side of the reject cassette 35-2. That makes the sensor mounting space to be decreased about half as much as the earlier-describe embodiment, enabling further reduction of the device in size.
Although the embodiment shown in
In the instant embodiment, the bill sensor 38 may be provide in plural so as to form a plurality of optical paths corresponding to the size of the bills 301 to be sensed. For example, as shown in
In the example shown in
The prism 181 is configured so as to refract the light beam 117 emitted from the light-emitter 37a of the accumulation table sensor 37 and guide the latter to the optical sensor 37b, and is fixedly provided at a point that does not move with the movement of the accumulation table 164, for example, the housing of the cassette 35-3.
In the instant embodiment, between the reject cassette 35-3 and the accumulation table sensor 37 a shutter 182 is provided. The shutter 182 is generally made of an optically opaque, light-blocking material that blocks the optical path 117, but has its part cut into an optical through hole 182a that allows the optical path 117 formed by the accumulation table sensor 37 to pass therethrough.
The shutter 182 is arranged so as to engage with the accumulation table 164 to lift and lower together with the accumulation table 164. The shutter 182 may be configured to lift and lower along a sliding groove, not shown, or rotate about its rotational axis. In any case, as shown in
When the accumulation table 164 lowers due to the self-weight of the accumulated bills 301, the shutter 182 also lowers together with the accumulation table 164 to a position where the shutter blocks the optical path 117, and will cease there. Specifically, as shown in
The determiner 20 shown in
Thus, when the detection result of the accumulation table sensor 37 shows “bright”, the determiner 20 determines that no bill 301 is accumulated on the accumulation table 164. That is the case where the accumulation table sensor 37 detects that the accumulation table 164 is located above the predetermined position, or fails to detect the accumulation of the bills 301. In either case, the determiner 20 will determine that no bill is accumulated on the accumulation table 164.
By contrast, when the detection result of the accumulation table sensor 37 shows “dark”, the determiner 20 determines that the bills 301 are accumulated on the accumulation table 164. That is the case where the accumulation table sensor 37 detects that the accumulation table 164 lowers below the predetermined position, or senses the bills 301 accumulated. In either case, the determiner 20 will determine that the bills are accumulated on the accumulation table 164.
Subsequently, a state transition while the bills 301 are accumulated in the reject cassette 35-3 and the cassette 35-3 lowers will be described with reference to
When no bills 301 are accumulated on the accumulation table 164 of the reject cassette 35-3, as shown in
Then, as shown in
Now, as shown in
Then, when the operator entirely removes the bills 301 from the reject cassette 35-3, the bill weight becomes zero, and the accumulation table 164 is raised to its home position by the stage spring 163 again. At the home position, as shown in
In summary, in the instant embodiment, the shutter 182 working with the accumulation table 164 is arranged. That allows the single optical sensor 37 to be used to more correctly determine whether or not the bills 301 are accumulated. Thus, the number of the sensors is reduced, enabling the interconnections and the size of circuit boards to be reduced, thereby implementing a device entirely reduced in size and cost.
In the first and second embodiments described earlier, when the detection result of the accumulation table sensor 37 shows “dark”, the determiner 20 determines that the accumulation table 164 is located above the predetermined position. However, the present invention is not limited to those specific embodiments. For example, depending on the configuration of the reject cassette 35, the determiner 20 may determine that the accumulation table 164 is located above the predetermined position when the detection result of the accumulation table sensor 37 shows “bright”. Thus, a fourth embodiment will be shown in
Referring to
The prism 191 refracts the light beam 117 emitted from the light-emitter 37a of the accumulation table sensor 37 to guide the latter to the optical sensor 37b. The prism 191 is attached to the accumulation table 164 so as to move with the movement of the accumulation table 164 at a position where the prism 191 guides the light beam 117 emitted from the light-emitter 37a to the optical sensor 37b when the accumulation table 164 is located above the predetermined position.
Since the sensor 37 in accordance with the fourth embodiment is an optical sensor, when the light beam 117 emitted from the light-emitter 37a is received by the optical sensor 37b, the detection result of the sensor 37 shows “bright”, whereas when the light beam 117 is not received, the detection result of the sensor 37 shows “dark”. Thus, in the reject cassette 35-4 in accordance with the fourth embodiment, when the accumulation table 164 is located above the predetermined position, the prism 191 guides the light beam 117 emitted from the light-emitter 37a to the optical sensor 37b, so that the detection result of the accumulation table sensor 37 shows “bright”. The detection result of the accumulation table sensor 37 thus showing “bright” causes the determiner 20 to determine that the accumulation table 164 is located above the predetermined position.
While the present invention has been described with reference to the particular illustrative embodiments, it is not to be restricted by the embodiments. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope and spirit of the present invention.
For example, in the above-described embodiments, the optical sensors are used as the accumulation table sensor 37 and the bill sensor 38. However, the present invention is not limited to this example. In place of or in addition to the optical sensors, sensors relying upon other operating principles, such as contact sensors or magnetic sensors, may be used as the accumulation table sensor 37 and the bill sensor 38.
Although one set of bill sensors 38 are provided in the embodiments, the present invention is not limited to this example. For example, a required number of bill sensors, for example, two or three sets of bill sensors, may be arranged according to the size and shape of target bills.
Although the sensors are arranged outside of the reject cassette in the embodiments, such sensors may be provided within the reject cassette.
In the embodiments, the accumulation table 164 has the inclined surface, on which bills are accumulated in the inclined position. However, the present invention is not limited to this example. For example, the accumulation surface may be formed horizontal, on which bills may be vertically accumulated in the horizontal position. Also in this case, the accumulation table being lowered can be sensed to determine whether or not bills are accumulated on the accumulation table.
The entire disclosure of Japanese patent application No. 2010-189233 filed on Aug. 26, 2010, including the specification, claims, accompanying drawings and abstract of the disclosure, is incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-189233 | Aug 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/062503 | 5/31/2011 | WO | 00 | 12/31/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/026178 | 3/1/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6145826 | Kawata | Nov 2000 | A |
6848688 | Ruthenberg et al. | Feb 2005 | B1 |
7677545 | Iwami et al. | Mar 2010 | B2 |
7690637 | Yamamoto | Apr 2010 | B2 |
Number | Date | Country |
---|---|---|
1623878 | Jun 2005 | CN |
1778658 | May 2006 | CN |
101234714 | Aug 2008 | CN |
101238056 | Aug 2008 | CN |
101266703 | Sep 2008 | CN |
101734508 | Jun 2010 | CN |
1 415 942 | May 2004 | EP |
2-144383 | Jun 1990 | JP |
3-105160 | Oct 1991 | JP |
1051601991 | Oct 1991 | JP |
6-100205 | Apr 1994 | JP |
2000-16668 | Jan 2000 | JP |
2001-335236 | Dec 2001 | JP |
2005-015123 | Jan 2005 | JP |
2006-1736 | Jan 2006 | JP |
2006004039 | Jan 2006 | JP |
2009-102096 | May 2009 | JP |
4446806 | Jan 2010 | JP |
2010-122983 | Jun 2010 | JP |
2010-128536 | Jun 2010 | JP |
2 175 210 | Oct 2001 | RU |
2 366 789 | Sep 2009 | RU |
Number | Date | Country | |
---|---|---|---|
20130099442 A1 | Apr 2013 | US |