The invention relates to a melt filter for cleaning of plastic melts discharged in particular from extruders, with a housing comprising a melt conduit connecting a melt inlet and a melt outlet, in which melt conduit a sieve disk is provided and arranged that can be rotated by a motorized ratchet drive, that is formed with recesses separated along a circular track by webs for receiving exchangeable filter sieves, and that has a filter element changing station.
Such melt filters belong to the state of the art, e.g. by DE 103 58 672 [WO 2005/056273]. If large amounts of melt are to be purified, the filter elements of the sieve disks reach their limits as regards their structural size. The filter elements must resist the pressure of the plastic melt supplied from the extruder. They cannot be enlarged as desired since they would also have to be thicker as the filter surface increases in order to be able to resist the pressure. In the filter elements currently on the market for such sieve disks the ratio of the sieve surface to the sieve thickness is optimized. If more than the maximally possible amount of plastic melt is to be filtered, a second or more melt filters must be provided. The further melt filters are expensive and, in addition, require considerable space, as well as further controls, further energy, etc.
The object of the invention is to provide a generic melt filter wherein large amounts of melts to be filtered can be filtered economically and in an energy-saving and space-saving manner.
In order to attain this object, it is suggested that the housing comprises at least two melt inlets connected via at least two melt conduits to the melt outlet, and that a sieve disk that can be rotated by at least one motorized ratchet drive is provided in each melt conduit and that a filter element changing station is associated with each sieve disk.
A very large amount of the melt to be filtered can be filtered by multiplying the melt inlets and the sieve disks arranged behind them without requiring significantly more space for the housing, the control and the filter element changing station. In addition, the compact construction ensures that hardly more energy is required than in the generic melt filter and is significantly less energy than when using a number of generic melt filters for heating the filter.
It is advantageous that the housing comprises two inlet blocks and one outlet block and that a sieve disk is arranged between the two inlet blocks and the outlet block and that the melt conduit of the inlet blocks widens out from the melt inlet toward the sieve disk.
In contrast to using of several melt filters, at least two inlet blocks can be arranged on only one outlet block in this compact filter, so that if two inlet blocks and two sieve disks are provided at least one outlet block is saved, which saves space as well as expense.
If the sieve disks in the housing are arranged substantially parallel to each other, this results in especially favorable conditions of space and pressure.
Although each sieve disk can of course have its own ratchet drive, it is especially advantageous if the ratchets driving the sieve disks have a common ratchet drive. As a result, only one controller is necessary for the drive of both sieve disks. In addition, one drive device is saved, which can minimize system costs.
It is noteworthy that at least one backflow conduit is provided for each sieve disk in the outlet block, branched off from the outlet-melt conduit, and that backflow outlets located opposite the backflow conduit are arranged in the inlet blocks.
The changing intervals of the filter elements can be significantly increased by providing a backflow possibility for each of the sieve disks.
It is worthy of imitation that each inlet block completely covers the sieve disk bordering on it, which covering is interrupted only by the filter element changing station.
Due to the approximately complete covering of the sieve disks, as little air as possible reaches the sieve disks, so that the plastic has hardly any chance of cracking.
If the filter element changing stations can be closed by flaps, even less air can reach the sieve disks. The opening intervals of the flaps can be enlarged by the possibility of backflow.
Each filter element changing station is advantageously larger than a filter element but smaller than or equally as large as the size of two filter elements.
This selected size of the filter element changing station, that is as minimal as possible, also ensures that as little air as possible reaches the melt.
The invention will be described using the drawings.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 056 471.5 | Nov 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/010201 | 11/23/2007 | WO | 00 | 11/30/2008 |