The present invention relates to electric induction melting and mixing of materials that are in a non-electrically conductive state when gradually added to an induction refractory crucible initially holding a heel, or bottom layer, of electrically conductive molten material.
Batch and heel are two types of electric induction processes for heating and melting of electrically conductive materials. In the batch process, a crucible is filled with a batch of electrically conductive solid charge that is melted by electric induction and then emptied from the crucible. In the heel process, a molten heel (bottom pool) of electrically conductive material is always maintained in the crucible while solid electrically conductive charge is added to the heel in the crucible and then melted by electric induction. Inductively heating and melting by the heel process when the material is non-electrically conductive in the solid state and electrically conductive in the molten state (referred to as a transition material), such as silicon, is problematic in that addition of solid non-electrically conductive charge to the molten heel must be adequately melted and mixed so that the added solid charge does not accumulate to form aggregate non-electrically conductive solid masses in, or over, the surface of the molten material.
It is one object of the present invention to provide apparatus for, and method of, heating and melting of a material that is non-electrically conductive in the solid state and electrically conductive in the molten state in a heel electric induction heating and melting process.
In one aspect the present invention is apparatus for, and method of, electric induction heating and melting of a transition material that is non-electrically conductive in the solid state and is electrically conductive in the non-solid state in a heel electric induction heating and melting process. Multiple coils are provided around the height of the crucible, which contains a heel of molten transition material at the start of the melting process. Initially, relatively high magnitude, in-phase melting power at a relatively high frequency is sequentially supplied to each coil from one or more power supplies until the crucible is filled with transition material. When the crucible is substantially filled with transition material, the output frequency of the one or more power supplies is lowered to a stirring frequency along with the magnitude of the output power, while an out-of-phase relationship is established between the output voltages of the power supplies to achieve a preferred electromagnetic stir pattern.
The above and other aspects of the invention are set forth in this specification and the appended claims.
The appended drawings, as briefly summarized below, are provided for exemplary understanding of the invention, and do not limit the invention as further set forth in this specification:
a) are simplified diagrams of one example of the present invention utilizing three separate induction coils (shown in cross section) wound around the exterior of a crucible, and
a) are simplified diagrams of another example of the present invention utilizing two separate induction coils (shown in cross section) wound around the exterior of a crucible, and
a) are simplified diagrams of another example of the present invention utilizing four separate induction coils (shown in cross section) wound around the exterior of a crucible, and
Referring to
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92a (shown in dashed lines) in
After the crucible is substantially filled with solid and/or semi-solid charge of transition material to a level that includes at least a part of upper crucible volume C, the output frequency of all three power supplies can be lowered to the same frequency, which is lower than f1, for example, f2=0.5f1 (60 Hertz in this non-limiting example) with all three power supplies operating at a reduced voltage (power) output, for example 0.5 normalized power output, with 120 degrees out-of-phase voltage orientations as illustrated by the vector diagram in
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92b (shown in dashed lines) in
After melting all added transition charge material, molten transition material may be extracted from the crucible by any suitable extraction process, such as, but not limited to, bottom pour through a reclosable tap in the crucible, tilt pour by suitable crucible tilting apparatus, or pressure pour by enclosing the crucible and forcing molten material from the crucible out of a passage by applying positive pressure to the volume of molten material in the crucible, while leaving a required heel of molten transition material in the crucible to be used at the start of the next charge melting process.
Alternatively the molten transition material may be directionally solidified in the crucible by removing power sequentially from the lower, central and upper volume induction coils so that the mass of molten silicon in the crucible solidifies from bottom to top.
By way of example and not limitation, in some examples of the invention, power supplies 16a, 16b and 16c may operate alternatively only: either with fixed output frequency f1, high output voltage (power) magnitude and phase synchronized for melting of transition material; or with fixed output frequency f2, low output voltage (power) magnitude and 120 degrees shift between phases for stirring of transition material. In other examples of the invention, the three power supplies may be replaced with a single three phase power supply with 120 degrees shift between phases and connection of each phase to one of the three coils for stirring. For the above example, since the stir frequency f2, is in the range of nominal utility frequency (50 to 60 Hertz), the stir power supply may be derived from a utility source with phase shifting, if required. A suitable switching arrangement may be provided for switching the outputs of the single three phase supply with a source of in-phase power to the three induction coils to transition from primarily stirring to melting. For example in
In another example of the present invention, referring to
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92a (shown in dashed lines) in
After the crucible is filled with solid and/or semi-solid charge of transition material to a level that includes at least a part of upper crucible volume E, the output frequency of both power supplies can be lowered to the same frequency, which is lower than f1, for example, f2=0.5f1 (60 Hertz in this non-limiting example) with both power supplies operating at a reduced voltage (power) output, for example 0.5 normalized power output, with 90 degrees out-of-phase voltage orientations as illustrated by the vector diagram in
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92b (shown in dashed lines) in
After melting all added transition charge material, molten transition material may be extracted from the crucible by any suitable extraction process, such as, but not limited to, bottom pour through a reclosable tap in the crucible, tilt pour by suitable crucible tilting apparatus, or pressure pour by enclosing the crucible and forcing molten material from the crucible out of a passage by applying positive pressure to the volume of molten material in the crucible, while leaving a required heel of molten transition material in the crucible to be used at the start of the next charge melting process.
Alternatively the molten transition material may be directionally solidified in the crucible by removing power sequentially from the lower and upper volume induction coils so that the mass of molten silicon in the crucible solidifies from bottom to top.
By way of example and not limitation, in some examples of the invention, power supplies 26a and 26b may operate alternatively only: either with fixed output frequency f1, high output voltage (power) magnitude and phase synchronized for melting of transition material; or with fixed output frequency f2, low output voltage (power) magnitude and 90 degrees shift between phases for stirring of transition material. In other examples of the invention, the two power supplies may be replaced with a single two phase power supply with 90 degrees shift between phases and connection of each phase to one of the two coils for stirring. For the above example, since the stir frequency f2, is utility frequency, 60 Hertz, the stir power supply may be derived from a utility source with phase shifting, if required. A suitable switching arrangement may be provided for switching the outputs of the single two phase supply with a source of in-phase power to the two induction coils to transition from primarily stirring to melting. In other examples of the invention, the power supplies may be arranged to alternate between the melting and stirring states.
In another example of the present invention, referring to
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92a (shown in dashed lines) in
After the crucible is filled with solid and/or semi-solid charge of transition material to a level that includes at least a part of fourth quadrant crucible volume N, the output frequency of all four power supplies can be lowered to the same relatively low frequency, for example, f2=0.5f1 (60 Hertz in this non-limiting example) with all four power supplies operating at a reduced voltage (power) output, for example 0.5 normalized power output, with 90 degrees out-of-phase voltage orientations as illustrated by the vector diagram in
With the operating conditions identified in the above table, the induced electromagnetic stir pattern can be represented by exemplary flow lines 92b (shown in dashed lines) in
After melting all added transition charge material, molten transition material may be extracted from the crucible by any suitable extraction process, such as, but not limited to, bottom pour through a reclosable tap in the crucible, tilt pour by suitable crucible tilting apparatus, or pressure pour by enclosing the crucible and forcing molten material from the crucible out of a passage by applying positive pressure to the volume of molten material in the crucible, while leaving a required heel of molten transition material in the crucible to be used at the start of the next charge melting process.
Alternatively the molten transition material may be directionally solidified in the crucible by removing power sequentially from the first quadrant, second quadrant, third quadrant and fourth quadrant volume induction coils so that the mass of molten silicon in the crucible solidifies from bottom to top.
By way of example and not limitation, in some examples of the invention, power supplies 36a, 36b, 36c and 36c may operate alternatively only: either with fixed output frequency f1, high output voltage (power) magnitude and phase synchronized for melting of transition material; or with fixed output frequency f2, low output voltage (power) magnitude and 90 degrees shift between phases for stirring of transition material. In other examples of the invention, the four power supplies may be replaced with a single four phase power supply with 90 degrees shift between phases and connection of each phase to one of the four coils for stirring. For the above example, since the stir frequency f2, is utility frequency, 60 Hertz, the stir power supply may be derived from a utility source with phase shifting, if required. A suitable switching arrangement may be provided for switching the outputs of the single four phase supply with a source of in-phase power to the four induction coils to transition from primarily stirring to melting. In other examples of the invention, the power supplies may be arranged to alternate between the melting and stirring states.
While the above examples of the invention comprise a specific number of induction coils and power supplies, other quantities of induction coils and power supplies may be used in the invention with suitable modification to particular arrangements. While each of the induction coils surrounds an equal portion of the refractory crucible, in other examples of the invention, the portions of the refractory crucible surrounded by each coil may be unequal so that each current flow in each coil may generate a magnetic field that couples with non-solid transition material in unequal interior volumes of the crucible.
The above examples of the invention have been provided for the purpose of explanation and are not limiting of the present invention. While the invention has been described with reference to various embodiments, the words used herein are words of description and illustration, rather than words of limitations. Although the invention has been described herein with reference to particular means, materials and embodiments, the invention is not intended to be limited to the particulars disclosed herein; rather, the invention extends to all functionally equivalent structures, methods and uses. Those skilled in the art, having the benefit of the teachings of this specification and the appended claims, may effect numerous modifications thereto, and changes may be made without departing from the scope of the invention in its aspects.
This is a divisional application of application Ser. No. 12/268,846, filed Nov. 11, 2008, which application claims the benefit of U.S. Provisional Application No. 60/988,783, filed Nov. 17, 2007, both of which applications are hereby incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60988783 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12268846 | Nov 2008 | US |
Child | 14021520 | US |