The present disclosure relates generally to systems for dispensing hot melt adhesive. More particularly, the present disclosure relates to a melting system for preparing liquid hot melt adhesive.
Hot melt dispensing systems are typically used in manufacturing assembly lines to automatically disperse an adhesive used in the construction of packaging materials such as boxes, cartons and the like. Hot melt dispensing systems conventionally comprise a material tank, heating elements, a pump and a dispenser. Solid polymer pellets are melted in the tank using a heating element before being supplied to the dispenser by the pump. Because the melted pellets will re-solidify into solid form if permitted to cool, the melted pellets must be maintained at temperature from the tank to the dispenser. This typically requires placement of heating elements in the tank, the pump and the dispenser, as well as heating any tubing or hoses that connect those components. Furthermore, conventional hot melt dispensing systems typically utilize tanks having large volumes so that extended periods of dispensing can occur after the pellets contained therein are melted. However, the large volume of pellets within the tank requires a lengthy period of time to completely melt, which increases start-up times for the system. For example, a typical tank includes a plurality of heating elements lining the walls of a rectangular, gravity-fed tank such that melted pellets along the walls prevents the heating elements from efficiently melting pellets in the center of the container. The extended time required to melt the pellets in these tanks increases the likelihood of “charring” or darkening of the adhesive due to prolonged heat exposure.
A melting system includes a hopper for receiving solid hot melt material, a heated conduit in communication with the hopper for melting the solid hot melt material, and a valve for allowing solid hot melt material to flow from the hopper to the heated conduit. The valve includes a disk movable between a closed position and an open position, a stem connected to the disk and an actuator for controlling the position of the disk. The disk prevents solid hot melt material from flowing from the hopper to the conduit in the closed position and allows solid hot melt material to flow from the hopper to the conduit in the open position.
A hot melt dispensing system includes a container for storing solid hot melt material, a hopper for receiving solid hot melt material, a feed system for transporting solid hot melt material from the container to the hopper, a heated conduit in communication with the hopper for melting the solid hot melt material, a valve for allowing solid hot melt material to flow from the hopper to the heated conduit and a dispensing system for administering the liquefied hot melt material. The valve includes a disk movable between a closed position and an open position, a stem connected to the disk and an actuator for controlling the position of the disk. The disk prevents solid hot melt material from flowing from the hopper to the conduit in the closed position and allows solid hot melt material to flow from the hopper to the conduit in the open position.
A method for melting a solid hot melt material includes delivering the solid adhesive material to a vessel having a valve system. The valve system includes a disk movable between a closed position and an open position, a stem connected to the disk and an actuator for controlling the position of the disk. The disk prevents solid hot melt material from flowing from the hopper to the conduit in the closed position and allows solid hot melt material to flow from the hopper to the conduit in the open position. The method further includes positioning the disk of the valve system in the open position to allow a portion of the solid hot melt material in the vessel to flow into a connected conduit, positioning the disk of the valve system in the closed position to prevent additional solid hot melt material from flowing from the vessel to the conduit, heating the conduit to liquefy the solid hot melt material located therein, delivering the liquefied hot melt material to a dispensing system and administering the liquefied hot melt material.
Conventional hot melt dispensing systems do not typically have short startup times. The system components generally need to be “warmed up” (heated to reach operating temperatures) before dispensing can commence. Additionally, the solid hot melt material to be dispensed must be heated to form a liquid so that it can flow through the system and be dispensed. In most systems, the solid hot melt material is added to a melting vessel, often as a large solid mass. In these systems, melting the solid hot melt material takes significant time. The invention described herein provides a melting system that can quickly liquefy hot melt material.
Components of cold section 12 can be operated at room temperature, without being heated. Container 20 can be a hopper for containing a quantity of solid adhesive pellets (solid hot melt material) for use by system 10. Suitable adhesives can include, for example, a thermoplastic polymer glue such as ethylene vinyl acetate (EVA) or metallocene-based hot melt adhesives. Feed assembly 22 connects container 20 to hot section 14 for delivering the solid adhesive pellets from container 20 to hot section 14. Feed assembly 22 includes vacuum assembly 24 and feed hose 26. Vacuum assembly 24 is positioned in container 20. Compressed air from air source 16 and air control valve 17 is delivered to vacuum assembly 24 to create a vacuum, inducing flow of solid adhesive pellets into inlet 28 of vacuum assembly 24 and then through feed hose 26 to hot section 14. Feed hose 26 is a tube or other passage sized with a diameter substantially larger than that of the solid adhesive pellets to allow the solid adhesive pellets to flow freely through feed hose 26. Feed hose 26 connects vacuum assembly 24 to hot section 14.
Solid adhesive pellets are delivered from feed hose 26 to melt system 30. Melt system 30 can include a vessel (conduit 48, shown in
System 10 can be part of an industrial process, for example, for packaging and sealing cardboard packages and/or cases of packages. In alternative embodiments, system 10 can be modified as necessary for a particular industrial process application. For example, in one embodiment (not shown), pump 32 can be separated from melt system 30 and instead attached to dispenser 34. Supply hose 38 can then connect melt system 30 to pump 32.
Outlet portion 54 of hopper 46 is connected to conduit 48. Conduit 48 is a vessel or pipe located between hopper 46 and pump 32. Conduit 48 is heated so that solid adhesive pellets that flow into conduit 48 melt to form liquid adhesive (represented by reference numeral 33). As shown in
Maintaining a minimum amount of liquid adhesive within conduit 48 ensures that heat is rapidly transferred to newly entering solid adhesive pellets. Heat is transferred from the liquid adhesive to substantially all of the surface area of the solid adhesive pellets, instead of just the surfaces of the solid adhesive pellets that contact a heating element or hot surface. In some embodiments, conduit 48 has a relatively small volume to minimize the amount of heat energy needed to maintain the melted adhesive in a liquid state and melt incoming solid adhesive pellets. The volume of conduit 48 can be sized so that it contains sufficient volume to continuously supply pump 32 with liquid adhesive for a predetermined period of time or a predetermined number of pump cycles.
Conduit 48 is heated by one or more heating elements. Heating elements can be positioned within the walls of conduit 48 or around the outer walls of conduit 48. In some embodiments, one or more resistive heating elements are used to heat conduit 48 and its contents. Heating element 56 is shown in
In some embodiments, conduit 48 includes a turn.
Valve 50 is located within hopper 46 or conduit 48 or between hopper 46 and conduit 48 and controls the flow of solid adhesive pellets from hopper 46 to conduit 48. Valve 50 includes disk 64, stem 66 and actuator 68. Disk 64 is a plate through which solid adhesive pellets cannot pass. In some embodiments, disk 64 is a solid circular plate. Stem 66 connects disk 64 and actuator 68. In embodiments in which conduit 48 includes turn 58, stem 66 can pass through the wall of conduit 48 before connecting to actuator 68 as shown in
As shown in
Disk 64 is moved in a direction away from conduit 48 in order to transition valve 50 into an open position. Actuator 68 moves stem 66 so that disk 64 travels away from conduit 48. As disk 64 moves away from conduit 48, gravitational force causes solid adhesive pellets within hopper 46 to descend around the edges of disk 64 and to fall into conduit 48 as shown in
In some embodiments, actuator 68 and pump 32 are both given instructions by controller 18 (shown in
By utilizing a heated conduit containing melted (liquid) hot melt material, system 10 does not require a separate melting tank for melting the hot melt material. By utilizing a small, heated conduit rather than a melting tank, system 10 can be started up more quickly, less time is needed to melt the solid adhesive pellets and the amount of power required to melt the pellets is reduced.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.