Membrane for carrier head with segmented substrate chuck

Information

  • Patent Grant
  • 12128524
  • Patent Number
    12,128,524
  • Date Filed
    Tuesday, August 1, 2023
    a year ago
  • Date Issued
    Tuesday, October 29, 2024
    2 months ago
  • CPC
  • Field of Search
    • US
    • 451 041000
    • CPC
    • B24B37/32
    • B24B37/27
    • B24B37/30
    • B24B37/04
    • B24B37/042
  • International Classifications
    • B24B37/32
    • Term Extension
      0
Abstract
A membrane for a CMP carrier head includes a circular lower portion that provides a substrate mounting surface for a central region of a substrate, a first plurality of flaps that extend upward from the circular lower portion to form a plurality of inner chambers, an annular upper portion that provides a lower surface for applying pressure to an annular outer region of the substrate, and a second plurality of flaps that extend upward from the annular upper portion to form a plurality of independently pressurizable outer chambers. The annular upper portion surrounds the circular lower portion and is vertically offset from the circular lower portion such that the lower surface is positioned above a plane defined by the circular lower portion, and the annular upper portion is coupled to an outermost flap of the first plurality of flaps.
Description
TECHNICAL FIELD

This invention relates to a carrier head for use in chemical mechanical polishing (CMP).


BACKGROUND

An integrated circuit is typically formed on a substrate by the sequential deposition of conductive, semiconductive, or insulative layers on a semiconductor wafer. A variety of fabrication processes require planarization of a layer on the substrate. For example, one fabrication step involves depositing a filler layer over a non-planar surface and planarizing the filler layer. For certain applications, the filler layer is planarized until the top surface of a patterned layer is exposed. For example, a metal layer can be deposited on a patterned insulative layer to fill the trenches and holes in the insulative layer. After planarization, the remaining portions of the metal in the trenches and holes of the patterned layer form vias, plugs, and lines to provide conductive paths between thin film circuits on the substrate. As another example, a dielectric layer can be deposited over a patterned conductive layer, and then planarized to enable subsequent photolithographic steps.


Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier head. The exposed surface of the substrate is typically placed against a rotating polishing pad. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing slurry with abrasive particles is typically supplied to the surface of the polishing pad.


SUMMARY

In one aspect, a carrier head for a chemical mechanical polishing apparatus includes a carrier body, an outer membrane assembly, an annular segmented chuck, and an inner membrane assembly. The outer membrane assembly is supported from the carrier body and defines a first plurality of independently pressurizable outer chambers. The annular segmented chuck supported below the outer membrane assembly, and includes a plurality of concentric rings that are independently vertically movable by respective pressurizable chambers of the outer membrane assembly. At least two of the rings having passages therethrough to suction-chuck a substrate to the chuck. The inner membrane assembly is supported from the carrier body and is surrounded by an innermost ring of the plurality of concentric rings of the chuck. The inner membrane assembly defines a second plurality of independently pressurizable inner chambers and has a lower surface to contact the substrate.


In another aspect, a chemical mechanical polishing system includes a platen to support a polishing pad, the carrier head, a plurality of pressure sources coupled to the inner and outer chambers in the carrier head, and a controller coupled to the pressure sources.


In another aspect, a method for chemical mechanical polishing includes placing a substrate into a carrier head, polishing the substrate using pressure from an outer membrane assembly transferred through a substrate chuck of the carrier head and pressure from an inner membrane assembly of the carrier head surrounded by the chuck, and during polishing preventing the substrate from moving laterally by chucking the substrate to the carrier head using the chuck.


Possible advantages may include, but are not limited to, one or more of the following. A segmented substrate chuck can simultaneously position a substrate against a polishing pad and secure the substrate to a carrier head. The chuck can prevent lateral motion of the substrate, thereby preventing or reducing the likelihood of the substrate colliding with a retaining ring. The lifetime of the retaining ring can be extended as the inner surface of the ring incurs less damage due to reduced contact between the substrate and the retaining ring. Additionally, the edge of the substrate can incur less lateral force, so that the substrate is less likely to warp, resulting in a more uniformly polished and desired substrate profile.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic cross-sectional view of a carrier head with a segmented chuck.



FIG. 1B is a schematic cross-sectional view of the membrane assembly of FIG. 1A.



FIG. 2 is a schematic cross-sectional view of a carrier head with a segmented chuck and floating membrane assembly.





DETAILED DESCRIPTION

During polishing, frictional force on a substrate from the polishing pad can drive the substrate into contact with a retaining ring. This can damage the retaining ring, e.g., create scoring marks on the inner surfaces of the wall of the retaining ring due to the contact between the substrate and the retaining ring. The substrate can also chip or shatter as a result of colliding with the retaining ring. Additionally, as a result of the scoring, the edge of the substrate may be driven up off or down onto the polishing pad, changing the pressure distribution on the substrate and resulting in non-uniformity during polishing. Moreover, the retaining ring can require replacement after a certain number of polishing cycles, e.g., before non-uniformity induced by the scoring exceeds permissible limits.


A technique to address one or more of these problems is to chuck the substrate to the carrier head. Chucking the substrate can prevent the substrate from contacting the retaining ring, which can reduce non-uniformity at the edge of the substrate and extend the life of the retaining ring. However, the carrier head can still include a flexible membrane that contacts some portions of the back side of the substrate.


Referring to FIGS. 1A and 1B, a substrate 10 can be polished by a chemical mechanical polishing (CMP) apparatus that has a carrier head 100.


The carrier head 100 includes a housing 102, a carrier body 104, a gimbal mechanism 106 (which may be considered part of the carrier body 104), and a retaining ring 130.


The housing 102 can generally be circular in shape and can be connected to a drive shaft 124 to rotate therewith during polishing about a central axis 125. There can be passages extending through the housing 102 for pneumatic control of the carrier head 100.


The carrier body 104 is a vertically movable assembly located beneath the housing 102. A loading chamber 108 is located between the housing 102 and the carrier body 104 to apply a load, i.e., a downward pressure or weight, to the carrier body 104. The chamber 108 can be sealed by an annular flexure, rolling diaphragm or bellows 109. The vertical position of the carrier body 104 relative to a polishing pad is also controlled by the loading chamber 108, which is pressurizable to cause the carrier body 104 to move vertically. In some implementations, the vertical position of the carrier head 100 relative to the polishing pad is controlled by an actuator (not illustrated) that can cause the drive shaft 124 to move vertically.


The gimbal mechanism 106 permits the carrier body 104 to gimbal and move vertically relative to the housing 102 while preventing lateral motion of the base assembly 104 relative to the housing 102. However, the gimbal mechanism is optional; the base assembly could be in a fixed inclination relative to the housing 102.


A membrane assembly 110 includes an inner membrane assembly portion 150 and an outer membrane assembly portion 140. The inner membrane assembly portion 150 includes an inner membrane 152 connected to the carrier body 104. The inner membrane 152 may be composed of a thin flexible material, such as a silicon rubber. The inner membrane 150 has a lower surface 155 that provides a substrate mounting surface; the substrate 10 directly contacts the lower surface 155 when loaded into the carrier head 100.


The inner membrane 152 can divide a volume between the carrier body 104 and the lower surface 155 into multiple independently pressurizable inner chambers 154. The pressurizable inner chambers 154 can be arranged concentrically, e.g., around the axis 125. A central inner chamber 154a can be circular, and the remaining inner chambers 154b can be annular. There can be one to ten individually pressurizable inner chambers 154. Each individually pressurizable inner chamber 154 can be pressurized and depressurized to inflate and deflate independently from the other individually pressurizable inner chambers 154.


In some implementations, the inner membrane 152 can include flaps 152a (see FIG. 1A) that divide the volume into individually pressurizable inner chambers 154. Alternatively, in some implementations, each individually pressurizable inner chamber 154 can be defined by a floor 151 and two side wall portions 153 of the inner membrane 152. For each chamber, flange portions 156 can extend inwardly from top edges of the side wall portions 153 and be secured to the carrier body 104 by a clamp 147 (see FIG. 1B). The clamp 147 can be secured to the carrier body 104 by a screw, bolt, or other similar fastener.


The side walls portions 153 of adjacent inner chambers can be connected at their top edges by a bridging portion 159, e.g., coplanar with the flange portions 156. In contrast, below the bridging portion 159, the adjacent side wall portions 153 are separated by a gap 158. The separated side wall portions 153 allow each individually pressurizable inner chamber 154 to expand (and specifically, the floor 151 of each individually pressurizable inner chamber 154 to move vertically) relative to an adjacent individually pressurizable inner chamber 154. Thus, use of separated side walls 153 for the adjacent inner chambers reduces pressure cross-talk between the adjacent zones on the substrate.


The inner membrane assembly portion 150 is surrounded by the outer membrane assembly portion 140. The outer membrane assembly portion 140 includes an outer membrane 142 connected to the carrier body 104. The outer membrane 142 may be composed of a thin flexible material, such as a silicon rubber. The outer membrane 142 divides a volume between the carrier body 104 and the lower surface 145 into a plurality of independently pressurizable outer chambers 144. Each outer chamber 144 controls the pressure on a portion of the substrate chuck 160, e.g., on one of the annular rings 162 of the chuck 160 as discussed below.


The individually pressurizable outer chambers 144 can be annular concentric chambers. There can be two to ten individually pressurizable outer chambers 144. Each individually pressurizable outer chamber 144 can be pressurized and depressurized to inflate and deflate independently from the other outer chambers 144.


In some implementations, the outer membrane 142 includes flaps 142a that divides the volume below the carrier base 104 into multiple individually pressurizable outer chambers 144. Alternatively, in some implementations, each individually pressurizable outer chamber 144 can be enclosed by two side walls portions 143 and a floor portion 141 of the outer membrane 142. For each chamber, flange portions 146 can extend inwardly from top edges of the side wall portions 143 and be secured to the carrier body 104 by a clamp 147 (see FIG. 1B). The clamp 157 can be secured to the carrier body 104 by a screw, bolt, or other similar fastener.


The side walls portions 143 of adjacent outer chambers can be connected at their top edges by a bridging portion 149, e.g., coplanar with the flange portions 146. In contrast, below the bridging portion 149, the adjacent side wall portions 143 are separated by a gap 148. The separated side wall portions 143 allow each individually pressurizable outer chamber 144 to expand (and specifically, the floor portion 141 of each individually pressurizable outer chamber 144 to move vertically) relative to an adjacent outer chamber 144. Thus, use of separated side walls 143 for the adjacent outer chambers 144 reduces pressure cross-talk between the adjacent zones on the substrate. In some implementations, the inner membrane 152 and the outer membrane 142 are portions of a single unitary membrane.


During a polishing operation, the individually pressurizable chambers 144 and 154 can be pressurized to inflate and increase the polishing rate on a portion of the substrate 10 underlying the individually pressurizable chamber 144 or 154. Similarly, the individually pressurizable chamber 144 or 154 can be depressurized to deflate and decrease the polishing rate on the portion of the substrate 10 underlying the individually pressurizable chamber 144 or 154.


Below the outer membrane assembly portion 140 and surrounding the inner membrane assembly portion 150 is the segmented substrate chuck 160. The chuck 160 can be composed of aluminum, stainless steel, a ceramic or plastic. The chuck 160 can include a plurality of concentric annular rings 162. The annular rings 162 can be concentric with the axis of rotation 125 of the carrier head 100. There can be an equal number of annular rings 162 and outer chambers 144. Each annular rings 162 of the chuck 160 can be positioned below a respective outer chamber 144. Thus, as each outer chamber 144 inflates or deflates, that chamber 144 causes the underlying annular ring 162 to move vertically and apply increased or decreased pressure on the substrate 10.


Between the adjacent annular rings 162 are channels 164, e.g., annular gaps. The channels 164 can be connected to a pressure source 180 (discussed further below). The pressure source 180 can blow polishing byproducts (e.g., polishing slurry, particulates) out from between the annular rings 162.


Because the chuck 160 underlies the outer membrane assembly portion 140, the membrane 142 does not contact the substrate 10, and does not incur increased wear and tear due to contact with the substrate 10 during polishing operations.


Below the chuck 160, and optionally below the inner membrane portion 150 as well, can be a cushion 170. The cushion 170 can be composed of a compressible material, e.g., a rubber, e.g., silicone, ethylene propylene diene terpolymer (EPDM) or fluoroelastomer, or a porous polymer sheet. The cushion 170 can include a portion 172 below the annular rings 162 of the chuck and a portion 175 below the inner membrane 152.


One or more vacuum channels 174 are formed through the cushion 170. In particular, the channels 174 can be formed through the cushion in regions below the annular rings 172. The vacuum channels 174 can be connected to the pressure source 180 via passages 182 to modulate the pressure in the vacuum channels 174. A portion of each passage 182 can be provide by a conduit 184 that run through the annular ring 162 of the chuck 160 (the remainder of the passage 182 is illustrated schematically for simplicity, but can include conduits through other solid parts and hoses through the chambers). For example, the pressure source 180 can create a vacuum in the vacuum channels 174 that can hold the substrate 10 to the cushion 170.


The cushion 170 can underlie the chuck 160 and the inner membrane assembly portion 150 to address non-uniformity caused by the chuck 160 and the inner membrane assembly portion 150. The gaps between the annular rings 162 and the gaps 158 between the individually pressurizable chambers 154 do not apply pressure, and consequently can result in local non-uniformities in the applied pressure. However, the cushion 170 can span the gaps between the annular rings 162 and the gaps 158. As such, the cushion 170 can distribute the pressure applied on a portion of the substrate 10 to smooth over the non-uniformity that would occur on the portions of the substrate 10 that underlie the gap between the annular rings 162 and the gap 158 between the individually pressurizable chambers 154.


Alternatively, the cushion 170 could be composed of individual annular rings, with each ring of the cushion 170 separated from an adjacent ring by a gap and secured to the bottom of a respective annular ring 162 of the chuck 160. The cushion 170 can also include a central region 175 that spans the inner membrane portion 150.


A retaining ring 130 can surround the membrane assembly 100 and the substrate 10 and can serve as a pressure control ring. The retaining ring 130 can be connected to an actuator 134, e.g., a pressurizable chamber or bellows. The actuator 134 can cause the retaining ring 130 to move vertically. For example, the actuator 134 can cause the retaining ring 130 to be held against the polishing pad 30 during a polishing operation. The retaining ring 130 is configured to enclose the substrate 10 on the polishing pad 30 without contacting the substrate 10, as the substrate 10 is held in place within the retaining ring 130 by the chuck 160. This can increase the lifetime of the retaining ring 130—the substrate 10 and the retaining ring 130 can incur less damage due to the reduced contact of the substrate 10 being held in place within, and not against, the retaining ring 130.


The vacuum pressure holding the substrate 10 to the cushion 170 can prevent lateral movement of the substrate 10 within the carrier head 100. As a result, the edge of the substrate is less likely to be damaged due to the effect of collision contact between the substrate 10 and the retaining ring 130. Similarly, the inner surface of the retaining ring 130 incurs less damage due to the reduced contact between the substrate 10 and the retaining ring 130. Additionally, as the retaining ring 130 incurs less damage from the substrate 10, the retaining ring 130 can have an increased lifespan before requiring replacement. Moreover, the edge of substrate 10 is less likely to be urged upward or downward due to contact with the retaining ring 130, so polishing can be more uniform, particularly near the edges of the substrate. Further, because the cushion 170 is between the substrate 10 and the inner membrane assembly portion 150, the membrane 152 does not incur increased wear and tear due to contact with the substrate 10 during polishing operations.


A controller 190 can be connected to the pressure source 180. The pressure source 180 can be, for example, a pump, a facilities air or vacuum supply line with associated valves, etc. The pressure source 180 can be connected to the loading chamber 108, the channels 164, and the vacuum channels 174 to increase or decrease their pressures. For example, the controller 190 can control the pressure source 180 to pressurize the loading chamber 108 to move the carrier body 104 down toward the polishing pad 30, or depressurize to create a vacuum in the vacuum channels 174 to mount the substrate 10 to the cushion 170.


Referring to FIG. 2, a carrier head 200 includes the housing 102, an upper carrier body 204a, a lower carrier body 204b, the retaining ring 130, and an outer ring 230. The carrier head 200 is similar to the carrier head 100, except as noted below.


The upper carrier body 204a is a vertically movable assembly located beneath the housing 102. An upper loading chamber 208a is located between the housing 102 and the upper carrier body 204a to apply a load, i.e., a downward pressure or weight, to the upper carrier body 204a. The vertical position of the upper carrier body 204a relative to the polishing pad 30 is controlled by the upper loading chamber 208a, which is pressurizable to cause the upper carrier body 204a to move vertically. The upper loading chamber 208a can be sealed by an annular flexure, rolling diaphragm or bellows 224 that extends between the housing 102 and the upper carrier body 204a.


Similarly, the lower carrier body 204b is a vertically movable assembly located beneath the upper carrier body 204a. A lower loading chamber 208b is located between the upper carrier body 204a and the lower carrier body 204b to apply a load, i.e., a downward pressure or weight, to the lower carrier body 204b. The vertical position of the lower carrier body 204b relative to a polishing pad is also controlled by the lower loading chamber 208b, which is pressurizable to cause the lower carrier body 204b to move vertically. The controller 190 can increase and decrease the pressures in the upper loading zone 208a and the lower loading zone 208b by regulating the pressure source 180.


The upper carrier body 204a and the lower carrier body 204b can move independently of each other, e.g., as dictated by the pressures in the upper loading chamber 208a and the lower loading chamber 208b. The lower loading chamber 208a can be sealed by an annular flexure, rolling diaphragm or bellows 250 that extends between the upper carrier body 204a and the lower carrier body 204b.


For example, a diaphragm 250 can permit vertical movement of the upper carrier body 204a and the lower carrier body 204b by flexibly connecting the upper carrier body 204a to the lower carrier body 204b. The diaphragm 250 can be a flexible and impermeable material, e.g., rubber. The diaphragm 250 can be secured to the upper carrier body 204a and lower carrier body 204b using anchors 252a and 252b. The inner edge of the diaphragm 250 can be clamped between the anchor 252a and the upper carrier body 204a. A fastener such as a bolt, screw, or other similar fastener can be used to secure the anchor 252a to the upper carrier body 204a. Similarly, the outer edge of the diaphragm 250 can be clamped between the anchor 252b and the lower carrier body 204b. A fastener such as a bolt, screw, or other similar fastener can be used to secure the anchor 252b to the lower carrier body 204b.


In some implementations, the vertical position of the upper carrier body 204a and lower carrier body 204b relative to the polishing pad is controlled by an actuator (not illustrated) that can cause the shaft 122 to move vertically.


The annular retaining ring 130 can be connected to an actuator and/or a bellows 234. The actuator and/or bellows 234 can cause the retaining ring 130 to move vertically. For example, the actuator and/or bellows 234 can cause the retaining ring 130 to be held against the polishing pad 30 during a polishing operation. The retaining ring 130 is configured to enclose the substrate 10 on the polishing pad 30 without contacting the substrate 10, as the substrate 10 is held in place within the retaining ring 130 by the chuck 160.


An outer ring 230 can enclose the retaining ring 130. The outer ring 230 can be connected to the upper carrier body 204a by a fastener, such as a bolt, screw, or other similar fastener. The outer ring 230 provides positioning or referencing of the carrier head 200 to the surface of the polishing pad 30.


Surrounding the chuck 160 is an edge-control ring 240. The edge-control ring 240 is decoupled from the lower loading chamber 208b, and can be connected to the lower carrier body 204b. For example a rolling diaphragm or bellows 244 can be positioned between the edge control ring 240 and a lip 242 that extends from the lower carrier body 204b. The edge-control ring 240 is positioned over the edge of the substrate 10 to polish the edge of the substrate 10 independently, to enable focused edge loading to control polishing of the edge of the substrate 10 that surrounds the area on the substrate 10 controlled by the chuck 160.


The controller and other computing devices part of systems described herein can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware. For example, the controller can include a processor to execute a computer program as stored in a computer program product, e.g., in a non-transitory machine readable storage medium. Such a computer program (also known as a program, software, software application, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.


While this document contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular embodiments of particular inventions. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A membrane for a carrier head of a chemical mechanical polishing apparatus, the membrane comprising: a circular lower portion that provides a substrate mounting surface for a central region of a substrate;a first plurality of flaps that extends upward from a top surface of the circular lower portion to form a plurality of independently pressurizable inner chambers when attached to the carrier head;an annular upper portion that provides a lower surface for applying pressure to an annular outer region of the substrate, wherein the annular upper portion surrounds the circular lower portion and is vertically offset from the circular lower portion such that the lower surface is positioned above a plane defined by the circular lower portion, wherein an inner edge of the lower surface of the annular upper portion is coupled to a top edge of an outermost flap of the first plurality of flaps; anda second plurality of flaps that extends upward from a top surface of the annular upper portion to form a plurality of independently pressurizable outer chambers when attached to the carrier head.
  • 2. The membrane of claim 1, wherein the annular upper portion is planar.
  • 3. The membrane of claim 1, wherein the lower surface of the annular upper portion is substantially coplanar with upper ends of the first plurality of flaps.
  • 4. The membrane of claim 1, wherein each chamber of the plurality of independently pressurizable inner chambers is provided by a floor portion and two flaps of the first plurality of flaps, and the plurality of independently pressurizable inner chambers include pairs of adjacently positioned inner chambers with each pair of adjacently positioned inner chambers defining a pair of adjacent flaps from the first plurality of flaps, the pair of adjacent flaps having a gap therebetween open to a region below floor portions of the pair of adjacently positioned inner chambers.
  • 5. The membrane of claim 4, wherein flaps of the pair of adjacent flaps are connected by a bridge portion extending between top edges of adjacently positioned flaps.
  • 6. The membrane of claim 5, comprising flange portions extending inwardly from the top edges of the adjacently positioned flaps.
  • 7. The membrane of claim 1, wherein each chamber of the plurality of independently pressurizable outer chambers is provided by a floor portion and two flaps of the second plurality of flaps, and the plurality of independently pressurizable outer chambers include pairs of adjacently positioned outer chambers with each pair of adjacently positioned outer chambers defining a pair of adjacent flaps from the second plurality of flaps, the pair of adjacent flaps having a gap therebetween open to a region below floor portions of the pair of adjacently positioned outer chambers.
  • 8. The membrane of claim 7, wherein flaps of the pair of adjacent flaps are connected by a bridge portion extending between top edges of adjacently positioned flaps.
  • 9. The membrane of claim 8, comprising flange portions extending inwardly from the top edges of the adjacently positioned flaps.
  • 10. The membrane of claim 9, comprising flange portions extending outwardly from the top edges of the adjacently positioned flaps.
  • 11. The membrane of claim 1, wherein the first plurality of flaps are concentric annular flaps such that the plurality of independently pressurizable inner chambers include a circular central inner chamber and one or more annular inner chambers that concentrically surround the circular central inner chamber.
  • 12. The membrane of claim 1, wherein the second plurality of flaps are concentric annular flaps such that the plurality of independently pressurizable outer chambers are annular chambers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/737,642, filed May 5, 2022, which is a continuation of U.S. application Ser. No. 16/688,348, filed on Nov. 19, 2019, which claims priority to U.S. Provisional Application Ser. No. 62/891,207, filed on Aug. 23, 2019, the disclosures of which are incorporated by reference.

US Referenced Citations (61)
Number Name Date Kind
5681215 Sherwood et al. Oct 1997 A
5816900 Nagahara et al. Oct 1998 A
5964653 Perlov et al. Oct 1999 A
6050882 Chen Apr 2000 A
6080050 Chen Jun 2000 A
6132298 Zuniga et al. Oct 2000 A
6183354 Zuniga et al. Feb 2001 B1
6220944 Chen Apr 2001 B1
6241593 Chen et al. Jun 2001 B1
6390905 Korovin et al. May 2002 B1
6398621 Zuniga et al. Jun 2002 B1
6431968 Chen et al. Aug 2002 B1
6447368 Fruitman et al. Sep 2002 B1
6494774 Zuniga et al. Dec 2002 B1
6503134 Shendon Jan 2003 B2
6558232 Kajiwara et al. May 2003 B1
6582277 Korovin et al. Jun 2003 B2
6623343 Kajiwara et al. Sep 2003 B2
6652362 Boo et al. Nov 2003 B2
6652368 Shendon et al. Nov 2003 B2
6659850 Korovin et al. Dec 2003 B2
6719618 Homma et al. Apr 2004 B2
6755726 Chen et al. Jun 2004 B2
6764387 Chen Jul 2004 B1
6872130 Zuniga Mar 2005 B1
6890249 Zuniga et al. May 2005 B1
6957998 Togawa Oct 2005 B2
7029383 Lee Apr 2006 B2
7074118 Bottema et al. Jul 2006 B1
7140956 Korovin et al. Nov 2006 B1
7166019 Park Jan 2007 B2
7207871 Zuniga et al. Apr 2007 B1
7255771 Chen et al. Aug 2007 B2
7303466 Boo et al. Dec 2007 B2
7842158 Chen et al. Nov 2010 B2
8721391 Chen et al. May 2014 B2
8932106 Fukushima et al. Jan 2015 B2
8939815 Tsai et al. Jan 2015 B2
11325223 Zuniga et al. May 2022 B2
11759911 Zuniga et al. Sep 2023 B2
20020017365 Gunji et al. Feb 2002 A1
20020039879 Zuniga Apr 2002 A1
20020042246 Togawa et al. Apr 2002 A1
20030181153 Chen Sep 2003 A1
20050037698 Zuniga et al. Feb 2005 A1
20060199479 Togawa et al. Sep 2006 A1
20070082589 Zuniga Apr 2007 A1
20080119120 Zuniga May 2008 A1
20090186560 Kordic Jul 2009 A1
20100291842 Chen et al. Nov 2010 A1
20120214383 Tsai et al. Aug 2012 A1
20130260654 Kang Oct 2013 A1
20140004779 Namiki Jan 2014 A1
20150017889 Umemoto et al. Jan 2015 A1
20150165587 Lin Jun 2015 A1
20150273657 Fukushima et al. Oct 2015 A1
20160279756 Chang et al. Sep 2016 A1
20180117730 Nabeya et al. May 2018 A1
20190061098 Kang Feb 2019 A1
20190358768 Kang Nov 2019 A1
20220258302 Zuniga et al. Aug 2022 A1
Foreign Referenced Citations (12)
Number Date Country
101396805 Apr 2009 CN
101484277 Jul 2009 CN
201371411 Dec 2009 CN
102227803 Oct 2011 CN
1177859 Feb 2002 EP
H11-179652 Jul 1999 JP
2000-190202 Jul 2000 JP
2002-079454 Mar 2002 JP
2011-251352 Dec 2011 JP
2015-033759 Feb 2015 JP
10-2018-0094409 Aug 2018 KR
576773 Feb 2004 TW
Non-Patent Literature Citations (6)
Entry
International Search Report and Written Opinion in International Appln. No. PCT/US2020/047478, dated Dec. 1, 2020, 11 pages.
Office Action in Chinese Appln No. 202080068979.X, dated Jun. 21, 2023, 14 pages (with English translation).
Office Action in Chinese Appln No. 202080068979.X, dated Mar. 8, 2024, 11 pages (with English translation).
Office Action in Japanese Appln. No. 2022-510966, dated Jan. 30, 2024, 10 pages (with English translation).
Office Action in Taiwanese Appln. No. 109128586, dated Mar. 29, 2024, 17 pages (with English summary and search report).
Notice of Allowance in Chinese Appln. No. 202080068979.X, dated May 17, 2024, 8 pages (with English translation).
Related Publications (1)
Number Date Country
20240017373 A1 Jan 2024 US
Provisional Applications (1)
Number Date Country
62891207 Aug 2019 US
Continuations (2)
Number Date Country
Parent 17737642 May 2022 US
Child 18363162 US
Parent 16688348 Nov 2019 US
Child 17737642 US