Embodiments of the present disclosure generally relate to an energy exchange assembly, and, more particularly, to an energy exchange assembly having one or more membranes that are configured to transfer sensible and/or latent energy therethrough.
Energy exchange assemblies are used to transfer energy, such as sensible and/or latent energy, between fluid streams. For example, air-to-air energy recovery cores are used in heating, ventilation, and air conditioning (HVAC) applications to transfer heat (sensible energy) and moisture (latent energy) between two airstreams. A typical energy recovery core is configured to precondition outdoor air to a desired condition through the use of air that is exhausted out of the building. For example, outside air is channeled through the assembly in proximity to exhaust air. Energy between the supply and exhaust air streams is transferred therebetween. In the winter, for example, cool and dry outside air is warmed and humidified through energy transfer with the warm and moist exhaust air. As such, the sensible and latent energy of the outside air is increased, while the sensible and latent energy of the exhaust air is decreased. The assembly typically reduces post-conditioning of the supply air before it enters the building, thereby reducing overall energy use of the system.
Energy exchange assemblies such as air-to-air recovery cores may include one or more membranes through which heat and moisture are transferred between air streams. Each membrane may be separated from adjacent membranes using a spacer. Stacked membrane layers separated by spacers form channels that allow air streams to pass through the assembly. For example, outdoor air that is to be conditioned may enter one side of the device, while air used to condition the outdoor air (such as exhaust air or scavenger air) enters another side of the device. Heat and moisture are transferred between the two airstreams through the membrane layers. As such, conditioned supply air may be supplied to an enclosed structure, while exhaust air may be discharged to an outside environment, or returned elsewhere in the building.
In an energy recovery core, for example, the amount of heat transferred is generally determined by a temperature difference and convective heat transfer coefficient of the two air streams, as well as the material properties of the membrane. The amount of moisture transferred in the core is generally governed by a humidity difference and convective mass transfer coefficients of the two air streams, but also depends on the material properties of the membrane.
Many known energy recovery assemblies that include membranes are assembled by either wrapping the membrane or by gluing the membrane to a substrate. Notably, the design and assembly of an energy recovery assembly may affect the heat and moisture transfer between air streams, which impacts the performance and cost of the device. For example, if the membrane does not properly adhere to the spacer, an increase in air leakage and pressure drop may occur, thereby decreasing the performance (measured as latent effectiveness) of the energy recovery core. Conversely, if excessive adhesive is used to secure the membrane to the spacer, the area available for heat and moisture transfer may be reduced, thereby limiting or otherwise reducing the performance of the energy recovery core. Moreover, the use of adhesives in relation to the membrane also adds additional cost and labor during assembly of the core. Further, the use of adhesives may result in harmful volatile organic compounds (VOCs) being emitted during initial use of an energy recovery assembly.
While energy recovery assemblies formed through wrapping techniques may reduce cost and minimize membrane waste, the processes of manufacturing such assemblies are typically labor intensive and/or use specialized automated equipment. The wrapping may also result in leaks at edges due to faulty seals. For example, gaps typically exist between membrane layers at corners of an energy recovery assembly. Further, at least some known wrapping techniques result in a seam being formed that extends along membrane layers. Typically, the seam is sealed using tape, which blocks pore structures of the membranes, and reduces the amount of moisture transfer in the assembly.
Embodiments of the present disclosure provide energy exchange assemblies having one or more membranes that are directly integrated with an outer frame. Embodiments of the present disclosure may be formed without adhesives or wrapping.
Certain embodiments of the present disclosure provide a membrane panel configured to be secured within an energy exchange assembly. The membrane panel may include an outer frame defining a central opening, and a membrane sheet integrated with the outer frame. The membrane sheet spans across the central opening, and is configured to transfer one or both of sensible energy or latent energy therethrough. The membrane sheet may be integrated with the outer frame without an adhesive.
The outer frame may be injection-molded around edge portions of the membrane sheet. Alternatively, the membrane sheet may be ultrasonically bonded to the outer frame. In at least one other embodiment, the membrane sheet May be laser-bonded to the outer frame. In at least one other embodiment, the membrane sheet may be heat-sealed to the outer frame.
The outer frame may include a plurality of brackets having inner edges that define the central opening. One or more spacer-securing features, such as recesses, divots, slots, slits, tabs, or the like, may be formed through or in at least one of the inner edges. In at least one embodiment, the outer frame may include a plurality of upstanding corners.
In at least one embodiment, the outer frame fits together with at least one separate membrane spacer to form at least one airflow channel. In at least one embodiment, the outer frame may be integrally molded and formed with at least one membrane spacer.
Certain embodiments of the present disclosure provide an energy exchange assembly that may include a plurality of membrane spacers, and a plurality of membrane panels. Each of the plurality of membrane panels may include an outer frame defining a central opening defining a fluid channel, and a membrane sheet integrated with the outer frame. The membrane sheet spans across the central opening, and is configured to transfer one or both of sensible energy or latent energy therethrough. Each of the plurality of membrane spacers is positioned between two of the plurality of membrane panels.
In at least one embodiment, the plurality of membrane panels includes a first group of membrane panels and a second group of membrane panels. The first group of membrane panels may be orthogonally oriented with respect to the second group of membrane panels.
In at least one embodiment, each of the plurality of membrane spacers may include a connecting bracket having a reciprocal shape to the plurality of upstanding corners. The outer frame may include at least one sloped connecting bracket configured to mate with a reciprocal feature of one of the plurality of spacers. The plurality of spacers and the plurality of membrane panels may form stacked layers.
Certain embodiments of the present disclosure provide a method of forming a membrane panel configured to be secured within an energy exchange assembly. The method may include forming an outer frame defining a central opening, and integrating a membrane sheet with the outer frame. The membrane sheet spans across the central opening, and is configured to transfer one or both of sensible energy or latent energy therethrough.
The integrating operation may include injection-molding the outer frame around edge portions of the membrane sheet. In at least one other embodiment, the integrating operation includes ultrasonically bonding the membrane sheet to the outer frame. In at least one other embodiment, the integrating operation comprises laser-bonding the membrane sheet to the outer frame. In at least one other embodiment, the integrating operation includes heat-sealing the membrane sheet to the outer frame. The integrating operation may be performed without the use of an adhesive, such as glue, tape, or the like.
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of the elements or steps, unless such exclusion is explicitly stated. Further, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
The membrane panel 100 includes an outer frame 101 that integrally retains a membrane sheet 102. The membrane sheet 102 is integrated with the membrane panel 100. The outer frame 101 may have a quadrilateral shape that defines a similarly shaped opening that receives and retains the membrane sheet 102. For example, the outer frame 101 may include end brackets 104 that are integrally connected to lateral brackets 106. The end brackets 104 may be parallel with one another and perpendicular to the lateral brackets 106. The opening may be defined by the end brackets 104 and the lateral brackets 106, which combine to provide four linear frame segments. In at least one embodiment, the area of the opening may be slightly less than the area defined by the end brackets 104 and the lateral brackets 106, thereby maximizing an area configured to transfer energy. The outer frame 101 may be formed of a plastic or a composite material. Alternatively, the outer frame 101 may be formed of various other shapes and sizes, such as triangular or round shapes.
Each of the end brackets 104 and the lateral brackets 106 may have the same or similar shape, size, and features. For example, each bracket 104 or 106 may include a planar main rectangular body 108 having opposed planar upper and lower surfaces 110 and 112, respectively, end edges 114, and opposed outer and inner edges 116 and 118, respectively. One or more spacer-securing features 120, such as recesses, divots, slots, slits, or the like, may be formed through or within the inner edge 118. The spacer-securing features 120 may be formed through one or both of the upper and lower surfaces 110 and 112. The spacer-securing features 120 may provide alignment slots configured to align the membrane panel 100 with a membrane spacer, For example, the spacer-securing features 120 may be grooves linearly or irregularly spaced along the inner edges 118 of the brackets 104 and 106, while the membrane spacer includes protuberances, such as tabs, barbs, studs, or the like, that are configured to be received and retained within the spacer-securing features 120. Alternatively, the spacer-securing features 120 may be protuberances, while the membrane spacer includes the grooves, for example.
As shown in
Referring again to
Alternatively, the membrane sheet 102 may not be porous. For example, the membrane sheet 102 may be formed of a non-porous plastic sheet that is configured to transfer heat, but not moisture, therethrough.
During assembly of the membrane panel 100, the membrane sheet 102 may be integrally formed and/or molded with the outer frame 101. For example, the membrane sheet 102 may be integrated and/or integrally formed with the frame 101 through a process of injection-molding. For example, an injection mold may be sized and shaped to form the membrane panel 100. Membrane material may be positioned within the mold and panel material, such as plastic, may be injected into the mold on and/or around portions of the membrane material to form the integral membrane panel 100. Alternatively, the membrane material may be injected into the mold, as opposed to a membrane sheet being positioned within the mold. In such embodiments, the membrane sheet 102 may be integrally formed and molded with the plastic of the outer frame 101. In at least one embodiment, the material that forms the outer frame 101 may also form the membrane sheet 102.
As an example, the membrane sheet 102 may be positioned within a mold that is configured to form the membrane panel 100. Hot, liquid plastic is injected into the mold and flows on and/or around portions of the membrane sheet 102. As the plastic cools and hardens to form the outer frame 101, the plastic securely fixes to edge portions of the membrane sheet 102. For example, during the injection molding, the hot, liquid plastic may melt into the membrane sheet 102, thereby securely fastening the outer frame 101 to the membrane sheet 102.
Accordingly, the membrane panel 100, including the membrane sheet 102 and the outer frame 101, may be formed in a single step, thereby providing an efficient assembly process.
Alternatively, the membrane sheet 102 may be integrated and/or integrally formed with the outer frame 101 through heat-sealing, ultrasonic bonding or welding, laser-bonding, or the like. For example, when the membrane panel 100 is formed through ultrasonic welding, ultrasonic vibrational energy may be focused into a specific interface area between the membrane sheet 102 and the outer frame 101, thereby securely welding, bonding, or otherwise securely connecting the membrane sheet 102 to the outer frame 101. In at least one embodiment, a ridge may extend over and/or around the outer frame 101. The membrane sheet 102 may be positioned on the outer frame 101, and the ultrasonic energy may be focused into the interface between the membrane sheet 102 and the ridge.
In at least one other embodiment, laser-bonding may he used to integrate the membrane sheet 102 into the outer frame 101. For example, a laser may be used to melt portions of the membrane sheet 102 into portions of the outer frame 101, or vice versa. The heat of the laser melts the membrane sheet 102 and/or the outer frame 101 to one another, thereby providing a secure connection therebetween. Alternatively, thermal plate bonding may be used to melt portions of the membrane sheet 102 and the outer frame 101 together.
The membrane sheet 102 may be integrally secured to lower surfaces 112 of the end brackets 104 and upper surfaces 110 of the lateral brackets 106, or vice versa. Once integrated with the outer frame 102, the membrane sheet 102 spans over and/or through the entire area of the opening 122 (shown in
Optionally, the membrane panel 100 may include a sealing layer 140, which may be formed of a compressible material, such as foam. Alternatively, the sealing layer 140 may he a sealing gasket, for example. Also, alternatively, the sealing layer 140 may be a silicone or an adhesive. In at least one embodiment, the sealing layer 140 may include two strips 142 of sealant located along opposing frame segments, such as the end brackets 104.
The spacer 200 may include alignment tabs 208 that extend outwardly along the length of the outermost rails 202′. The alignment tabs 208 may be configured to be received in the spacer-securing features 120 of the membrane panels 100 (shown in
Referring to
An upper membrane panel 100b may be subsequently mounted on top of the spacer 200. Optionally, the upper membrane panel 100b may be rotated 90° with respect to the lower panel 100a upon mounting. Continuing the stacking pattern shown, an additional spacer (not shown) may be added above the upper panel 100b and aligns with the upper panel 100b such that a subsequent spacer may be rotated 90° relative to the spacer 200. Consequently, the channels 206 through the spacer 200 may be orthogonal to the channels (not shown) through the adjacent spacer, so that air flows through the channels 206 of the spacer 200 in a cross-flow direction relative to the air through the channels of the adjacent spacer. Alternatively, the membrane panels 100 and the spacers 200 may be arranged to support various fluid flow orientations, such as counter-flow, concurrent flow, and the like.
The first fluid stream 403 direction may be perpendicular to the second fluid stream 404 direction through the assembly 400. As shown, the spacers 200 may be alternately positioned 90° relative to one another, so that the channels 206b are orthogonal to the channels 206a. Consequently, the fluid stream 403 through the assembly 400 is surrounded above and below by membrane sheets 102 (shown in
The energy exchange assembly 400 may be oriented so that the fluid stream 403 may be outside air that is to be conditioned, while the second fluid stream 404 may be exhaust, return, or scavenger air that is used to condition the outside air before the outside air is supplied to downstream HVAC equipment and/or an enclosed space as supply air. Heat and moisture may be transferred between the first and second fluid streams 403 and 404 through the membrane sheets 102 (shown in
As shown, the membrane panels 100 may be secured between outer upstanding beams 410. As shown, the beams 410 may generally be at the corners of the energy exchange assembly 400. Alternatively, the energy exchange assembly 400 may not include the beams 410. Instead, the energy exchange assembly 400 may be formed through a stack of multiple membrane panels 100.
As an example of operation, the first fluid stream 403 may enter an inlet side 412 as cool, dry air. As the first fluid stream 403 passes through the energy exchange assembly 400, the temperature and humidity of the first fluid stream 403 are both increased through energy transfer with the second fluid stream 404 that enters the energy exchange assembly 400 through an inlet side 414 (that is perpendicular to the inlet side 412) as warm, moist air. Accordingly, the first fluid stream 403 passes out of an outlet side 416 as warmer, moister air (as compared to the first fluid stream 403 before passing into the inlet side 412), while the second fluid stream 404 passes out of an outlet side 418 as cooler, drier air (as compared to the second fluid stream 404 before passing into the inlet side 414). In general, the temperature and humidity of the first and second fluid streams 403 and 404 passing through the assembly 400 tends to equilibrate with one another. For example, warm, moist air within the assembly 400 is cooled and dried by heat exchange with cooler, drier air; while cool, dry air is warmed and moistened by the warmer, cooler air.
The outer casing 502 may be formed of a metal (such as aluminum), plastic, or composite material. The outer casing 502 is configured to securely maintain the stack 520 in place to prevent misalignment. Upper and lower filler members 522 may be aligned vertically above and below the stack 520. The upper and lower filler members 522 may be mechanically attached to the cover 508 and the base 504, respectively, to prevent the stack 520 from movement in the vertical plane. The outer casing 502 may be riveted, screwed, bolted, or adhered together, for example. The filler members 506 may be foam layers (for example, polyurethane, Styrofoam, or the like) that compress the stack 520 under constant pressure.
Referring to
The frame members 602 may be configured to keep the membrane stacks 702 separated. For example, the center cross member 609 and T-angle members 608 may separate adjacent vertical columns of membrane stacks 702. The stacking frame 600 may be formed of extruded aluminum, plastic, or like materials. Sealing between each membrane stack 400 and the frame members 602 may be achieved by lining each member 602 with a thin foam layer, which may compress as the stack is assembled to provide a retention force. Alternatively, or in addition, sealant or silicone may be used.
The membrane sheet 850 may be integrated with the outer frame 800. For example, bottom edges of the membrane sheet 850 may be bonded, welded, or the like to the top surface of the outer frame 800. In contrast to the outer frame 101 shown in
As shown, the connecting brackets 902 may include a triangular cross-section (when viewed in cross-section along the profile) on each end to fit against the outer frame 800. Alternatively, the connecting brackets 902 may have other than triangular cross-sectional shapes, depending on the size and shape of the outer frame 800. In at least one embodiment, a thin foam may be added to one side, through either injection-molding or bonding, or an adhesive or sealant may be used to provide sealing between the connecting brackets 902 and the outer frame 800. Additional alignment features (not shown) may be added to both the outer frame 800 and/or the membrane spacer 900 to ensure proper alignment of each layer within a membrane stack.
Any of the outer frames and the membrane spacers described above may be formed as individual pieces, or integrally formed together as a single piece (such as through injection molding).
The housing 1304 includes a supply air inlet 1308 that connects to a supply air flow path 1310. The supply air flow path 1310 may be formed by ducts, conduits, plenum, channels, tubes, or the like, which may be formed by metal and/or plastic walls. The supply air flow path 1310 is configured to deliver supply air 1312 to the enclosed structure 1302 through a supply air outlet 1314 that connects to the connection line 1306.
The housing 1304 also includes a regeneration air inlet 1316 that connects to a regeneration air flow path 1318. The regeneration air flow path 1318 may be formed by ducts, conduits, plenum, tubes, or the like, which may be formed by metal and/or plastic walls. The regeneration air flow path 1318 is configured to channel regeneration air 1320 received from the atmosphere (for example, outside air) back to the atmosphere through an exhaust air outlet 3122.
As shown in
The supply air inlet 1308 may be positioned above the exhaust air outlet 1322, and the supply air flow path 1310 may be separated from the regeneration air flow path 1318 by a partition 1328. Similarly, the regeneration air inlet 1316 may be positioned above the supply air outlet 1314, and the supply air flow path 1310 may be separated from the regeneration air flow path 1318 by a partition 1330. Thus, the supply air flow path 1310 and the regeneration air flow path 1318 may cross one another proximate to a center of the housing 1304. While the supply air inlet 1308 may be at the top and left of the housing 1304 (as shown in
Alternatively, the supply air flow path 1310 and the regeneration air flow path 1318 may be inverted and/or otherwise re-positioned. For example, the exhaust air outlet 1322 may be positioned above the supply air inlet 1308. Additionally, alternatively, the supply air flow path 1310 and the regeneration air flow path 1318 may be separated from one another by more than the separating walls 1324 and 1326 and the partitions 1.328 and 1330 within the housing 1304. For example, spaces, which may contain insulation, may also be positioned between segments of the supply air flow path 1310 and the regeneration air flow path 1318. Also, alternatively, the supply air flow path 1310 and the regeneration air flow path 3118 may simply be straight, linear segments that do not cross one another. Further, instead of being stacked, the housing 1304 may be shifted 180 degrees about a longitudinal axis aligned with the partitions 1328 and 1330, such that that supply air flow path 1310 and the regeneration air flow path 1318 are side-by-side, instead of one on top of another.
An air filter 1332 may be disposed within the supply air flow path 1310 proximate to the supply air inlet 1308. The air filter 1332 may be a standard HVAC filter configured to filter contaminants from the supply air 1312. Alternatively, the energy exchange system 1300 may not include the air filter 1332.
An energy transfer device 1334 may be positioned within the supply air flow path 1310 downstream from the supply air inlet 1308. The energy transfer device 1334 may span between the supply air flow path 1310 and the regeneration air flow path 1318. For example, a supply portion or side 1335 of the energy transfer device 1334 may be within the supply air flow path 1310, while a regenerating portion or side 1337 of the energy transfer device 1334 may be within the regeneration air flow path 1318. The energy transfer device 1334 may be a desiccant wheel, for example. However, the energy transfer device 1334 may be various other systems and assemblies, such as including liquid-to-air membrane energy exchangers (LAMEEs), as described below.
An energy exchange assembly 1336, such as described above with respect to
One or more fans 1338 may be positioned within the supply air flow path 1310 downstream from the energy exchange assembly 1336. The fan(s) 1338 is configured to move the supply air 1312 from the supply air inlet 1308 and out through the supply air outlet 1314 (and ultimately into the enclosed structure 1302). Alternatively, the fan(s) 1338 may be located at various other areas of the supply air flow path 1310, such as proximate to the supply air inlet 1308. Also, alternatively, the energy exchange system 1300 may not include the fan(s).
The energy exchange system 1300 may also include a bypass duct 1340 having an inlet end 1342 upstream from the energy transfer device 1334 within the supply air flow path 1310. The inlet end 1342 connects to an outlet end 1344 that is downstream from the energy transfer device 1334 within the supply air flow path 1310. An inlet damper 1346 may be positioned at the inlet end 1342, while an outlet damper 1348 may be positioned at the outlet end 1344. The dampers 1346 and 1348 may be actuated between open and closed positions to provide a bypass line for the supply air 1312 to bypass around the energy transfer device 1334. Further, a damper 1350 may be disposed within the supply air flow path 1310 downstream from the inlet end 1342 and upstream from the energy transfer device 1334. The damper 1350 may be closed in order to allow the supply air 1312 to flow into the bypass duct 1340 around the energy transfer device 1334. The dampers 1346, 1348, and 1350 may be modulated between fully-open and fully-closed positions to allow a portion of the supply air 1312 to pass through the energy transfer device 1334 and a remaining portion of the supply air 1312 to bypass the energy transfer device 1334. As such, the bypass dampers 1346, 1348, and 1350 may be operated to control the temperature and humidity of the supply air 1312 as it is delivered to the enclosed structure 1302. Examples of bypass ducts and dampers are further described in U.S. patent application Ser. No. 13/426,793, which was filed Mar. 22, 2012, and is hereby incorporated by reference in its entirety. Alternatively, the energy exchange system 1300 may not include the bypass duct 1340 and dampers 1346, 1348, and 1350.
As shown in
With respect to the regeneration air flow path 1318, an air filter 1352 may be disposed within the regeneration air flow path 1318 proximate to the regeneration air inlet 1316. The air filter 1352 may be a standard HVAC filter configured to filter contaminants from the regeneration air 1320, Alternatively, the energy exchange system 1300 may not include the air filter 1352.
The energy exchange assembly 1336 may be disposed within the regeneration air flow path 1318 downstream from the air filter 1352. The energy exchange assembly 1336 may be positioned within both the supply air flow path 1310 and the regeneration air flow path 1318. As such, the energy exchange assembly 1336 is configured to transfer sensible energy and latent energy between the regeneration air 1320 and the supply air 1312.
A heater 1354 may be disposed within the regeneration air flow path 1318 downstream from the energy exchange assembly 1336. The heater 1354 may be a natural gas, propane, or electric heater that is configured to heat the regeneration air 1320 before it encounters the energy transfer device 1334. Optionally, the energy exchange system 1300 may not include the heater 1354.
The energy transfer device 1334 is positioned within the regeneration air flow path 1318 downstream from the heater 1354. As noted, the energy transfer device 1334 may span between the regeneration air flow path 1318 and the supply air flow path 1310.
As shown in
One or more fans 1356 may be positioned within the regeneration air flow path 1318 downstream from the energy transfer device 1334. The fan(s) 1356 is configured to move the regeneration air 1320 from the regeneration air inlet 1316 and out through the exhaust air outlet 1322 (and ultimately into the atmosphere). Alternatively, the fan(s) 1356 may be located at various other areas of the regeneration air flow path 1318, such as proximate to the regeneration air inlet 1316. Also, alternatively, the energy exchange system 1300 may not include the fan(s).
The energy exchange system 1300 may also include a bypass duct 1358 having an inlet end 1360 upstream from the energy transfer device 1334 within the regeneration air flow path 1318. The inlet end 1360 connects to an outlet end 1362 that is downstream from the energy transfer device 1334 within the regeneration air flow path 1318. An inlet damper 1364 may be positioned at the inlet end 1360, while an outlet damper 1366 may be positioned at the outlet end 1362. The dampers 1364 and 1366 may be actuated between open and closed positions to provide a bypass line for the regeneration air 1320 to flow around the energy transfer device 1334. Further, a damper 1368 may be disposed within the regeneration air flow path 1318 downstream from the heater 1354 and upstream from the energy transfer device 334. The damper 1368 may be closed in order to allow the regeneration air to bypass into the bypass duct 1358 around the energy transfer device 1334. The dampers 1364, 1366, and 1368 may be modulated between fully-open and fully-closed positions to allow a portion of the regeneration air 1320 to pass through the energy transfer device 1334 and a remaining portion of the regeneration air 1320 to bypass the energy transfer device 1334. Alternatively, the energy exchange system 1300 may not include the bypass duct 1358 and dampers 1364 and 1366.
As shown in
As described above, the energy exchange assembly 1336 may be used with respect to the energy exchange system 300. Optionally, the energy exchange assembly 1336 may be used with various other systems that are configured to condition outside air and supply the conditioned air as supply air to an enclosed structure, for example. The energy exchange assembly 1336 may be positioned within a supply air flow path, such as the path 1310, and a regeneration or exhaust air flow path, such as the path 1318, of a housing, such as the housing 1304. The energy exchange system 1300 may include only the energy exchange assembly 1336 within the paths 1310 and 1318 of the housing 1304, or may alternatively include any of the additional components shown and described with respect to
Referring to
At 1702, a portion of a membrane sheet may be connected to at least a portion of the outer frame. 1700 and 1702 may simultaneously occur. For example, a membrane sheet may be inserted into a mold, such that edge portions of the membrane sheet are positioned within an internal chamber of the mold. Injection-molded plastic may flow within the internal chamber around the edge portions. Optionally, a membrane sheet may be positioned on top of or below an outer frame.
Next, at 1704, energy is exerted into an interface between the membrane sheet and the outer frame. For example, energy in the form of the heat of the injection-molded plastic may be exerted into the edge portions of the membrane sheet. As the plastic cools and hardens, thereby forming the outer frame, the edge portions of the membrane sheet securely fix to the hardening plastic. Alternatively, energy in the form of ultrasonic, laser, heat, or other such energy may be focused into an interface between the outer frame and the membrane sheet to melt the edge portions to the outer frame, or vice versa. Then, at 1706, the membrane sheet is integrated into the outer frame through the exerted energy.
As described above, embodiments of the present disclosure provide systems and methods of forming membrane panels and energy exchange assemblies. Each membrane panel may include an outer frame integrated or integrally formed with a membrane sheet that is configured to allow energy, such as sensible and/or latent energy, to be transferred therethrough.
In at least one embodiment, a stackable membrane panel is provided. The membrane panel may include an outer frame and a membrane sheet. The outer frame may have two sides and defines an interior opening extending through the outer frame. One or more frame segments define a perimeter of the opening. At least one membrane sheet is configured to be integrated to one or both of the two sides. The membrane sheet covers the opening and is integrated to the outer frame such that the membrane is fully sealed to the one or more frame segments.
In at least one embodiment, a method for constructing an air-to-air membrane heat exchanger is provided. The method includes mounting at least one membrane sheet on one side of an outer frame having a perimeter surrounding an interior opening. The method also includes integrating the membrane to the outer frame so the membrane is sealed to the outer frame along the entire perimeter. The method further includes stacking a plurality of the membrane-integrated outer frames alternately with a plurality of air spacers, the air spacers having channels configured to direct air flow between the membranes of adjacent membrane-integrated outer frames.
The membrane sheet may be integrated to the outer frame by at least one of injection-molding, heat-sealing, ultrasonic welding or bonding, laser welding or bonding, or the like. The membrane sheet may be integrated with the outer frame by a technique other than adhesives or wrapping techniques. A membrane spacer may be configured to be placed between two panels and vertically stacked to form an energy exchange assembly, in which the membrane spacer includes channels configured to direct fluid flow through the assembly.
In at least one embodiment, a membrane sheet may be directly integrated into an outer frame. The membrane sheet may be directly integrated by injection-molding, laser-bonding or welding, heat-sealing, ultrasonic welding or bonding, or the like. The integrating methods ensure that the membrane sheet is sealed around the outer edges, without the need for adhesives, or any wrapping technique. Compared to using adhesives, the systems and methods of forming the membrane panels described above are more efficient, and reduce time and cost of assembly. Further, embodiments of the present disclosure also reduce the potential of release of harmful VOCs.
While various spatial and directional terms, such as top, bottom, lower, mid, lateral, horizontal, vertical, front and the like may be used to describe embodiments of the present disclosure, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, ninny modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the disclosure without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the disclosure, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments of the disclosure, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application relates to and claims priority benefits from U.S. Provisional Patent Application No. 61/783,048, entitled “Membrane-Integrated Energy Exchanger,” filed Mar. 14, 2013, which is hereby expressly incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61783048 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14190715 | Feb 2014 | US |
Child | 16431397 | US |