MEMBRANE PROTEIN TARGETING ENGINEERED DEUBIQUITINASES AND METHODS OF USE THEREOF

Information

  • Patent Application
  • 20240002473
  • Publication Number
    20240002473
  • Date Filed
    November 05, 2021
    2 years ago
  • Date Published
    January 04, 2024
    4 months ago
Abstract
Provided herein are fusion protein comprising: an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a membrane protein. Also provided herein are methods of using the fusion proteins to treat a disease, including genetic diseases.
Description
1. FIELD

This disclosure relates to fusion proteins comprising an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a target membrane protein. The disclosure further relates to therapeutic methods of using the same.


2. BACKGROUND

A subset of genetic diseases are associated with a decrease in the level of expression of a functional membrane protein or a decrease in the stability of a membrane protein. For example, haploinsufficiency genetic diseases are caused by the presence a single copy of a wild-type allele in heterozygous combination with a loss of function variant allele, wherein the level of functional protein expressed is insufficient to produce the standard phenotype. Haploinsufficiency can arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it produces little or no functional protein. Despite recent developments in gene therapy, there are still no curative treatments for these diseases, and treatment typically centers on the management of symptoms. Therefore, new treatments are needed for diseases, e.g., genetic diseases, that are associated with decreased functional membrane protein expression or stability.


3. SUMMARY

Provided herein are, inter alia, engineered deubiquitinases (enDubs) that comprise a targeting moiety that specifically binds a membrane target protein and a catalytic domain of a deubiquitinase. The targeting moiety directs that deubiquitinase catalytic domain to the specific target membrane protein for deubiquitination. The fusion proteins described herein are particularly useful in methods of treating genetic diseases, particularly those associated with or caused by decreased expression or stability of a specific membrane protein.


In one aspect, provided herein are fusion proteins comprising: an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein that is not an ion channel.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease.


In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is BAP1, UCHL1, UCHL3, or UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is ATXN3 or ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is OTUB1 or OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1.


In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293.


In some embodiments, the moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, or a (VHH)2. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH or a (VHH)2.


In some embodiments, the membrane protein is selected from the group consisting of solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), proline-rich transmembrane protein 2 (PRRT2), usherin (USH2A), protocadherin-19 (PCDH19), tuberin (TSC2), hamartin (TSC1), dystrophin (DMD), Rhodopsin (RHO), protein jagged-1 (JAG1), inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), sugar transporter SWEET1 (SLC50A1), transmembrane protein 258 (TMEM258), or follicle stimulating hormone receptor (FSHR).


In some embodiments, the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 221-227 or 243-245.


In some embodiments, the effector domain is directly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly operably connected to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-306 comprising 1, 2, or 3 amino acid modifications.


In some embodiments, the effector domain is operably connected either directly or indirectly to the C terminus of the targeting domain. In some embodiments, the effector moiety is operably connected either directly or indirectly to the N terminus of the targeting domain.


In one aspect, provided herein are fusion proteins comprising: an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein selected from the group consisting of glutamate receptor ionotropic NMDA 2B (GRIN2B), cystic fibrosis transmembrane conductance regulator (CFTR), sodium channel protein type 1 subunit alpha (SCN1A), copper-transporting ATPase 2 (ATP7B), potassium voltage-gated channel subfamily KQT member 2 (KCNQ2), sodium channel protein type 2 subunit alpha (SCN2A), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), sodium channel protein type 8 subunit alpha (SCN8A), glutamate receptor ionotropic, NMDA 2A (GRIN2A), sodium- and chloride-dependent GABA transporter 1 (SLC6A1), sodium/potassium-transporting ATPase subunit alpha-2 (ATP1A2), sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3), sodium channel protein type 9 subunit alpha (SCN9A), gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), and potassium voltage-gated channel subfamily KQT member 3 (KCNQ3).


In some embodiments, the moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, or a (VHH)2. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH or a (VHH)2.


In some embodiments, the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 228-245.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease. In some embodiments, the deubiquitinase is a cysteine protease.


In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is BAP1, UCHL1, UCHL3, or UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is ATXN3 or ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is OTUB1 or OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1.


In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293.


In some embodiments, the effector domain is directly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly operably connected to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications. In some embodiments, the peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-306 comprising 1, 2, or 3 amino acid modifications.


In some embodiments, the effector domain is operably connected either directly or indirectly to the C terminus of the targeting domain. In some embodiments, the effector moiety is operably connected either directly or indirectly to the N terminus of the targeting domain.


In one aspect, provided herein are nucleic acid molecules encoding a fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule.


In one aspect, provided herein are vectors comprising a nucleic acid molecule described herein (e.g., a nucleic acid molecule encoding a fusion protein described herein). In some embodiments, the vector is a plasmid or a viral vector.


In one aspect, provided herein are viral particles comprising a nucleic acid molecule described herein (e.g., a nucleic acid molecule encoding a fusion protein described herein).


In one aspect, provided herein are in vitro cell or population of cells comprising a fusion protein described herein, a nucleic acid molecule described herein, or a vector described herein.


In one aspect, provided herein are pharmaceutical compositions comprising a fusion protein described herein, a nucleic acid described herein, a vector described herein, or a viral particle described herein, and an excipient.


In one aspect, provided herein are methods of making a fusion protein described herein, comprising introducing into an in vitro cell or population of cells a nucleic acid molecule described herein, a vector described herein, or a viral particle described herein; culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein, isolating the fusion protein from the culture medium, and optionally purifying the fusion protein.


In one aspect, provided herein are methods of treating or preventing a disease in a subject comprising administering a fusion protein described herein, a nucleic acid molecule described herein, a vector described herein, a viral particle described herein, or a pharmaceutical composition described herein, to a subject in need thereof. In some embodiments, the subject is human.


In some embodiments, the disease is associated with decreased expression of a functional version of the mitochondrial protein relative to a non-diseased control. In some embodiments, the disease is associated with decreased stability of a functional version of the mitochondrial protein relative to a non-diseased control. In some embodiments, the disease is associated with increased ubiquitination of the nuclear protein relative to a non-diseased control. In some embodiments, the disease is associated with increased ubiquitination and degradation of the mitochondrial protein relative to a non-diseased control. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a genetic disease. In some embodiments, the genetic disease is a haploinsufficiency disease.


In some embodiments, the disease is a GRIN2B-Related Disorder, a SCN2A-Related Disorder, a SCN8A-Related Disorder, SLC6A1-Related Disorder, a PRRT2 Dyskinesia & Epilepsy, a GRIN2A-Related Disorder, a CACNA1A-Related Disorder, a SCN9A Epilepsy, a PCDH19 Encephalopathy, GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, Usher syndrome type 2A, early infantile epileptic encephalopathy type 9, tuberous sclerosis type 2; tuberous sclerosis type 1, a KCNQ2-Related Disorder (e.g., epileptic encephalopathy), Becker Muscular Dystrophy, autosomal Dominant RP, Alagille syndrome 1, Gillespie Syndrome.


In some embodiments, the disease is early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; epilepsy (e.g., focal, with speech disorder and with or without mental retardation), myoclonic-atonic epilepsy, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy, or a KCNQ2-Related Disorder (e.g., epileptic encephalopathy).


In some embodiments, the disease is a GRIN2B-Related Disorder, a SCN2A-Related Disorder, a SCN8A-Related Disorder, SLC6A1-Related Disorder, a PRRT2 Dyskinesia & Epilepsy, a GRIN2A-Related Disorder, a CACNA1A-Related Disorder, a SCN9A Epilepsy, a PCDH19 Encephalopathy, early infantile epileptic encephalopathy type 9, early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, epilepsy (e.g., focal, with speech disorder and with or without mental retardation), KCNQ2 encephalopathy, myoclonic-atonic epilepsy, Usher syndrome type 2A, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy; tuberous sclerosis type 2; tuberous sclerosis type 1, Becker Muscular Dystrophy, autosomal Dominant RP, Alagille syndrome 1, or Gillespie Syndrome.


In some embodiments, the target membrane protein is GRIN2B, and the disease is a GRIN2B related disorder (e.g., an epileptic encephalopathy); the target membrane protein is GRIN2B, and the disease is an early infantile epileptic encephalopathy; the target membrane protein is GRIN2B, and the disease is early infantile epileptic encephalopathy type 27; the target membrane protein is CFTR, and the disease is cystic fibrosis; the target membrane protein is SCN1A, and the disease is Dravet syndrome; the target membrane protein is ATP7B, and the disease is Wilson disease; the target membrane protein is CACNA1A, and the disease is a CACA1A related disorder; the target membrane protein is CACNA1A, and the disease is episodic ataxia type 2; the target membrane protein is KCNQ2, and the disease is an KCNQ2 encephalopathy; the target membrane protein is KCNQ2, and the disease is an epileptic encephalopathy; the target membrane protein is SCN2A, and the disease is a SCN2A related disorder (e.g., an epileptic encephalopathy); the target membrane protein is SCN2A, and the disease is early infantile epileptic encephalopathy type 11; the target membrane protein is SLC2A1, and the disease is GLUT1 deficiency syndrome; the target membrane protein is SCN8A, and the disease is a SCN8A related disorder (e.g., an epileptic encephalopathy); the target membrane protein is SCN8A, and the disease is an epileptic encephalopathy; the target membrane protein is SCN8A, and the disease is early infantile epileptic encephalopathy type 13; the target membrane protein is PRRT2, and the disease is a PRRPT2 dyskinesia and/or epilepsy; the target membrane protein is PRRT2, and the disease is an episodic kinesigenic dyskinesia type; the target membrane protein is PRRT2, and the disease is episodic kinesigenic dyskinesia type 1; the target membrane protein is GRIN2A, and the disease is a GRIN2A related disorder; the target membrane protein is GRIN2A, and the disease is epilepsy; the target membrane protein is GRIN2A, and the disease is focal epilepsy; the target membrane protein is GRIN2A, and the disease is focal epilepsy with speech disorder and with or without mental retardation; the target membrane protein is SLC6A1, and the disease is a SLC6A1 related disorder; the target membrane protein is SLC6A1, and the disease is epilepsy; the target membrane protein is SLC6A1, and the disease is myoclonic-atonic epilepsy; the target membrane protein is USH2A, and the disease is Usher syndrome; the target membrane protein is USH2A, and the disease is Usher syndrome type 2A; the target membrane protein is ATP1A2, and the disease is alternating hemiplegia of childhood; the target membrane protein is ATP1A2, and the disease is alternating hemiplegia of childhood type 1; the target membrane protein is ATP1A3, and the disease is alternating hemiplegia of childhood; the target membrane protein is ATP1A3, and the disease is alternating hemiplegia of childhood type 2; the target membrane protein is SCN9A, and the disease an SCN9A epilepsy; the target membrane protein is SCN9A1, and the disease an SCN9A epilepsy; the target membrane protein is SCN9A1, and the disease is epilepsy; the target membrane protein is SCN9A1, and the disease is epilepsy type 7; the target membrane protein is PCDH19, and the disease is PCDH19 encephalopathy; the target membrane protein is PCDH19, and the disease is an early infantile epileptic encephalopathy; the target membrane protein is PCDH19, and the disease is early infantile epileptic encephalopathy type 9; the target membrane protein is GABRB3, and the disease is epilepsy; the target membrane protein is GABRB3, and the disease is GABRB3 associated epilepsy; the target membrane protein is TSC2, and the disease is tuberous sclerosis; the target membrane protein is TSC2, and the disease is tuberous sclerosis type 2; the target membrane protein is TSC2, and the disease is tuberous sclerosis type 1; the target membrane protein is TSC1, and the disease is tuberous sclerosis; the target membrane protein is TSC1, and the disease is tuberous sclerosis type 1; the target membrane protein is TSC1, and the disease is tuberous sclerosis type 2; the target membrane protein is KCNQ3, and the disease is KCNQ2-Related Disorders (Epileptic Encephalopathy); the target membrane protein is DMD, and the disease is Becker Muscular Dystrophy; the target membrane protein is RHO, and the disease is Autosomal Dominant RP; the target membrane protein is JAG1, and the disease is Alagille syndrome 1; the target membrane protein is ITPR1, and the disease is Gillespie Syndrome; or the target membrane protein is FSHR, and the disease is ovarian dysgenesis 1 (ODG1).


In some embodiments, the fusion protein is administered at a therapeutically effective dose. In some embodiments, the fusion protein is administered systematically or locally. In some embodiments, the fusion protein is administered intravenously, subcutaneously, or intramuscularly.


In one aspect, provided herein are fusion proteins described herein, polynucleotides described herein, DNA described herein, RNA described herein, vectors described herein, viral particles described herein, and pharmaceutical compositions described herein for use as a medicament.


In one aspect, provided herein are fusion proteins described herein, polynucleotides described herein, DNA described herein, RNA described herein, vectors described herein, viral particles described herein, and pharmaceutical compositions described herein for use in treating or inhibiting a genetic disorder.


In one aspect, provided herein are fusion proteins comprising: (a) an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and (b) a targeting domain comprising a targeting moiety that specifically binds a membrane protein that is not an ion channel.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease.


In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, and USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is selected from the group consisting of BAP1, UCHL1, UCHL3, and UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is selected from the group consisting of ATXN3 and ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is selected from the group consisting of OTUB1 and OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is selected from the group consisting of MINDY1, MINDY2, MINDY3, and MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1.


In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220.


In some embodiments, the moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), or a VHH. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH.


In some embodiments, the membrane protein is selected from the group consisting of solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), proline-rich transmembrane protein 2 (PRRT2), usherin (USH2A), protocadherin-19 (PCDH19), tuberin (TSC2), hamartin (TSC1), and dystrophin (DMD).


In some embodiments, the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-227 or 243-245.


In some embodiments, the effector domain is directly fused to the targeting domain.


In some embodiments, the effector domain is indirectly fused to the targeting domain.


In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins.


In some embodiments, the effector domain is fused to the C terminus of the targeting domain. In some embodiments, the effector moiety is fused to the N terminus of the targeting domain.


In one aspect, provided herein are fusion proteins comprising: (a) an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and (b) a targeting domain comprising a targeting moiety that specifically binds a membrane protein selected from the group consisting of glutamate receptor ionotropic NMDA 2B (GRIN2B), cystic fibrosis transmembrane conductance regulator (CFTR), sodium channel protein type 1 subunit alpha (SCN1A), copper-transporting ATPase 2 (ATP7B), potassium voltage-gated channel subfamily KQT member 2 (KCNQ2), sodium channel protein type 2 subunit alpha (SCN2A), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), sodium channel protein type 8 subunit alpha (SCN8A), glutamate receptor ionotropic, NMDA 2A (GRIN2A), sodium- and chloride-dependent GABA transporter 1 (SLC6A1), sodium/potassium-transporting ATPase subunit alpha-2 (ATP1A2), sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3), sodium channel protein type 9 subunit alpha (SCN9A), gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), and potassium voltage-gated channel subfamily KQT member 3 (KCNQ3).


In some embodiments, the moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof.


In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), or a VHH. In some embodiments, the antibody, or functional fragment or functional variant thereof, comprises a VHH.


In some embodiments, the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 228-245.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease.


In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.


In some embodiments, the cysteine protease is a USP. In some embodiments, the USP is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, and USP46.


In some embodiments, the cysteine protease is a UCH. In some embodiments, the UCH is selected from the group consisting of BAP1, UCHL1, UCHL3, and UCHL5.


In some embodiments, the cysteine protease is a MJD. In some embodiments, the MJD is selected from the group consisting of ATXN3 and ATXN3L.


In some embodiments, the cysteine protease is a OTU. In some embodiments, the OTU is selected from the group consisting of OTUB1 and OTUB2.


In some embodiments, the cysteine protease is a MINDY. In some embodiments, the MINDY is selected from the group consisting of MINDY1, MINDY2, MINDY3, and MINDY4.


In some embodiments, the cysteine protease is a ZUFSP. In some embodiments, the ZUFSP is ZUP1.


In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220.


In some embodiments, the effector domain is directly fused to the targeting domain.


In some embodiments, the effector domain is indirectly fused to the targeting domain.


In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker. In some embodiments, the effector domain is indirectly fused to the targeting domain via a peptide linker of sufficient length such that the effector domain and the targeting domain can simultaneous bind the respective target proteins.


In some embodiments, the effector domain is fused to the C terminus of the targeting domain. In some embodiments, the effector moiety is fused to the N terminus of the targeting domain.


In one aspect, provided herein are nucleic acid molecules encoding the fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule.


In one aspect, provided herein are vectors comprising a nucleic acid molecule described herein. In some embodiments, the vector is a plasmid or a viral vector.


In one aspect, provided herein are viral particles comprising a nucleic acid described herein.


In one aspect, described herein is an in vitro cell or population of cells comprising a fusion protein described herein, a nucleic acid molecule described herein, or a vector described herein.


In one aspect, provided herein are pharmaceutical compositions comprising a fusion protein described herein, a nucleic acid molecule described herein, a vector described herein, or a viral particle described herein, and an excipient.


In one aspect, provided herein are methods of making a fusion protein described herein, comprising (a) introducing into an in vitro cell or population of cells a nucleic acid described herein, a vector described herein, or a viral particle described herein; (b) culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein, (c) isolating the fusion protein from the culture medium, and (d) optionally purifying the fusion protein.


In one aspect, provided herein are methods of treating a disease in a subject comprising administering a fusion protein described herein, a nucleic acid described herein, a vector described herein, or a viral particle described herein, or a pharmaceutical composition described herein, to a subject in need thereof.


In some embodiments, the subject is human.


In some embodiments, the disease is associated with decreased expression of a functional version of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is associated with decreased stability of a functional version of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is associated with increased ubiquitination and degradation of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is a genetic disease.


In some embodiments, the disease is GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, Usher syndrome type 2A, early infantile epileptic encephalopathy type 9, tuberous sclerosis type 2; tuberous sclerosis type 1, a KCNQ2-Related Disorder (e.g., epileptic encephalopathy), Becker Muscular Dystrophy, autosomal Dominant RP, Alagille syndrome 1, and Gillespie Syndrome.


In some embodiments, the disease is selected from the group consisting of early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; epilepsy (e.g., focal, with speech disorder and with or without mental retardation), myoclonic-atonic epilepsy, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy, and a KCNQ2-Related Disorder (e.g., epileptic encephalopathy).


In some embodiments, the disease is selected from the group consisting of GRIN2B-Related Disorder, early infantile epileptic encephalopathy type 9, early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, epilepsy (e.g., focal, with speech disorder and with or without mental retardation), myoclonic-atonic epilepsy, Usher syndrome type 2A, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy; tuberous sclerosis type 2; tuberous sclerosis type 1, Becker Muscular Dystrophy, autosomal Dominant RP, Alagille syndrome 1, and Gillespie Syndrome.


In some embodiments, the disease is a haploinsufficiency disease.


In some embodiments, the fusion protein is administered at a therapeutically effective dose.


In some embodiments, the fusion protein is administered systematically or locally.


In some embodiments, the fusion protein is administered intravenously, subcutaneously, or intramuscularly.


In one aspect, provided herein are nucleic acid molecules encoding the fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule.


In one aspect, provided herein are vectors comprising a nucleic acid molecule described herein. In some embodiments, the vector is a plasmid or a viral vector.


In one aspect, provided herein are viral particles comprising a nucleic acid described herein.


In one aspect, described herein is an in vitro cell or population of cells comprising a fusion protein described herein, a nucleic acid molecule described herein, or a vector described herein.


In one aspect, provided herein are pharmaceutical compositions comprising a fusion protein described herein, a nucleic acid molecule described herein, a vector described herein, or a viral particle described herein, and an excipient.


In one aspect, provided herein are methods of making a fusion protein described herein, comprising (a) introducing into an in vitro cell or population of cells a nucleic acid described herein, a vector described herein, or a viral particle described herein; (b) culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein, (c) isolating the fusion protein from the culture medium, and (d) optionally purifying the fusion protein.


In one aspect, provided herein are methods of treating a disease in a subject comprising administering a fusion protein described herein, a nucleic acid described herein, a vector described herein, or a viral particle described herein, or a pharmaceutical composition described herein, to a subject in need thereof.


In some embodiments, the subject is human.


In some embodiments, the disease is associated with decreased expression of a functional version of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is associated with decreased stability of a functional version of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is associated with increased ubiquitination and degradation of the membrane protein relative to a non-diseased control.


In some embodiments, the disease is a genetic disease.


In some embodiments, the disease is early infantile epileptic encephalopathy type 2, Wilson disease, early infantile epileptic encephalopathy type 4, mental retardation autosomal dominant 5, aphasia, alagille syndrome 1, epilepsy, tuberous sclerosis-2, tuberous sclerosis-1, KIF1A-associated neurological disorder, encephalopathy, Phelan-McDermid syndrome, Becker Muscular Dystrophy, RP1, retinitis pigmentosa 1, dilated cardiomyopathy 1G, DYNC1H1 Syndrome, TRIO-Related intellectual disability (ID), and USP9X Development Disorder.


The method of any one of claims 43-48, wherein the disease is early infantile epileptic encephalopathy type 2, Wilson disease, early infantile epileptic encephalopathy type 4, mental retardation autosomal dominant 5, aphasia primary progressive & FTD (frontotemporal degeneration), alagille syndrome 1, epilepsy familial focal with variable foci 1, tuberous sclerosis-2, tuberous sclerosis-1, KIF1A-associated neurological disorder, encephalopathy, Phelan-McDermid syndrome, Becker Muscular Dystrophy, RP1, retinitis pigmentosa 1, dilated cardiomyopathy 1G, DYNC1H1 Syndrome, TRIO-Related intellectual disability (ID), and USP9X Development Disorder.


In some embodiments, the disease is a haploinsufficiency disease.


In some embodiments, the fusion protein is administered at a therapeutically effective dose.


In some embodiments, the fusion protein is administered systematically or locally.


In some embodiments, the fusion protein is administered intravenously, subcutaneously, or intramuscularly.





4. BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1D provides a schematic representation of exemplary fusion proteins described herein. FIG. 1A is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus a VHH that specifically binds a membrane target protein and the catalytic domain of a deubiquitinase. In this specific embodiment, the C-terminus of the VHH is directly connected to the N-terminus of the catalytic domain of the deubiquitinase. FIG. 1B is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus the catalytic domain of a deubiquitinase that specifically binds a membrane target protein and a VHH that specifically binds a membrane target protein. In this specific embodiment, the C-terminus of the catalytic domain of the deubiquitinase is directly connected to the N-terminus of the VHH. FIG. 1C is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus a VHH that specifically binds a membrane target protein and the catalytic domain of a deubiquitinase. In this specific embodiment, the C-terminus of the VHH is indirectly connected to the N-terminus of the catalytic domain of the deubiquitinase through a peptide linker. FIG. 1D is a schematic of an engineered deubiquitinase comprising from N′ to C′ terminus the catalytic domain of a deubiquitinase that specifically binds a membrane target protein and a VHH that specifically binds a membrane target protein. In this specific embodiment, the C-terminus of the catalytic domain of the deubiquitinase is indirectly connected to the N-terminus of the VHH through a peptide linker.



FIG. 2 is a schematic representation of the assay utilized in Example 3, to screen the effect of targeted deubiquitination of different membrane proteins on target protein expression.



FIG. 3 is a bar graph depicting the fold change in KCNQ1 protein expression relative to control (as indicated).



FIG. 4 is a bar graph depicting the fold change in SCN1A protein expression relative to control (as indicated).



FIG. 5 is a bar graph depicting the fold change in GRIN2B protein expression relative to control (as indicated).



FIG. 6 is a bar graph depicting the fold change in SLC50A1 protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).



FIG. 7 is a bar graph depicting the fold change in TREM258 protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).



FIG. 8 is a bar graph depicting the fold change in FSHR protein expression relative to control (deubiquitinase without the nanobody targeting the alfa-tag).





5. DETAILED DESCRIPTION
5.1 Overview

Ubiquitination is the process by which ubiquitin ligases mediate the addition of ubiquitin, a 76 amino acid regulatory protein, to a substrate protein. Ubiquitination generally starts by the attachment of a single ubiquitin molecule to a lysine amino acid residue of the substrate protein. Mevissen T. et al. Mechanisms of Deubiquitinase Specificity and Regulation Annual Review of Biochemistry 86:1, 159-192 (2017), the entire contents of which is incorporated by reference herein. These monoubiquitination events are abundant and serve various functions. Ubiquitin itself contains seven lysine residues, all of which can be ubiquitinated resulting in polyubiquitinated proteins. Komander, D. et al. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 (2009), the entire contents of which is incorporated by reference herein. Mono and polyubiquitination can have multiple effects on the substrate protein, including marking the substrate protein for degradation via the proteasome, altering the protein's cellular location, altering the protein's activity, and/or promoting or preventing normal protein interactions. See e.g., Hershko A. et al. The ubiquitin system. Annu Rev Biochem. 67:425-79 (1998); Nandi D, et al. The ubiquitin-proteasome system. J Biosci. March; 31(1):137-55 (2006), the entire contents of each of which is incorporated by reference herein. The effects of ubiquitination can be reversed or prevented by removing the ubiquitin protein(s) from the substrate protein. The removal of ubiquitin from a substrate protein is mediated by deubiquitinase (DUB) proteins. Id.


Numerous genetic diseases are associated with or caused by a decrease in the level of expression of a functional membrane protein or the stability of the membrane protein. For example, haploinsufficiency genetic diseases are caused by the presence a single copy of a wild-type allele in heterozygous combination with a loss of function variant allele, wherein the level of functional protein expressed is insufficient to produce the standard phenotype. See e.g., Johnson, A. et al, Causes and effects of haploinsufficiency. Biol Rev, 94: 1774-1785 (2019), the entire contents of which is incorporated by reference herein. Haploinsufficiency can arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it produces little or no functional protein. Other genetic disorders result from the ubiquitination and subsequent degradation of variant but functional proteins, resulting in a decrease in expression of the functional protein.


The present disclosure provides, inter alia, novel fusion proteins that comprise the catalytic domain (or functional fragment thereof) of a deubiquitinase and a targeting moiety, such as a VHH, that specifically binds to a target membrane protein. In some embodiments, decreased expression of a functional version of the target membrane protein or decreased stability of a functional version of the target membrane protein is associated with a disease phenotype. As such, the fusion proteins described herein are particularly useful in the treatment of genetic diseases characterized by a decrease in the level of expression of a functional target membrane protein or the stability of the target membrane protein. Upon expression of the fusion protein by host cells, the catalytic domain of the deubiquitinase will be specifically targeted to the target membrane protein and deubiquitinated, resulting in increased expression of the target membrane protein, e.g., to a level sufficient to alleviate the disease phenotype.


5.2 Definitions

The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. For example, the Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 3rd ed., 1999, Academic Press; and the Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press, provide one of skill with a general dictionary of many of the terms used in this disclosure.


It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise.


It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, use of the term “including” as well as other forms, such as “include,” “includes,” and “included,” is not limiting.


It is understood that wherever aspects are described herein with the language “comprising,” otherwise analogous aspects described in terms of “consisting of” and/or “consisting essentially of” are also provided.


The term “and/or” where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. Thus, the term “and/or” as used in a phrase such as “A and/or B” herein is intended to include “A and B,” “A or B,” “A” (alone), and “B” (alone). Likewise, the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).


Units, prefixes, and symbols are denoted in their Système International de Unites (SI) accepted form. Numeric ranges are inclusive of the numbers defining the range. The headings provided herein are not limitations of the various aspects of the disclosure, which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification in its entirety.


As described herein, any concentration range, percentage range, ratio range or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated.


The terms “about” or “comprising essentially of” refer to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, “about” or “comprising essentially of” can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, “about” or “comprising essentially of” can mean a range of up to 20%. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the application and claims, unless otherwise stated, the meaning of “about” or “comprising essentially of” should be assumed to be within an acceptable error range for that particular value or composition.


As used herein, the term “catalytic domain” in reference to a deubiquitinase refers to an amino acid sequence, or a variant thereof, of a deubiquitinase that is capable of mediating deubiquitination of a target protein. The catalytic domain may comprise a naturally occurring amino acid sequence of a deubiquitinase or it may comprise a variant amino acid sequence of a naturally occurring deubiquitinase. The catalytic domain may comprise the minimum amino acid sequence of a deubiquitinase to mediate deubiquitination of a target protein. The catalytic domain may comprise more than the minimum amino acid sequence of a deubiquitinase to mediate deubiquitination of a target protein.


The terms “polynucleotide” and “nucleic acid sequence” are used interchangeably herein and refer to a polymer of DNA or RNA. The polynucleotide sequence can be single-stranded or double-stranded; contain natural, non-natural, or altered nucleotides; and contain a natural, non-natural, or altered internucleotide linkage, such as a phosphoroamidate linkage or a phosphorothioate linkage, instead of the phosphodiester found between the nucleotides of an unmodified polynucleotide sequence. Polynucleotide sequences include, but are not limited to, all polynucleotide sequences which are obtained by any means available in the art, including, without limitation, recombinant means, e.g., the cloning of polynucleotide sequences from a recombinant library or a cell genome, using ordinary cloning technology and polymerase chain reaction, and the like, and by synthetic means.


The terms “amino acid sequence” and “polypeptide” are used interchangeably herein and refer to a polymer of amino acids connected by one or more peptide bonds.


The term “functional variant” as used herein in reference to a protein or polypeptide refers to a protein that comprises at least one amino acid modification (e.g., a substitution, deletion, addition) compared to the amino acid sequence of a reference protein, that retains at least one particular function. In some embodiments, the reference protein is a wild type protein. For example, a functional variant of an IL-2 protein can refer to an IL-2 protein comprising an amino acid substitution as compared to a wild type IL-2 protein that retains the ability to bind the intermediate affinity IL-2 receptor but abrogates the ability of the protein to bind the high affinity IL-2 receptor. Not all functions of the reference wild type protein need be retained by the functional variant of the protein. In some instances, one or more functions are selectively reduced or eliminated.


The term “functional fragment” as used herein in reference to a protein or polypeptide refers to a fragment of a reference protein that retains at least one particular function. For example, a functional fragment of an anti-HER2 antibody can refer to a fragment of the anti-HER2 antibody that retains the ability to specifically bind the HER2 antigen. Not all functions of the reference protein need be retained by a functional fragment of the protein. In some instances, one or more functions are selectively reduced or eliminated.


As used herein, the term “modification,” with reference to a polynucleotide sequence, refers to a polynucleotide sequence that comprises at least one substitution, alteration, inversion, addition, or deletion of nucleotide compared to a reference polynucleotide sequence. Modifications can include non-naturally nucleotides. As used herein, the term “modification,” with reference to an amino acid sequence refers to an amino acid sequence that comprises at least one substitution, alteration, inversion, addition, or deletion of an amino acid residue compared to a reference amino acid sequence. Modifications can include the inclusion of non-naturally occurring amino acid residues.


As used herein, the term “derived from” with reference to an amino acid sequence refers to an amino acid sequence that has at least 80% sequence identity to a reference naturally occurring amino acid sequence. For example, a catalytic domain derived from a naturally occurring deubiquitinase means that the catalytic domain has an amino acid sequence with at least 80% sequence identity to the sequence of the deubiquitinase catalytic domain from which it is derived. The term “derived from” as used herein does not denote any specific process or method for obtaining the amino acid sequence. For example, the amino acid sequence can be chemically or recombinantly synthesized.


The term “fusion protein” and grammatical equivalents as used herein refers to a protein that comprises an amino acid sequence derived from at least two separate proteins. The amino acid sequence of the at least two separate proteins can be directly connected through a peptide bond; or can be operably connected through an amino acid linker. Therefore, the term fusion protein encompasses embodiments, wherein the amino acid sequence of e.g., Protein A is directly connected to the amino acid sequence of Protein B through a peptide bond (Protein A-Protein B), and embodiments, wherein the amino acid sequence of e.g., Protein A is operably connected to the amino acid sequence of Protein B through an amino acid linker (Protein A-linker-Protein B).


The term “fuse” and grammatical equivalents thereof as used herein refers to the operable connection of an amino acid sequence derived from one protein to the amino acid sequence derived from different protein. The term fuse encompasses both a direct connection of the two amino acid sequences through a peptide bond, and the indirect connection through an amino acid linker.


An “isolated antibody” refers to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that binds specifically to HER2 is substantially free of antibodies that bind specifically to antigens other than HER2). An isolated antibody that binds specifically to HER2 may, however, cross-react with other antigens, such as HER2 molecules from different species. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals. By comparison, an “isolated” nucleic acid refers to a nucleic acid composition of matter that is markedly different, i.e., has a distinctive chemical identity, nature and utility, from nucleic acids as they exist in nature. For example, an isolated DNA, unlike native DNA, is a freestanding portion of a native DNA and not an integral part of a larger structural complex, the chromosome, found in nature. Further, an isolated DNA, unlike native DNA, can be used as a PCR primer or a hybridization probe for, among other things, measuring gene expression and detecting biomarker genes or mutations for diagnosing disease or predicting the efficacy of a therapeutic. An isolated nucleic acid may also be purified so as to be substantially free of other cellular components or other contaminants, e.g., other cellular nucleic acids or proteins, using standard techniques well known in the art.


As used herein, the term “antibody” or “antibodies” are used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity (i.e. antigen binding fragments as defined herein). The term antibody thus includes, for example, include full-length antibodies, antigen-binding fragments of full-length antibodies, molecules comprising antibody CDRs, VH regions, and/or VL regions; and antibody-like scaffolds (e.g., fibronectins). Examples of antibodies include, without limitation, monoclonal antibodies, recombinantly produced antibodies, monospecific antibodies, multispecific antibodies (including bispecific antibodies), human antibodies, humanized antibodies, chimeric antibodies, immunoglobulins, synthetic antibodies, tetrameric antibodies comprising two heavy chain and two light chain molecules, an antibody light chain monomer, an antibody heavy chain monomer, an antibody light chain dimer, an antibody heavy chain dimer, an antibody light chain-antibody heavy chain pair, intrabodies, heteroconjugate antibodies, antibody-drug conjugates, single domain antibodies (e.g., VHH, (VHH)2), monovalent antibodies, single chain antibodies, single-chain Fvs (scFv; (scFv)2), camelized antibodies, affybodies, Fab fragments (e.g., Fab, single chain Fab (scFab), F(ab′)2 fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies (including, e.g., anti-anti-Id antibodies), diabodies, tribodies, and antibody-like scaffolds (e.g., fibronectins), Fc fusions (e.g., Fab-Fc, scFv-Fc, VHH-Fc, (scFv)2-Fc, (VHH)2—Fc, and antigen-binding fragments of any of the above, and conjugates or fusion proteins comprising any of the above. In certain embodiments, antibodies described herein refer to polyclonal antibody populations. In certain embodiments, antibodies described herein refer to monoclonal antibody populations. Antibodies can be of any type (e.g., IgG, IgE, IgM, IgD, IgA or IgY), any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 or IgA2), or any subclass (e.g., IgG2a or IgG2b) of immunoglobulin (Ig) molecule. In certain embodiments, antibodies described herein are IgG antibodies, or a class (e.g., human IgG1 or IgG4) or subclass thereof. In a specific embodiment, the antibody is a humanized monoclonal antibody. In another specific embodiment, the antibody is a human monoclonal antibody.


The term “full-length antibody,” as used herein refers to an antibody having a structure substantially similar to a native antibody structure comprising two heavy chains and two light chains interconnected by disulfide bonds. In some embodiments, the two heavy chains comprise a substantially identical amino acid sequence; and the two light chains comprise a substantially identical amino acid sequence. Antibody chains may be substantially identical but not entirely identical if they differ due to post-translational modifications, such as C-terminal cleavage of lysine residues, alternative glycosylation patterns, etc.


The terms “antigen binding fragment” and “antigen binding domain” are used interchangeably herein and refer to one or more polypeptides, other than a full-length antibody, that is capable of specifically binding to antigen and comprises a portion of a full-length antibody (e.g., a VH, a VL). Exemplary antigen binding fragments include, but are not limited to, single domain antibodies (e.g., VHH, (VHH)2), single chain antibodies, single-chain Fvs (scFv; (scFv)2), camelized antibodies, affybodies, Fab fragments (e.g., Fab, single chain Fab (scFab), F(ab′)2 fragments, and disulfide-linked Fvs (sdFv). The antigen binding domain can be part of a larger protein, e.g., a full-length antibody.


The term “(scFv)2” as used herein refers to an antibody that comprises a first and a second scFv operably connected (e.g., via a linker). The first and second scFv can specifically bind the same or different antigens. In some embodiments, the first and second scFv are operably connected by an amino via an amino acid linker.


The term “(VHH)2” as used herein refers to an antibody that comprises a first and a second VHH operably connected (e.g., via a linker). The first and the second VHH can specifically bind the same or different antigens. In some embodiments, the first and second VHH are operably connected by an amino via an amino acid linker.


The term “Fab-Fc” as used herein refers to an antibody that comprises a Fab operably linked to an Fc domain or a subunit of an Fc domain. A full-length antibody described herein comprises two Fabs, one Fab operably connected to one Fc domain and the other Fab operably connected to a second Fc domain.


The term “scFv-Fc” as used herein refers to an antibody that comprises a scFv operably linked to an Fc domain or subunit of an Fc domain.


The term “VHH-Fc” as used herein refers to an antibody that comprises a VHH operably linked to an Fc domain or a subunit of an Fc domain.


The term “(scFv)2-Fc” as used herein refers to a (scFv)2 operably linked to an Fc domain or a subunit of an Fc domain.


The term “(VHH)2—Fc” as used herein refers to (VHH)2 operably linked to an Fc domain or a subunit of an Fc domain.


“Antibody-like scaffolds” are known in the art, for example, fibronectin and designed ankyrin repeat proteins (DARPins) have been used as alternative scaffolds for antigen-binding domains, see, e.g., Gebauer and Skerra, Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245-255 (2009) and Stumpp et al., Darpins: A new generation of protein therapeutics. Drug Discovery Today 13: 695-701 (2008). Exemplary antibody-like scaffold proteins include, but are not limited to, lipocalins (Anticalin), Protein A-derived molecules such as Z-domains of Protein A (Affibody), an A-domain (Avimer/Maxibody), a serum transferrin (trans-body); a designed ankyrin repeat protein (DARPin), VNAR fragments, a fibronectin (AdNectin), a C-type lectin domain (Tetranectin); a variable domain of a new antigen receptor beta-lactamase (VNAR fragments), a human gamma-crystallin or ubiquitin (Affilin molecules); a kunitz type domain of human protease inhibitors, microbodies such as the proteins from the knottin family, peptide aptamers and fibronectin (adnectin).


As used herein, the term “CDR” or “complementarity determining region” means the noncontiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. These particular regions have been described by Kabat et al., J. Biol. Chem. 252, 6609-6616 (1977) and Kabat et al., Sequences of protein of immunological interest. (1991), all of which are herein incorporated by reference in their entireties. Unless otherwise specified, the term “CDR” is a CDR as defined by Kabat et al., J. Biol. Chem. 252, 6609-6616 (1977) and Kabat et al., Sequences of protein of immunological interest. (1991).


As used herein, the term “framework (FR) amino acid residues” refers to those amino acids in the framework region of an antibody variable region. The term “framework region” or “FR region” as used herein, includes the amino acid residues that are part of the variable region, but are not part of the CDRs (e.g., using the Kabat definition of CDRs).


As used herein, the term “heavy chain” when used in reference to an antibody can refer to any distinct type, e.g., alpha (α), delta (δ), epsilon (γ), gamma (γ), and mu (μ), based on the amino acid sequence of the constant domain, which give rise to IgA, IgD, IgE, IgG, and IgM classes of antibodies, respectively, including subclasses of IgG, e.g., IgG1, IgG2, IgG3, and IgG4.


As used herein, the term “light chain” when used in reference to an antibody can refer to any distinct type, e.g., kappa (κ) or lambda (λ) based on the amino acid sequence of the constant domains. Light chain amino acid sequences are well known in the art. In specific embodiments, the light chain is a human light chain.


As used herein, the terms “variable region” refers to a portion of an antibody, generally, a portion of a light or heavy chain, typically about the amino-terminal 110 to 120 amino acids or 110 to 125 amino acids in the mature heavy chain and about 90 to 115 amino acids in the mature light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of a particular antibody for its particular antigen. The variability in sequence is concentrated in those regions called complementarity determining regions (CDRs) while the more highly conserved regions in the variable domain are called framework regions (FR). Without wishing to be bound by any particular mechanism or theory, it is believed that the CDRs of the light and heavy chains are primarily responsible for the interaction and specificity of the antibody with antigen. In certain embodiments, the variable region is a human variable region. In certain embodiments, the variable region comprises rodent or murine CDRs and human framework regions (FRs). In particular embodiments, the variable region is a primate (e.g., non-human primate) variable region. In certain embodiments, the variable region comprises rodent or murine CDRs and primate (e.g., non-human primate) framework regions (FRs).


The terms “VL” and “VL domain” are used interchangeably to refer to the light chain variable region of an antibody.


The terms “VH” and “VH domain” are used interchangeably to refer to the heavy chain variable region of an antibody.


As used herein, the terms “constant region” and “constant domain” are interchangeable and are common in the art. The constant region is an antibody portion, e.g., a carboxyl terminal portion of a light and/or heavy chain which is not directly involved in binding of an antibody to antigen but which can exhibit various effector functions, such as interaction with an Fc receptor (e.g., Fc gamma receptor). The constant region of an immunoglobulin (Ig) molecule generally has a more conserved amino acid sequence relative to an immunoglobulin (Ig) variable domain.


The term “Fc region” as used herein refers to the C-terminal region of an immunoglobulin (Ig) heavy chain that comprises from N- to C-terminus at least a CH2 domain operably connected to a CH3 domain. In some embodiments, the Fc region comprises an immunoglobulin (Ig) hinge region operably connected to the N-terminus of the CH2 domain. Examples of proteins with engineered Fc regions can be found in Saunders 2019 (K. O. Saunders, “Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life,” 2019, Frontiers in Immunology, V. 10, Art. 1296, pp. 1-20, which is incorporated by reference herein).


As used herein, the term “EU numbering system” refers to the EU numbering convention for the constant regions of an antibody, as described in Edelman, G. M. et al., Proc. Natl. Acad. USA, 63, 78-85 (1969) and Kabat et al, Sequences of Proteins of Immunological Interest, U.S. Dept. Health and Human Services, 5th edition, 1991, each of which is herein incorporated by reference in its entirety.


As used herein, the term “Kabat numbering system” refers to the Kabat numbering convention for variable regions of an antibody, see e.g., Kabat et al, Sequences of Proteins of Immunological Interest, U.S. Dept. Health and Human Services, 5th edition, 1991. Unless otherwise noted, numbering of the variable regions of an antibody are denoted according to the Kabat numbering system.


As used herein, the terms “specifically binds,” refers to molecules that bind to an antigen (e.g., epitope or immune complex) as such binding is understood by one skilled in the art. For example, a molecule that specifically binds to an antigen can bind to other peptides or polypeptides, generally with lower affinity as determined by, e.g., immunoassays, BIAcore®, KinExA 3000 instrument (Sapidyne Instruments, Boise, ID), or other assays known in the art. In a specific embodiment, molecules that specifically bind to an antigen bind to the antigen with a KA that is at least 2 logs (e.g., factors of 10), 2.5 logs, 3 logs, 4 logs or greater than the KA when the molecules bind non-specifically to another antigen. The skilled worker will appreciate that an antibody, as described herein, can specifically bind to more than one antigen (e.g., via different regions of the antibody molecule). The term specifically binds includes molecules that are cross reactive with the same antigen of a different species. For example, an antigen binding domain that specifically binds human CD20 may be cross reactive with CD20 of another species (e.g., cynomolgus monkey, or murine), and still be considered herein to specifically bind human CD20.


“Affinity” refers to the strength of the sum total of non-covalent interactions between a single binding site of a molecule (e.g., a receptor) and its binding partner (e.g., a ligand). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity, which reflects a 1:1 interaction between members of a binding pair (e.g., an antigen binding moiety and an antigen, or a receptor and its ligand). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (KD), which is the ratio of dissociation and association rate constants (koff and kon, respectively). Thus, equivalent affinities may comprise different rate constants, as long as the ratio of the rate constants remains the same. Affinity can be measured by well-established methods known in the art, including those described herein. A particular method for measuring affinity is Surface Plasmon Resonance (SPR).


The determination of “percent identity” between two sequences (e.g., amino acid sequences or nucleic acid sequences) can be accomplished using a mathematical algorithm. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”). A specific, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin S & Altschul S F (1990) PNAS 87: 2264-2268, modified as in Karlin S & Altschul S F (1993) PNAS 90: 5873-5877, each of which is herein incorporated by reference in its entirety. Such an algorithm is incorporated into the BLASTN, BLASTP, BLASTX programs of Altschul S F et al., (1990) J Mol Biol 215: 403, which is herein incorporated by reference in its entirety. BLAST nucleotide searches can be performed with the NBLAST nucleotide program parameters set, e.g., for score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecule described herein. BLAST protein searches can be performed with the BLASTP program parameters set, e.g., default settings; to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul S F et al., (1997) Nuc Acids Res 25: 3389-3402, which is herein incorporated by reference in its entirety. Alternatively, PSI BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI Blast programs, the default parameters of the respective programs (e.g., of BLASTP and BLASTN) can be used (see, e.g., National Center for Biotechnology Information (NCBI) on the worldwide web, ncbi.nlm.nih.gov). Another specific, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988, CABIOS 4:11-17, which is herein incorporated by reference in its entirety. Such an algorithm is incorporated in the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted. As described above, the percent identity is based on the amino acid matches between the smaller of two proteins. Therefore, for example, using NCBI Basic Local Alignment Tool-BLASTP program on the default settings (Search Parameters: word size 3, expect value 0.05, hitlist 100, Gapcosts 11,1; Matrix BLOSUM62, Filter string: F; Genetic Code: 1; Window Size: 40; Threshold: 11; Composition Based Stats: 2; Karlin-Altschul Statistics: Lambda: 0.31293; 0.267; K: 0.132922; 0.041; H: 0.401809; 0.14; and Relative Statistics: Effective search space: 288906); the percent identity between SEQ ID NO: 80 and SEQ ID NO: 293 is 100% identity.


As used herein, the term “operably connected” refers to a linkage of polynucleotide sequence elements or amino acid sequence elements in a functional relationship. For example, a polynucleotide sequence is operably connected when it is placed into a functional relationship with another polynucleotide sequence. In some embodiments, a transcription regulatory polynucleotide sequence e.g., a promoter, enhancer, or other expression control element is operably-linked to a polynucleotide sequence that encodes a protein if it affects the transcription of the polynucleotide sequence that encodes the protein.


The terms “subject” and “patient” are used interchangeably herein and include any human or nonhuman animal. The term “nonhuman animal” includes, but is not limited to, vertebrates such as nonhuman primates, sheep, dogs, and rodents such as mice, rats and guinea pigs. In some embodiments, the subject is a human.


As used herein, the term “administering” refers to the physical introduction of a therapeutic agent (or a precursor of the therapeutic agent that is metabolized or altered within the body of the subject to produce the therapeutic agent in vivo) to a subject, using any of the various methods and delivery systems known to those skilled in the art. Exemplary routes of include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion. The term “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation. A therapeutic agent may be administered via a non-parenteral route, or orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.


A “therapeutically effective amount” or “therapeutically effective dose” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. The ability of a therapeutic agent to promote disease regression can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


The terms “disease,” “disorder,” and “syndrome” are used interchangeably herein.


As used herein, the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a disease and/or symptom(s) associated therewith or obtaining a desired pharmacologic and/or physiologic effect. It will be appreciated that, although not precluded, treating a disease does not require that the disease or symptoms associated therewith be completely eliminated. In some embodiments, the effect is therapeutic, i.e., without limitation, the effect partially or completely reduces, diminishes, abrogates, abates, alleviates, decreases the intensity of, or cures a disease and/or adverse symptom attributable to the disease. In some embodiments, the effect is preventative, i.e., the effect protects or prevents an occurrence or reoccurrence of a disease. To this end, the presently disclosed methods comprise administering a therapeutically effective amount of a compositions as described herein.


5.3 Fusion Proteins

In certain aspects, provided herein are fusion proteins that comprise an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a moiety that specifically binds a target cytosolic protein.


5.3.1 Effector Domain

In some embodiments, the effector domain comprises a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof. In some embodiments, the deubiquitinase is human. In some embodiments, the catalytic domain is derived from a naturally occurring deubiquitinase (e.g., a naturally occurring human deubiquitinase).


In some embodiments, the amino acid sequence of the effector domain comprises the amino acid sequence of a full length deubiquitinase. In some embodiments, the amino acid sequence of the effector domain comprises the amino acid sequence of a catalytic domain of a deubiquitinase and an additional amino acid sequence at the N-terminal, C-terminal, or N-terminal and C-terminal end of the catalytic domain.


In some embodiments, the catalytic domain comprises a naturally occurring amino acid sequence of a deubiquitinase. In some embodiments, the catalytic domain comprises a variant of a naturally occurring deubiquitinase. In some embodiments, the amino acid sequence of the catalytic domain of the fusion protein is at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of a naturally occurring deubiquitinase. In some embodiments, the amino acid sequence of the catalytic domain of the fusion protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, or 20 amino acid modifications compared to the amino acid sequence of the catalytic domain of a naturally occurring deubiquitinase.


In some embodiments, the catalytic domain comprises the minimum amino acid sequence of a naturally occurring deubiquitinase sufficient to mediate deubiquitination of a target protein. In some embodiments, the catalytic domain comprises more than the minimum amino acid sequence of a naturally occurring deubiquitinase sufficient to mediate deubiquitination of a target protein.


In some embodiments, the deubiquitinase is a cysteine protease or a metalloprotease. In some embodiments, the deubiquitinase is a cysteine protease. In some embodiments, the deubiquitinase is a metalloprotease. In some embodiments, the deubiquitinase is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumor protease (OTU), a MINDY protease, or a ZUFSP protease.


Exemplary deubiquitinases include, but are not limited to, USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, USP46, BAP1, UCHL1, UCHL3, UCHL5, ATXN3, ATXN3L, OTUB1, OTUB2, MINDY1, MINDY2, MINDY3, MINDY4, and ZUP1. Exemplary deubiquitinases for use in the present disclosure are also disclosed in Komander, D. et al. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-563 (2009), the entire contents of which is incorporated by reference herein.


In some embodiments, the deubiquitinase is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, and USP46.


In some embodiments, the deubiquitinase is BAP1, UCHL1, UCHL3, or UCHL5. In some embodiments, the deubiquitinase is ATXN3 or ATXN3L. In some embodiments, the deubiquitinase is OTUB1 or OTUB2. In some embodiments, the deubiquitinase is MINDY1, MINDY2, MINDY3, or MINDY4. In some embodiments, the deubiquitinase is ZUP1. In some embodiments, the deubiquitinase is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.


In some embodiments, the deubiquitinase is a deubiquitinase described in Table 1. In some embodiments, the amino acid sequence of the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of a deubiquitinase in Table 1. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a catalytic domain of a deubiquitinase in Table 1. In some embodiments, the effector domain comprises a functional fragment of a deubiquitinase in Table 1. In some embodiments, the effector domain deubiquitinase comprises a functional variant of deubiquitinase in Table 1. In some embodiments, the catalytic domain comprises a functional fragment of a catalytic domain of a deubiquitinase in Table 1. In some embodiments, the catalytic domain comprises a functional variant of a catalytic domain of a deubiquitinase in Table 1.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical any one of SEQ ID NOS: 1-112. In some embodiments, the deubiquitinase consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical any one of SEQ ID NOS: 1-112.


In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 1. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 2. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 3. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 4. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 5. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 6. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 7. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 8. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 9. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 10. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 11. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 12. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 13. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 14. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 15. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 16. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 17. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 18. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 19. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 20. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 21. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 22. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 23. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 24. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 25. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 26. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 27. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 28. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 29. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 30. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 31. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 32. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 33. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 34. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 35. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 36. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 37. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 38. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 39. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 40. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 41. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 42. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 43. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 44. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 45. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 46. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 47. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 48. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 49. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 50. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 51. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 52. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 53. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 54. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 55. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 56. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 57. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 58. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 59. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 60. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 61. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 62. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 63. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 64. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 65. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 66. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 67. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 68. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 69. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 70. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 71. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 72. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 73. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 74. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 75. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 76. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 77. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 78. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 79. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 80. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 81. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 82. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 83. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 84. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 85. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 86. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 87. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 88. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 89. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 90. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 91. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 92. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 93. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 94. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 95. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 96. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 97. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 98. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 99. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 100. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 101. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 102. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 103. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 104. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 105. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 106. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 107. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 108. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 109. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 110. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 111. In some embodiments, the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 112.


In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of any one of SEQ ID NOS: 1-112. In some embodiments, the amino acid sequence of the effector domain consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of any one of SEQ ID NOS: 1-112.


In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 1. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 2. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 3. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 4. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 5. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 6. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 7. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 8. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 9. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 10. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 11. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 12. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 13. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 14. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 15. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 16. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 17. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 18. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 19. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 20. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 21. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 22. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 23. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 24. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 25. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 26. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 27. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 28. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 29. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 30. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 31. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 32. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 33. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 34. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 35. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 36. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 37. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 38. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 39. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 40. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 41. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 42. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 43. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 44. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 45. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 46. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 47. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 48. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 49. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 50. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 51. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 52. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 53. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 54. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 55. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 56. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 57. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 58. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 59. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 60. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 61. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 62. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 63. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 64. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 65. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 66. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 67. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 68. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 69. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 70. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 71. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 72. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 73. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 74. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 75. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 76. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 77. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 78. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 79. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 80. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 81. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 82. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 83. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 84. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 85. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 86. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 87. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 88. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 89. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 90. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 91. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 92. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 93. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 94. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 95. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 96. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 97. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 98. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 99. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 100. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 101. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 102. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 103. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 104. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 105. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 106. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 107. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 108. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 109. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 110. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 111. In some embodiments, the amino acid sequence of the effector domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of the catalytic domain of SEQ ID NO: 112.


In some embodiments, the catalytic domain is derived from a deubiquitinase that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.


In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 1. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 2. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 3. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 4. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 5. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 6. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 7. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 8. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 9. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 10. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 11. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 12. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 13. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 14. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 15. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 16. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 17. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 18. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 19. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 20. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 21. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 22. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 23. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 24. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 25. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 26. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 27. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 29. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 30. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 31. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 32. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 33. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 34. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 35. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 36. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 37. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 38. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 39. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 40. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 41. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 42. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 43. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 44. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 45. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 46. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 47. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 48. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 49. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 50. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 51. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 52. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 53. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 54. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 55. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 56. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 57. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 58. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 59. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 60. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 61. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 62. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 63. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 64. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 65. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 66. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 67. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 68. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 69. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 70. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 71. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 72. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 73. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 74. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 75. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 76. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 77. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 78. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 79. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 80. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 81. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 82. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 83. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 84. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 85. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 86. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 87. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 88. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 89. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 90. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 91. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 92. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 93. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 94. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 95. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 96. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 97. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 98. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 99. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 100. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 101. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 102. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 102. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 104. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 105. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 106. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 107. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 108. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 109. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 110. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 111. In some embodiments, the catalytic domain is derived from a deubiquitinase that consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 112.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293. In some embodiments, the catalytic domain consists of an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220.


In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 113. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 114. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 115. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 116. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 117. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 118. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 119. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 120. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 121. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 122. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 123. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 124. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 125. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 126. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 127. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 128. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 129. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 130. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 131. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 132. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 133. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 134. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 135. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 136. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 137. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 138. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 139. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 140. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 141. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 142. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 143. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 144. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 145. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 146. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 147. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 148. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 149. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 150. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 151. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 152. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 153. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 154. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 155. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 156. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 157. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 158. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 159. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 160. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 161. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 162. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 163. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 164. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 165. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 166. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 167. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 168. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 169. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 170. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 171. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 172. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 173. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 174. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 175. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 176. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 177. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 178. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 179. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 180. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 181. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 182. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 183. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 184. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 185. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 186. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 187. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 188. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 189. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 190. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 191. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 192. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 193. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 194. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 195. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 196. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 197. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 198. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 199. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 200. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 201. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 202. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 203. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 204. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 205. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 206. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 207. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 208. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 209. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 210. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 211. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 212. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 213. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 214. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 215. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 216. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 217. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 218. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 219. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 220. In some embodiments, the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293.


Table 1 below describes, the amino acid sequence of exemplary human deubiquitinases and exemplary catalytic domains of the exemplary human deubiquitinases. The catalytic domains are exemplary. A person of ordinary skill in the art could readily determine a sufficient amino acid sequence of a human deubiquitinase to mediate deubiquitination (e.g., a catalytic domain). Any of the human deubiquitinases (functional fragment or variants thereof) may be used to derive a catalytic domain for use in a fusion protein described herein.









TABLE 1







The amino acid sequence of exemplary human deubiquitinases


and exemplary catalytic domains of the same












SEQ

SEQ
Exemplary Catalytic Domains


Description
ID NO
Amino Acid Sequence
ID NO
(Amino Acid Sequence)














UBP27_HUMAN
1
MCKDYVYDKDIEQIAKEEQGEA
113
SSFTIGLRGLINLGNTCEMN


Ubiquitin

LKLQASTSTEVSHQQCSVPGLG

CIVQALTHTPILRDFFLSDR


carboxyl-

EKFPTWETTKPELELLGHNPRR

HRCEMPSPELCLVCEMSSLE


terminal

RRITSSFTIGLRGLINLGNTCF

RELYSGNPSPHVPYKLLHLV


hydrolase 27

MNCIVQALTHTPILRDFFLSDR

WIHARHLAGYRQQDAHEFLI




HRCEMPSPELCLVCEMSSLFRE

AALDVLHRHCKGDDVGKAAN




LYSGNPSPHVPYKLLHLVWIHA

NPNHCNCIIDQIFTGGLQSD




RHLAGYRQQDAHEFLIAALDVL

VTCQACHGVSTTIDPCWDIS




HRHCKGDDVGKAANNPNHCNCI

LDLPGSCTSFWPMSPGRESS




IDQIFTGGLQSDVTCQACHGVS

VNGESHIPGITTLTDCLRRE




TTIDPCWDISLDLPGSCTSFWP

TRPEHLGSSAKIKCGSCQSY




MSPGRESSVNGESHIPGITTLT

QESTKQLTMNKLPVVACFHF




DCLRRFTRPEHLGSSAKIKCGS

KRFEHSAKQRRKITTYISEP




CQSYQESTKQLTMNKLPVVACF

LELDMTPFMASSKESRMNGQ




HFKRFEHSAKQRRKITTYISEP

LQLPTNSGNNENKYSLFAVV




LELDMTPEMASSKESRMNGQLQ

NHQGTLESGHYTSFIRHHKD




LPTNSGNNENKYSLFAVVNHQG

QWFKCDDAVITKASIKDVLD




TLESGHYTSFIRHHKDQWEKCD

SEGYLLFYHKQVLEHESEKV




DAVITKASIKDVLDSEGYLLFY

KEMNTQAY




HKQVLEHESEKVKEMNTQAY







UBP48_HUMAN
2
MAPRLQLEKAAWRWAETVRPEE
114
NSFHNIDDPNCERRKKNSFV


Ubiquitin

VSQEHIETAYRIWLEPCIRGVC

GLTNLGATCYVNTFLQVWEL


carboxyl-

RRNCKGNPNCLVGIGEHIWLGE

NLELRQALYLCPSTCSDYML


terminal

IDENSFHNIDDPNCERRKKNSF

GDGIQEEKDYEPQTICEHLQ


hydrolase 48

VGLTNLGATCYVNTFLQVWFLN

YLFALLQNSNRRYIDPSGFV




LELRQALYLCPSTCSDYMLGDG

KALGLDTGQQQDAQEFSKLE




IQEEKDYEPQTICEHLQYLFAL

MSLLEDTLSKQKNPDVRNIV




LQNSNRRYIDPSGFVKALGLDT

QQQFCGEYAYVTVCNQCGRE




GQQQDAQEFSKLFMSLLEDTLS

SKLLSKFYELELNIQGHKQL




KQKNPDVRNIVQQQFCGEYAYV

TDCISEFLKEEKLEGDNRYF




TVCNQCGRESKLLSKFYELELN

CENCQSKQNATRKIRLLSLP




IQGHKQLTDCISEFLKEEKLEG

CTLNLQLMRFVEDRQTGHKK




DNRYFCENCQSKQNATRKIRLL

KLNTYIGFSEILDMEPYVEH




SLPCTLNLQLMRFVEDRQTGHK

KGGSYVYELSAVLIHRGVSA




KKLNTYIGFSEILDMEPYVEHK

YSGHYIAHVKDPQSGEWYKE




GGSYVYELSAVLIHRGVSAYSG

NDEDIEKMEGKKLQLGIEED




HYIAHVKDPQSGEWYKENDEDI

LAEPSKSQTRKPKCGKGTHC




EKMEGKKLQLGIEEDLAEPSKS

SRNAYMLVYRLQT




QTRKPKCGKGTHCSRNAYMLVY






RLQTQEKPNTTVQVPAFLQELV






DRDNSKFEEWCIEMAEMRKQSV






DKGKAKHEEVKELYQRLPAGAE






PYEFVSLEWLQKWLDESTPTKP






IDNHACLCSHDKLHPDKISIMK






RISEYAADIFYSRYGGGPRLTV






KALCKECVVERCRILRLKNQLN






EDYKTVNNLLKAAVKGSDGFWV






GKSSLRSWRQLALEQLDEQDGD






AEQSNGKMNGSTLNKDESKEER






KEEEELNENEDILCPHGELCIS






ENERRLVSKEAWSKLQQYFPKA






PEFPSYKECCSQCKILEREGEE






NEALHKMIANEQKTSLPNLFQD






KNRPCLSNWPEDTDVLYIVSQF






FVEEWRKFVRKPTRCSPVSSVG






NSALLCPHGGLMFTFASMTKED






SKLIALIWPSEWQMIQKLFVVD






HVIKITRIEVGDVNPSETQYIS






EPKLCPECREGLLCQQQRDLRE






YTQATIYVHKVVDNKKVMKDSA






PELNVSSSETEEDKEEAKPDGE






KDPDFNQSNGGTKRQKISHQNY






IAYQKQVIRRSMRHRKVRGEKA






LLVSANQTLKELKIQIMHAFSV






APFDQNLSIDGKILSDDCATLG






TLGVIPESVILLKADEPIADYA






AMDDVMQVCMPEEGFKGTGLLG






H







UBP3_HUMAN
3
MECPHLSSSVCIAPDSAKEPNG
115
TAICATGLRNLGNTCEMNAI


Ubiquitin

SPSSWCCSVCRSNKSPWVCLTC

LQSLSNIEQFCCYFKELPAV


carboxyl-

SSVHCGRYVNGHAKKHYEDAQV

ELRNGKTAGRRTYHTRSQGD


terminal

PLTNHKKSEKQDKVQHTVCMDC

NNVSLVEEFRKTLCALWQGS


hydrolase 3

SSYSTYCYRCDDFVVNDTKLGL

QTAFSPESLFYVVWKIMPNF




VQKVREHLQNLENSAFTADRHK

RGYQQQDAHEFMRYLLDHLH




KRKLLENSTLNSKLLKVNGSTT

LELQGGENGVSRSAILQENS




AICATGLRNLGNTCEMNAILQS

TLSASNKCCINGASTVVTAI




LSNIEQFCCYFKELPAVELRNG

FGGILQNEVNCLICGTESRK




KTAGRRTYHTRSQGDNNVSLVE

FDPELDLSLDIPSQFRSKRS




EFRKTLCALWQGSQTAFSPESL

KNQENGPVCSLRDCLRSFTD




FYVVWKIMPNERGYQQQDAHEF

LEELDETELYMCHKCKKKQK




MRYLLDHLHLELQGGENGVSRS

STKKFWIQKLPKVLCLHLKR




AILQENSTLSASNKCCINGAST

FHWTAYLRNKVDTYVEFPLR




VVTAIFGGILQNEVNCLICGTE

GLDMKCYLLEPENSGPESCL




SRKFDPFLDLSLDIPSQFRSKR

YDLAAVVVHHGSGVGSGHYT




SKNQENGPVCSLRDCLRSFTDL

AYATHEGRWFHENDSTVTLT




EELDETELYMCHKCKKKQKSTK

DEETVVKAKAYILFYVEHQ




KFWIQKLPKVLCLHLKRFHWTA






YLRNKVDTYVEFPLRGLDMKCY






LLEPENSGPESCLYDLAAVVVH






HGSGVGSGHYTAYATHEGRWFH






FNDSTVTLTDEETVVKAKAYIL






FYVEHQAKAGSDKL







U17LB_HUMAN
4
QLAPREKLPLSSRRPAAVGAGL
116
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

QNMGNTCYVNASLQCLTYTPPL

CLTYTPPLANYMLSREHSQT


carboxyl-

ANYMLSREHSQTCHRHKGCMLC

CHRHKGCMLCTMQAHITRAL


terminal

TMQAHITRALHNPGHVIQPSQA

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

LAAGFHRGKQEDAHEFLMFTVD

KQEDAHEFLMFTVDAMKKAC


like protein 11

AMKKACLPGHKQVDHHSKDTTL

LPGHKQVDHHSKDTTLIHQI




IHQIFGGYWRSQIKCLHCHGIS

FGGYWRSQIKCLHCHGISDT




DTFDPYLDIALDIQAAQSVQQA

FDPYLDIALDIQAAQSVQQA




LEQLVKPEELNGENAYHCGVCL

LEQLVKPEELNGENAYHCGV




QRAPASKTLTLHTSAKVLILVL

CLQRAPASKTLTLHTSAKVL




KRFSDVTGNKIAKNVQYPECLD

ILVLKRFSDVTGNKIAKNVQ




MQPYMSQTNTGPLVYVLYAVLV

YPECLDMQPYMSQTNTGPLV




HAGWSCHNGHYFSYVKAQEGQW

YVLYAVLVHAGWSCHNGHYF




YKMDDAEVTASSITSVLSQQAY

SYVKAQEGQWYKMDDAEVTA




VLFYIQKSEWERHSESVSRGRE

SSITSVLSQQAYVLFYIQKS




PRALGAEDTDRRATQGELKRDH






PCLQAPELDEHLVERATQESTL






DHWKFLQEQNKTKPEENVRKVE






GTLPPDVLVIHQSKYKCGMKNH






HPEQQSSLLNLSSTTPTHQESM






NTGTLASLRGRARRSKGKNKHS






KRALLVCQ







UBP1_HUMAN
5
MPGVIPSESNGLSRGSPSKKNR
117
LPFVGLNNLGNTCYLNSILQ


Ubiquitin

LSLKFFQKKETKRALDETDSQE

VLYFCPGFKSGVKHLENIIS


carboxyl-

NEEKASEYRASEIDQVVPAAQS

RKKEALKDEANQKDKGNCKE


terminal

SPINCEKRENLLPFVGLNNLGN

DSLASYELICSLQSLIISVE


hydrolase 1

TCYLNSILQVLYFCPGFKSGVK

QLQASFLLNPEKYTDELATQ




HLENIISRKKEALKDEANQKDK

PRRLLNTLRELNPMYEGYLQ




GNCKEDSLASYELICSLQSLII

HDAQEVLQCILGNIQETCQL




SVEQLQASFLLNPEKYTDELAT

LKKEEVKNVAELPTKVEEIP




QPRRLLNTLRELNPMYEGYLQH

HPKEEMNGINSIEMDSMRHS




DAQEVLQCILGNIQETCQLLKK

EDFKEKLPKGNGKRKSDTEF




EEVKNVAELPTKVEEIPHPKEE

GNMKKKVKLSKEHQSLEENQ




MNGINSIEMDSMRHSEDEKEKL

RQTRSKRKATSDTLESPPKI




PKGNGKRKSDTEFGNMKKKVKL

IPKYISENESPRPSQKKSRV




SKEHQSLEENQRQTRSKRKATS

KINWLKSATKQPSILSKFCS




DTLESPPKIIPKYISENESPRP

LGKITTNQGVKGQSKENECD




SQKKSRVKINWLKSATKQPSIL

PEEDLGKCESDNTTNGCGLE




SKFCSLGKITTNQGVKGQSKEN

SPGNTVTPVNVNEVKPINKG




ECDPEEDLGKCESDNTTNGCGL

EEQIGFELVEKLFQGQLVLR




ESPGNTVTPVNVNEVKPINKGE

TRCLECESLTERREDFQDIS




EQIGFELVEKLFQGQLVLRTRC

VPVQEDELSKVEESSEISPE




LECESLTERREDFQDISVPVQE

PKTEMKTLRWAISQFASVER




DELSKVEESSEISPEPKTEMKT

IVGEDKYFCENCHHYTEAER




LRWAISQFASVERIVGEDKYFC

SLLEDKMPEVITIHLKCFAA




ENCHHYTEAERSLLEDKMPEVI

SGLEFDCYGGGLSKINTPLL




TIHLKCFAASGLEFDCYGGGLS

TPLKLSLEEWSTKPTNDSYG




KINTPLLTPLKLSLEEWSTKPT

LFAVVMHSGITISSGHYTAS




NDSYGLFAVVMHSGITISSGHY

VKVTDLNSLELDKGNFVVDQ




TASVKVTDLNSLELDKGNFVVD

MCEIGKPEPLNEEEARGVVE




QMCEIGKPEPLNEEEARGVVEN

NYNDEEVSIRVGGNTQPSKV




YNDEEVSIRVGGNTQPSKVLNK

LNKKNVEAIGLLGGQKSKAD




KNVEAIGLLGGQKSKADYELYN

YELYNKASNPDKVASTAFAE




KASNPDKVASTAFAENRNSETS

NRNSETSDTTGTHESDRNKE




DTTGTHESDRNKESSDQTGINI

SSDQTGINISGFENKISYVV




SGFENKISYVVQSLKEYEGKWL

QSLKEYEGKWLLFDDSEVKV




LEDDSEVKVTEEKDELNSLSPS

TEEKDELNSLSPSTSPTSTP




TSPTSTPYLLFYKKL

YLLFYKKL





UBP40_HUMAN
6
MFGDLFEEEYSTVSNNQYGKGK
118
FTNLSGIRNQGGTCYLNSLL


Ubiquitin

KLKTKALEPPAPREFTNLSGIR

QTLHFTPEFREALFSLGPEE


carboxyl-

NQGGTCYLNSLLQTLHFTPEER

LGLFEDKDKPDAKVRIIPLQ


terminal

EALFSLGPEELGLFEDKDKPDA

LQRLFAQLLLLDQEAASTAD


hydrolase 40

KVRIIPLQLQRLFAQLLLLDQE

LTDSFGWTSNEEMRQHDVQE




AASTADLTDSFGWTSNEEMRQH

LNRILFSALETSLVGTSGHD




DVQELNRILFSALETSLVGTSG

LIYRLYHGTIVNQIVCKECK




HDLIYRLYHGTIVNQIVCKECK

NVSERQEDFLDLTVAVKNVS




NVSERQEDFLDLTVAVKNVSGL

GLEDALWNMYVEEEVEDCDN




EDALWNMYVEEEVEDCDNLYHC

LYHCGTCDRLVKAAKSAKLR




GTCDRLVKAAKSAKLRKLPPEL

KLPPELTVSLLRENFDFVKC




TVSLLRENFDFVKCERYKETSC

ERYKETSCYTFPLRINLKPF




YTFPLRINLKPFCEQSELDDLE

CEQSELDDLEYIYDLESVII




YIYDLFSVIIHKGGCYGGHYHV

HKGG




YIKDVDHLGNWQFQEEKSKPDV

CYGGHYHVYIKDVDHLGNWQ




NLKDLQSEEEIDHPLMILKAIL

FQEEKSKPDVNLKDLQSEEE




LEENNLIPVDQLGQKLLKKIGI

IDHPLMILKAILLEENNLIP




SWNKKYRKQHGPLRKFLQLHSQ

VDQLGQKLLKKIGISWNKKY




IFLLSSDESTVRLLKNSSLQAE

RKQHGPLRKFLQLHSQIFLL




SDFQRNDQQIFKMLPPESPGLN

SSDESTVRLLKNSSLQAESD




NSISCPHWFDINDSKVQPIREK

FQRNDQQIFKMLPPESPGLN




DIEQQFQGKESAYMLFYRKSQL

NSISCPHWFDINDSKVQPIR




QRPPEARANPRYGVPCHLLNEM

EKDIEQQFQGKESAYMLFYR




DAANIELQTKRAECDSANNTFE

KSQLQRPPEARANPRYGVPC




LHLHLGPQYHFENGALHPVVSQ

HLLNEMDAANIELQTKRAEC




TESVWDLTEDKRKTLGDLRQSI

DSANNTFELHLHLGPQYHFF




FQLLEFWEGDMVLSVAKLVPAG

NGALHPVVSQTESVWDLTED




LHIYQSLGGDELTLCETEIADG

KRKTLGDLRQSIFQLLEFWE




EDIFVWNGVEVGGVHIQTGIDC

GDMVLSVAKLVPAGLHIYQS




EPLLLNVLHLDTSSDGEKCCQV

LGGDELTLCETEIADGEDIF




IESPHVFPANAEVGTVLTALAI

VWNGVEVGGVHIQTGIDCEP




PAGVIFINSAGCPGGEGWTAIP

LLLNVLHLDTSSDGEKCCQV




KEDMRKTFREQGLRNGSSILIQ

IESPHVFPANAEVGTVLTAL




DSHDDNSLLTKEEKWVTSMNEI

AIPAGVIFINSAGCPGGEGW




DWLHVKNLCQLESEEKQVKISA

TAIPKEDMRKTFREQGLRNG




TVNTMVEDIRIKAIKELKLMKE

SSILIQDSHDDNSLLTKEEK




LADNSCLRPIDRNGKLLCPVPD

WVTSMNEIDWLHVKNLCQLE




SYTLKEAELKMGSSLGLCLGKA

SEEKQVKISATVNTMVEDIR




PSSSQLFLFFAMGSDVQPGTEM

IKAIKELKLMKELADNSCLR




EIVVEETISVRDCLKLMLKKSG

PIDRNGKLLCPVPDSYTLKE




LQGDAWHLRKMDWCYEAGEPLC

AELKMGSSLGLCLGKAPSSS




EEDATLKELLICSGDTLLLIEG

QLFLFFAMGSDVQPGTEMEI




QLPPLGFLKVPIWWYQLQGPSG

VVEETISVRDCLKLMLKKSG




HWESHQDQTNCTSSWGRVWRAT

LQGDAWHLRKMDWCYEAGEP




SSQGASGNEPAQVSLLYLGDIE

LCEEDATLKELLICSGDTLL




ISEDATLAELKSQAMTLPPFLE

LIEGQLPPLGELKVPIWWYQ




FGVPSPAHLRAWTVERKRPGRL

LQGPSGHWESHQDQTNCTSS




LRTDRQPLREYKLGRRIEICLE

WGRVWRATSSQGASGNEPAQ




PLQKGENLGPQDVLLRTQVRIP

VSLLYLGDIEISEDATLAEL




GERTYAPALDLVWNAAQGGTAG

KSQAMTLPPFLEFGVPSPAH




SLRQRVADFYRLPVEKIEIAKY

LRAWTVERKRPGRLLRTDRQ




FPEKFEWLPISSWNQQITKRKK

PLREYKLGRRIEICLEPLQK




KKKQDYLQGAPYYLKDGDTIGV

GENLGPQDVLLRTQVRIPGE




KNLLIDDDDDESTIRDDTGKEK

RTYAPALDLVWNAAQGGTAG




QKQRALGRRKSQEALHEQSSYI

SLRQRVADFYRLPVEKIEIA




LSSAETPARPRAPETSLSIHVG

KYFPEKFEWLPISSWNQQIT




SFR

KRKKKKKQDYLQGAPYYLKD






GDTIGVKNLLIDDDDDESTI






RDDTGKEKQKQRALGRRKSQ





UBP7_HUMAN
7
MNHQQQQQQQKAGEQQLSEPED
119
TGYVGLKNQGATCYMNSLLQ


Ubiquitin

MEMEAGDTDDPPRITQNPVING

TLFFTNQLRKAVYMMPTEGD


carboxyl-

NVALSDGHNTAEEDMEDDTSWR

DSSKSVPLALQRVFYELQHS


terminal

SEATFQFTVERFSRLSESVLSP

DKPVGTKKLTKSFGWETLDS


hydrolase 7

PCFVRNLPWKIMVMPRFYPDRP

FMQHDVQELCRVLLDNVENK




HQKSVGFFLQCNAESDSTSWSC

MKGTCVEGTIPKLFRGKMVS




HAQAVLKIINYRDDEKSFSRRI

YIQCKEVDYRSDRREDYYDI




SHLFFHKENDWGESNEMAWSEV

QLSIKGKKNIFESFVDYVAV




TDPEKGFIDDDKVTFEVFVQAD

EQLDGDNKYDAGEHGLQEAE




APHGVAWDSKKHTGYVGLKNQG

KGVKFLTLPPVLHLQLMREM




ATCYMNSLLQTLFFTNQLRKAV

YDPQTDQNIKINDRFEFPEQ




YMMPTEGDDSSKSVPLALQRVE

LPLDEFLQKTDPKDPANYIL




YELQHSDKPVGTKKLTKSFGWE

HAVLVHSGDNHGGHYVVYLN




TLDSFMQHDVQELCRVLLDNVE

PKGDGKWCKFDDDVVSRCTK




NKMKGTCVEGTIPKLERGKMVS

EEAIEHNYGGHDDDLSVRHC




YIQCKEVDYRSDRREDYYDIQL

TNAYMLVYIRE




SIKGKKNIFESFVDYVAVEQLD






GDNKYDAGEHGLQEAEKGVKFL






TLPPVLHLQLMREMYDPQTDQN






IKINDRFEFPEQLPLDEFLQKT






DPKDPANYILHAVLVHSGDNHG






GHYVVYLNPKGDGKWCKEDDDV






VSRCTKEEAIEHNYGGHDDDLS






VRHCTNAYMLVYIRESKLSEVL






QAVTDHDIPQQLVERLQEEKRI






EAQKRKERQEAHLYMQVQIVAE






DQFCGHQGNDMYDEEKVKYTVE






KVLKNSSLAEFVQSLSQTMGFP






QDQIRLWPMQARSNGTKRPAML






DNEADGNKTMIELSDNENPWTI






FLETVDPELAASGATLPKEDKD






HDVMLFLKMYDPKTRSLNYCGH






IYTPISCKIRDLLPVMCDRAGE






IQDTSLILYEEVKPNLTERIQD






YDVSLDKALDELMDGDIIVFQK






DDPENDNSELPTAKEYERDLYH






RVDVIFCDKTIPNDPGFVVTLS






NRMNYFQVAKTVAQRLNTDPML






LQFFKSQGYRDGPGNPLRHNYE






GTLRDLLQFFKPRQPKKLYYQQ






LKMKITDFENRRSEKCIWLNSQ






FREEEITLYPDKHGCVRDLLEE






CKKAVELGEKASGKLRLLEIVS






YKIIGVHQEDELLECLSPATSR






TFRIEEIPLDQVDIDKENEMLV






TVAHFHKEVEGTFGIPFLLRIH






QGEHFREVMKRIQSLLDIQEKE






FEKFKFAIVMMGRHQYINEDEY






EVNLKDFEPQPGNMSHPRPWLG






LDHENKAPKRSRYTYLEKAIKI






HN







U17L5_HUMAN
8
MEDDSLYLRGEWQFNHESKLTS
120
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 5

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLAKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLAK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QPNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







U17LL_HUMAN
9
MEEDSLYLGGEWQFNHESKLTS
121
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSNRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 21

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGEH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKMLTLLTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KMLTLLTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QPNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







U17LA_HUMAN
10
MEDDSLYLGGEWQFNHESKLTS
122
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYKPPLANYMLFREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KPPLSSRRPAAVGAGLQNMGNT

HIPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYKPPLANYMLF

KQEDAHEFLMFTVDAMRKAC


like protein 10

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDRHSKDTTLIHQI




TRALHIPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMRKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDRHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHNSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFPDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHNSAKVLILVLKRFPDV

YVLYAVLVHAGWSCHNGHYS




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYSSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGV




EVTASSITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGV

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRRVEGTVPPD






VLVIHQSKYKCRMKNHHPEQQS






SLLNLSSTTPTDQESMNTGTLA






SLRGRTRRSKGKNKHSKRALLV






CQ







UBP41_HUMAN
11
MDGVLFRAHQCQYVHPCVHVYV
123
WGLVGLHNIGQTCCLNSLIQ


Putative

TVGLMDPLCERKEKASKQEREN

VFVMNVDFARILKRITVPRG


ubiquitin

PLAHLAAWGLVGLHNIGQTCCL

ADEQRRSVPFQMLLLLEKMQ


carboxyl-

NSLIQVFVMNVDFARILKRITV

DSRQKAVWPLELAYCLQKYN


terminal

PRGADEQRRSVPFQMLLLLEKM

VPLFVQHDAAQLYLKLWNLI


hydrolase 41

QDSRQKAVWPLELAYCLQKYNV

KDQIADVHLVERLQALYMIR




PLFVQHDAAQLYLKLWNLIKDQ

MKDSLICLDCAMESSRNSSM




IADVHLVERLQALYMIRMKDSL

LTLRLSFFDVDSKPLKTLED




ICLDCAMESSRNSSMLTLRLSF

ALHCFFQPRELSSKSKCFCE




FDVDSKPLKTLEDALHCFFQPR

NCGKKTRGKQVLKLTHLPQT




ELSSKSKCFCENCGKKTRGKQV

LTIHLMRESIRNSQTRKICH




LKLTHLPQTLTIHLMRESIRNS

SLYFPQSLDFSQILPMKRES




QTRKICHSLYFPQSLDESQILP

CDAEEQSGGQYELFAVIAHV




MKRESCDAEEQSGGQYELFAVI

GMADSGHYCVYIRNAVDGKW




AHVGMADSGHYCVYIRNAVDGK

FCFNDSNICLVSWEDIQCTY




WFCENDSNICLVSWEDIQCTYG

GNPNYHW




NPNYHW







UBP38_HUMAN
12
MDKILEGLVSSSHPLPLKRVIV
124
SETGKTGLINLGNTCYMNSV


Ubiquitin

RKVVESAEHWLDEAQCEAMEDL

IQALFMATDERRQVLSLNLN


carboxyl-

TTRLILEGQDPFQRQVGHQVLE

GCNSLMKKLQHLFAFLAHTQ


terminal

AYARYHRPEFESFENKTFVLGL

REAYAPRIFFEASRPPWFTP


hydrolase 38

LHQGYHSLDRKDVAILDYIHNG

RSQQDCSEYLRELLDRLHEE




LKLIMSCPSVLDLFSLLQVEVL

EKILKVQASHKPSEILECSE




RMVCERPEPQLCARLSDLLTDF

TSLQEVASKAAVLTETPRTS




VQCIPKGKLSITFCQQLVRTIG

DGEKTLIEKMFGGKLRTHIR




HFQCVSTQERELREYVSQVTKV

CLNCRSTSQKVEAFTDLSLA




SNLLQNIWKAEPATLLPSLQEV

FCPSSSLENMSVQDPASSPS




FASISSTDASFEPSVALASLVQ

IQDGGLMQASVPGPSEEPVV




HIPLQMITVLIRSLTTDPNVKD

YNPTTAAFICDSLVNEKTIG




ASMTQALCRMIDWLSWPLAQHV

SPPNEFYCSENTSVPNESNK




DTWVIALLKGLAAVQKFTILID

ILVNKDVPQKPGGETTPSVT




VTLLKIELVENRLWFPLVRPGA

DLLNYFLAPEILTGDNQYYC




LAVLSHMLLSFQHSPEAFHLIV

ENCASLQNAEKTMQITEEPE




PHVVNLVHSFKNDGLPSSTAFL

YLILTLLRFSYDQKYHVRRK




VQLTELIHCMMYHYSGFPDLYE

ILDNVSLPLVLELPVKRITS




PILEAIKDEPKPSEEKIKLILN

FSSLSESWSVDVDFTDLSEN




QSAWTSQSNSLASCLSRLSGKS

LAKKLKPSGTDEASCTKLVP




ETGKTGLINLGNTCYMNSVIQA

YLLSSVVVHSGISSESGHYY




LEMATDERRQVLSLNLNGCNSL

SYARNITSTDSSYQMYHQSE




MKKLQHLFAFLAHTQREAYAPR

ALALASSQSHLLGRDSPSAV




IFFEASRPPWFTPRSQQDCSEY

FEQDLENKEMSKEWFLENDS




LRFLLDRLHEEEKILKVQASHK

RVTFTSFQSVQKITSREPKD




PSEILECSETSLQEVASKAAVL

TAYVLLYKKQH




TETPRTSDGEKTLIEKMEGGKL






RTHIRCLNCRSTSQKVEAFTDL






SLAFCPSSSLENMSVQDPASSP






SIQDGGLMQASVPGPSEEPVVY






NPTTAAFICDSLVNEKTIGSPP






NEFYCSENTSVPNESNKILVNK






DVPQKPGGETTPSVTDLLNYFL






APEILTGDNQYYCENCASLQNA






EKTMQITEEPEYLILTLLRFSY






DQKYHVRRKILDNVSLPLVLEL






PVKRITSFSSLSESWSVDVDFT






DLSENLAKKLKPSGTDEASCTK






LVPYLLSSVVVHSGISSESGHY






YSYARNITSTDSSYQMYHQSEA






LALASSQSHLLGRDSPSAVFEQ






DLENKEMSKEWFLENDSRVTFT






SFQSVQKITSRFPKDTAYVLLY






KKQHSTNGLSGNNPTSGLWING






DPPLQKELMDAITKDNKLYLQE






QELNARARALQAASASCSERPN






GFDDNDPPGSCGPTGGGGGGGF






NTVGRLVF







UBP43_HUMAN
13
MDLGPGDAAGGGPLAPRPRRRR
125
RPPGAQGLKNHGNTCEMNAV


Ubiquitin

SLRRLFSRELLALGSRSRPGDS

VQCLSNTDLLAEFLALGRYR


carboxyl-

PPRPQPGHCDGDGEGGFACAPG

AAPGRAEVTEQLAALVRALW


terminal

PVPAAPGSPGEERPPGPQPQLQ

TREYTPQLSAEFKNAVSKYG


hydrolase 43

LPAGDGARPPGAQGLKNHGNTC

SQFQGNSQHDALEFLLWLLD




FMNAVVQCLSNTDLLAEFLALG

RVHEDLEGSSRGPVSEKLPP




RYRAAPGRAEVTEQLAALVRAL

EATKTSENCLSPSAQLPLGQ




WTREYTPQLSAEFKNAVSKYGS

SFVQSHFQAQYRSSLTCPHC




QFQGNSQHDALEFLLWLLDRVH

LKQSNTFDPFLCVSLPIPLR




EDLEGSSRGPVSEKLPPEATKT

QTRFLSVTLVFPSKSQRFLR




SENCLSPSAQLPLGQSFVQSHE

VGLAVPILSTVAALRKMVAE




QAQYRSSLTCPHCLKQSNTEDP

EGGVPADEVILVELYPSGFQ




FLCVSLPIPLRQTRFLSVTLVE

RSFFDEEDLNTIAEGDNVYA




PSKSQRFLRVGLAVPILSTVAA

FQVPPSPSQGTLSAHPLGLS




LRKMVAEEGGVPADEVILVELY

ASPRLAAREGQRFSLSLHSE




PSGFQRSFFDEEDLNTIAEGDN

SKVLILFCNLVGSGQQASRF




VYAFQVPPSPSQGTLSAHPLGL

GPPFLIREDRAVSWAQLQQS




SASPRLAAREGQRFSLSLHSES

ILSKVRHLMKSEAPVQNLGS




KVLILFCNLVGSGQQASRFGPP

LFSIRVVGLSVACSYLSPKD




FLIREDRAVSWAQLQQSILSKV

SRPLCHWAVDRVLHLRRPGG




RHLMKSEAPVQNLGSLESIRVV

PPHVKLAVEWDSSVKERLFG




GLSVACSYLSPKDSRPLCHWAV

SLQEERAQDADSVWQQQQAH




DRVLHLRRPGGPPHVKLAVEWD

QQHSCTLDECFQFYTKEEQL




SSVKERLFGSLQEERAQDADSV

AQDDAWKCPHCQVLQQGMVK




WQQQQAHQQHSCTLDECFQFYT

LSLWTLPDILIIHLKRFCQV




KEEQLAQDDAWKCPHCQVLQQG

GERRNKLSTLVKFPLSGLNM




MVKLSLWTLPDILIIHLKRFCQ

APHVAQRSTSPEAGLGPWPS




VGERRNKLSTLVKFPLSGLNMA

WKQPDCLPTSYPLDFLYDLY




PHVAQRSTSPEAGLGPWPSWKQ

AVCNHHGNLQGGHYTAYCRN




PDCLPTSYPLDFLYDLYAVCNH

SLDGQWYSYDDSTVEPLRED




HGNLQGGHYTAYCRNSLDGQWY

EVNTRGAYILFYQKRN




SYDDSTVEPLREDEVNTRGAYI






LFYQKRNSIPPWSASSSMRGST






SSSLSDHWLLRLGSHAGSTRGS







UBP2_HUMAN

LLSWSSAPCPSLPQVPDSPIFT

SAQGLAGLRNLGNTCEMNSI


Ubiquitin

NSLCNQEKGGLEPRRLVRGVKG

LQCLSNTRELRDYCLQRLYM


carboxyl-

RSISMKAPTTSRAKQGPFKTMP

RDLHHGSNAHTALVEEFAKL




LRWSFGSKEKPPGASVELVEYL

IQTIWTSSPNDVVSPSEFKT




ESRRRPRSTSQSIVSLLTGTAG

QIQRYAPRFVGYNQQDAQEF




EDEKSASPRSNVALPANSEDGG

LRFLLDGLHNEVNRVTLRPK




RAIERGPAGVPCPSAQPNHCLA

SNPENLDHLPDDEKGRQMWR




PGNSDGPNTARKLKENAGQDIK

KYLEREDSRIGDLFVGQLKS




LPRKFDLPLTVMPSVEHEKPAR

SLTCTDCGYCSTVEDPEWDL




PEGQKAMNWKESFQMGSKSSPP






SPYMGFSGNSKDSRRGTSELDR






PLQGTLTLLRSVERKKENRRNE






RAEVSPQVPPVSLVSGGLSPAM






DGQAPGSPPALRIPEGLARGLG






SRLERDVWSAPSSLRLPRKASR






APRGSALGMSQRTVPGEQASYG






TFQRVKYHTLSLGRKKTLPESS






F






MSQLSSTLKRYTESARYTDAHY






AKSGYGAYTPSSYGANLAASLL






EKEKLGFKPVPTSSFLTRPRTY






GPSSLLDYDRGRPLLRPDITGG






GKRAESQTRGTERPLGSGLSGG







terminal
14
SGFPYGVTNNCLSYLPINAYDQ
126
SLPIAKRGYPEVTLMDCMRL


hydrolase 2

GVTLTQKLDSQSDLARDESSLR

FTKEDVLDGDEKPTCCRCRG




TSDSYRIDPRNLGRSPMLARTR

RKRCIKKFSIQRFPKILVLH




KELCTLQGLYQTASCPEYLVDY

LKRFSESRIRTSKLTTFVNF




LENYGRKGSASQVPSQAPPSRV

PLRDLDLREFASENTNHAVY




PEIISPTYRPIGRYTLWETGKG

NLYAVSNHSGTTMGGHYTAY




QAPGPSRSSSPGRDGMNSKSAQ

CRSPGTGEWHTENDSSVTPM




GLAGLRNLGNTCEMNSILQCLS

SSSQVRTSDAYLLFYELAS




NTRELRDYCLQRLYMRDLHHGS






NAHTALVEEFAKLIQTIWTSSP






NDVVSPSEFKTQIQRYAPRFVG






YNQQDAQEFLRFLLDGLHNEVN






RVTLRPKSNPENLDHLPDDEKG






RQMWRKYLEREDSRIGDLFVGQ






LKSSLTCTDCGYCSTVEDPEWD






LSLPIAKRGYPEVTLMDCMRLE






TKEDVLDGDEKPTCCRCRGRKR






CIKKFSIQRFPKILVLHLKRFS






ESRIRTSKLTTFVNFPLRDLDL






REFASENTNHAVYNLYAVSNHS






GTTMGGHYTAYCRSPGTGEWHT






FNDSSVTPMSSSQVRTSDAYLL






FYELASPPSRM







UBP45_HUMAN
15
MRVKDPTKALPEKAKRSKRPTV
127
LSVRGITNLGNTCFFNAVMQ


Ubiquitin

PHDEDSSDDIAVGLTCQHVSHA

NLAQTYTLTDLMNEIKESST


carboxyl-

ISVNHVKRAIAENLWSVCSECL

KLKIFPSSDSQLDPLVVELS


terminal

KERRFYDGQLVLTSDIWLCLKC

RPGPLTSALFLFLHSMKETE


hydrolase 45

GFQGCGKNSESQHSLKHFKSSR

KGPLSPKVLFNQLCQKAPRF




TEPHCIIINLSTWIIWCYECDE

KDFQQQDSQELLHYLLDAVR




KLSTHCNKKVLAQIVDELQKHA

TEETKRIQASILKAFNNPTT




SKTQTSAFSRIMKLCEEKCETD

KTADDETRKKVKAYGKEGVK




EIQKGGKCRNLSVRGITNLGNT

MNFIDRIFIGELTSTVMCEE




CFFNAVMQNLAQTYTLTDLMNE

CANISTVKDPFIDISLPIIE




IKESSTKLKIFPSSDSQLDPLV

ERVSKPLLWGRMNKYRSLRE




VELSRPGPLTSALFLFLHSMKE

TDHDRYSGNVTIENIHQPRA




TEKGPLSPKVLENQLCQKAPRE

AKKHSSSKDKSQLIHDRKCI




KDFQQQDSQELLHYLLDAVRTE

RKLSSGETVTYQKNENLEMN




ETKRIQASILKAFNNPTTKTAD

GDSLMFASLMNSESRLNESP




DETRKKVKAYGKEGVKMNFIDR

TDDSEKEASHSESNVDADSE




IFIGELTSTVMCEECANISTVK

PSESESASKQTGLERSSSGS




DPFIDISLPIIEERVSKPLLWG

GVQPDGPLYPLSAGKLLYTK




RMNKYRSLRETDHDRYSGNVTI

ETDSGDKEMAEAISELRLSS




ENIHQPRAAKKHSSSKDKSQLI

TVTGDQDFDRENQPLNISNN




HDRKCIRKLSSGETVTYQKNEN

LCFLEGKHLRSYSPQNAFQT




LEMNGDSLMFASLMNSESRLNE

LSQSYITTSKECSIQSCLYQ




SPTDDSEKEASHSESNVDADSE

FTSMELLMGNNKLLCENCTK




PSESESASKQTGLERSSSGSGV

NKQKYQEETSFAEKKVEGVY




QPDGPLYPLSAGKLLYTKETDS

TNARKQLLISAVPAVLILHL




GDKEMAEAISELRLSSTVTGDQ

KRFHQAGLSLRKVNRHVDFP




DEDRENQPLNISNNLCFLEGKH

LMLDLAPFCSATCKNASVGD




LRSYSPQNAFQTLSQSYITTSK

KVLYGLYGIVEHSGSMREGH




ECSIQSCLYQFTSMELLMGNNK

YTAYVKVRTPSRKLSEHNTK




LLCENCTKNKQKYQEETSFAEK

KKNVPGLKAADNESAGQWVH




KVEGVYTNARKQLLISAVPAVL

VSDTYLQVVPESRALSAQAY




ILHLKRFHQAGLSLRKVNRHVD

LLFYERVL




FPLMLDLAPFCSATCKNASVGD






KVLYGLYGIVEHSGSMREGHYT






AYVKVRTPSRKLSEHNTKKKNV






PGLKAADNESAGQWVHVSDTYL






QVVPESRALSAQAYLLFYERVL







UBP32_HUMAN
16
MGAKESRIGFLSYEEALRRVTD
128
TEKGATGLSNLGNTCEMNSS


Ubiquitin

VELKRLKDAFKRTCGLSYYMGQ

IQCVSNTQPLTQYFISGRHL


carboxyl-

HCFIREVLGDGVPPKVAEVIYC

YELNRTNPIGMKGHMAKCYG


terminal

SFGGTSKGLHENNLIVGLVLLT

DLVQELWSGTQKNVAPLKLR


hydrolase 32

RGKDEEKAKYIFSLFSSESGNY

WTIAKYAPRENGFQQQDSQE




VIREEMERMLHVVDGKVPDTLR

LLAFLLDGLHEDLNRVHEKP




KCFSEGEKVNYEKERNWLFLNK

YVELKDSDGRPDWEVAAEAW




DAFTFSRWLLSGGVYVTLTDDS

DNHLRRNRSIVVDLFHGQLR




DTPTFYQTLAGVTHLEESDIID

SQVKCKTCGHISVREDPENE




LEKRYWLLKAQSRTGREDLETF

LSLPLPMDSYMHLEITVIKL




GPLVSPPIRPSLSEGLFNAFDE

DGTTPVRYGLRLNMDEKYTG




NRDNHIDFKEISCGLSACCRGP

LKKQLSDLCGLNSEQILLAE




LAERQKFCFKVFDVDRDGVLSR

VHGSNIKNFPQDNQKVRLSV




VELRDMVVALLEVWKDNRTDDI

SGFLCAFEIPVPVSPISASS




PELHMDLSDIVEGILNAHDTTK

PTQTDFSSSPSTNEMFTLTT




MGHLTLEDYQIWSVKNVLANEF

NGDLPRPIFIPNGMPNTVVP




LNLLFQVCHIVLGLRPATPEEE

CGTEKNFTNGMVNGHMPSLP




GQIIRGWLERESRYGLQAGHNW

DSPFTGYIIAVHRKMMRTEL




FIISMQWWQQWKEYVKYDANPV

YFLSSQKNRPSLFGMPLIVP




VIEPSSVLNGGKYSFGTAAHPM






EQVEDRIGSSLSYVNTTEEKES






DNISTASEASETAGSGFLYSAT






PGADVCFARQHNTSDNNNQCLL






GANGNILLHLNPQKPGAIDNQP






LVTQEPVKATSLTLEGGRLKRT






PQLIHGRDYEMVPEPVWRALYH






WYGANLALPRPVIKNSKTDIPE






LELFPRYLLFLRQQPATRTQQS






NIWVNMGNVPSPNAPLKRVLAY






TGCFSRMQTIKEIHEYLSQRLR






IKEEDMRLWLYNSENYLTLLDD






EDHKLEYLKIQDEQHLVIEVRN






KDMSWPEEMSFIANSSKIDRHK






VPTEKGATGLSNLGNTCFMNSS






IQCVSNTQPLTQYFISGRHLYE






LNRTNPIGMKGHMAKCYGDLVQ






ELWSGTQKNVAPLKLRWTIAKY






APRFNGFQQQDSQELLAFLLDG






LHEDLNRVHEKPYVELKDSDGR






PDWEVAAEAWDNHLRRNRSIVV






DLFHGQLRSQVKCKTCGHISVR






FDPFNFLSLPLPMDSYMHLEIT






VIKLDGTTPVRYGLRLNMDEKY






TGLKKQLSDLCGLNSEQILLAE






VHGSNIKNFPQDNQKVRLSVSG






FLCAFEIPVPVSPISASSPTQT






DFSSSPSTNEMFTLTTNGDLPR






PIFIPNGMPNTVVPCGTEKNFT






NGMVNGHMPSLPDSPFTGYIIA






VHRKMMRTELYFLSSQKNRPSL






FGMPLIVPCTVHTRKKDLYDAV






WIQVSRLASPLPPQEASNHAQD






CDDSMGYQYPFTLRVVQKDGNS






CAWCPWYRFCRGCKIDCGEDRA






FIGNAYIAVDWDPTALHLRYQT






SQERVVDEHESVEQSRRAQAEP






INLDSCLRAFTSEEELGENEMY






YCSKCKTHCLATKKLDLWRLPP






ILIIHLKRFQFVNGRWIKSQKI






VKFPRESFDPSAFLVPRDPALC






QHKPLTPQGDELSEPRILAREV






KKVDAQSSAGEEDVLLSKSPSS






LSANIISSPKGSPSSSRKSGTS






CPSSKNSSPNSSPRTLGRSKGR






LRLPQIGSKNKLSSSKENLDAS






KENGAGQICELADALSRGHVLG






GSQPELVTPQDHEVALANGFLY






EHEACGNGYSNGQLGNHSEEDS






TDDQREDTRIKPIYNLYAISCH






SGILGGGHYVTYAKNPNCKWYC






YNDSSCKELHPDEIDTDSAYIL






FYEQQGIDYAQFLPKTDGKKMA






DTSSMDEDFESDYKKYCVLQ






YNDSSCKELHPDEIDTDSAYIL






FYEQQGIDYAQFLPKTDGKKMA






DTSSMDEDFESDYKKYCVLQ







U17L6_HUMAN
17
MEDDSLYLRGEWQENHESKLTS
129
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 6

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SSITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA






EVTASSITSVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGS






ED







UBP42_HUMAN
18
MTIVDKASESSDPSAYQNQPGS
130
RVGAGLQNLGNTCFANAALQ


Ubiquitin

SEAVSPGDMDAGSASWGAVSSL

CLTYTPPLANYMLSHEHSKT


carboxyl-

NDVSNHTLSLGPVPGAVVYSSS

CHAEGFCMMCTMQAHITQAL


terminal

SVPDKSKPSPQKDQALGDGIAP

SNPGDVIKPMFVINEMRRIA


hydrolase 42

PQKVLFPSEKICLKWQQTHRVG

RHFREGNQEDAHEFLQYTVD




AGLQNLGNTCFANAALQCLTYT

AMQKACLNGSNKLDRHTQAT




PPLANYMLSHEHSKTCHAEGFC

TLVCQIFGGYLRSRVKCLNC




MMCTMQAHITQALSNPGDVIKP

KGVSDTFDPYLDITLEIKAA




MFVINEMRRIARHEREGNQEDA

QSVNKALEQFVKPEQLDGEN




HEFLQYTVDAMQKACLNGSNKL

SYKCSKCKKMVPASKRFTIH




DRHTQATTLVCQIFGGYLRSRV

RSSNVLTLSLKRFANFTGGK




KCLNCKGVSDTFDPYLDITLEI

IAKDVKYPEYLDIRPYMSQP




KAAQSVNKALEQFVKPEQLDGE

NGEPIVYVLYAVLVHTGENC




NSYKCSKCKKMVPASKRFTIHR

HAGHYFCYIKASNGLWYQMN




SSNVLTLSLKRFANFTGGKIAK

DSIVSTSDIRSVLSQQAYVL




DVKYPEYLDIRPYMSQPNGEPI

FYIRSHDVKNGGE




VYVLYAVLVHTGENCHAGHYFC






YIKASNGLWYQMNDSIVSTSDI






RSVLSQQAYVLFYIRSHDVKNG






GELTHPTHSPGQSSPRPVISQR






VVTNKQAAPGFIGPQLPSHMIK






NPPHLNGTGPLKDTPSSSMSSP






NGNSSVNRASPVNASASVQNWS






VNRSSVIPEHPKKQKITISIHN






KLPVRQCQSQPNLHSNSLENPT






KPVPSSTITNSAVQSTSNASTM






SVSSKVTKPIPRSESCSQPVMN






GKSKLNSSVLVPYGAESSEDSD






EESKGLGKENGIGTIVSSHSPG






QDAEDEEATPHELQEPMTLNGA






NSADSDSDPKENGLAPDGASCQ






GQPALHSENPFAKANGLPGKLM






PAPLLSLPEDKILETERLSNKL






KGSTDEMSAPGAERGPPEDRDA






EPQPGSPAAESLEEPDAAAGLS






STKKAPPPRDPGTPATKEGAWE






AMAVAPEEPPPSAGEDIVGDTA






PPDLCDPGSLTGDASPLSQDAK






GMIAEGPRDSALAEAPEGLSPA






PPARSEEPCEQPLLVHPSGDHA






RDAQDPSQSLGAPEAAERPPAP






VLDMAPAGHPEGDAEPSPGERV






EDAAAPKAPGPSPAKEKIGSLR






KVDRGHYRSRRERSSSGEPARE






SRSKTEGHRHRRRRTCPRERDR






QDRHAPEHHPGHGDRLSPGERR






SLGRCSHHHSRHRSGVELDWVR






HHYTEGERGWGREKFYPDRPRW






DRCRYYHDRYALYAARDWKPFH






GGREHERAGLHERPHKDHNRGR






RGCEPARERERHRPSSPRAGAP






HALAPHPDRESHDRTALVAGDN






CNLSDRFHEHENGKSRKRRHDS






VENSDSHVEKKARRSEQKDPLE






EPKAKKHKKSKKKKKSKDKHRD






RDSRHQQDSDLSAACSDADLHR






HKKKKKKKKRHSRKSEDFVKDS






ELHLPRVTSLETVAQFRRAQGG






FPLSGGPPLEGVGPFREKTKHL






RMESRDDRCRLFEYGQGKRRYL






ELGR







U17L7_HUMAN
19
MEDDSLYLGGDWQFNHESKLTS
131
AVGAGLQKIGNTFYVNVSLQ


Inactive

SRLDAAFAEIQRTSLSEKSPLS

CLTYTLPLSNYMLSREDSQT


ubiquitin

SETREDLCDDLAPVARQLAPRE

CHLHKCCMFCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQKIGNT

HSPGHVIQPSQVLAAGFHRG


terminal

FYVNVSLQCLTYTLPLSNYMLS

EQEDAHEFLMFTVDAMKKAC


hydrolase 17-

REDSQTCHLHKCCMFCTMQAHI

LPGHKQLDHHSKDTTLIHQI


like protein 7

TWALHSPGHVIQPSQVLAAGFH

FGAYWRSQIKYLHCHGVSDT




RGEQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQLDHHSKDTTLIHQIFG

LEQLVKPKELNGENAYHCGL




AYWRSQIKYLHCHGVSDTEDPY

CLQKAPASKTLTLPTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVTGNKLAKNVQ




PKELNGENAYHCGLCLQKAPAS

YPKCRDMQPYMSQQNTGPLV




KTLTLPTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKLAKNVQYPKCRDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

SGITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTASGITSVLSQQAYVLFYIQ

EDTDRPATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

VPEL




EDTDRPATQGELKRDHPCLQVP






ELDEHLVERATQESTLDHWKFP






QEQNKTKPEFNVRKVEGTLPPN






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSTKPTDQESMNTGTLA






SLQGSTRRSKGNNKHSKRSLLV






CQ







U17LH_HUMAN
20
MEDDSLYLGGEWQFNHESKLTS
132
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 17

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPECLDMQPYMS

SYVKAQEGQWYKMDDAEVTA




QQNTGPLVYVLYAVLVHAGWSC

ASITSVLSQQAYVLFYIQKS




HNGHYFSYVKAQEGQWYKMDDA

EWERHSESVSRGREPRALGA




EVTAASITSVLSQQAYVLFYIQ

EDTDRRATQGELKRDHPCLQ




KSEWERHSESVSRGREPRALGA

APEL




EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSSTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







UBP13_HUMAN
21
MQRRGALFGMPGGSGGRKMAAG
133
YGPGYTGLKNLGNSCYLSSV


Ubiquitin

DIGELLVPHMPTIRVPRSGDRV

MQAIFSIPEFQRAYVGNLPR


carboxyl-

YKNECAFSYDSPNSEGGLYVCM

IFDYSPLDPTQDENTQMTKL


terminal

NTFLAFGREHVERHERKTGQSV

GHGLLSGQYSKPPVKSELIE


hydrolase 13

YMHLKRHVREKVRGASGGALPK

QVMKEEHKPQQNGISPRMEK




RRNSKIFLDLDTDDDLNSDDYE

AFVSKSHPEFSSNRQQDAQE




YEDEAKLVIFPDHYEIALPNIE

FFLHLVNLVERNRIGSENPS




ELPALVTIACDAVLSSKSPYRK

DVERELVEERIQCCQTRKVR




QDPDTWENELPVSKYANNLTQL

YTERVDYLMQLPVAMEAATN




DNGVRIPPSGWKCARCDLRENL

KDELIAYELTRREAEANRRP




WLNLTDGSVLCGKWFFDSSGGN

LPELVRAKIPFSACLQAFSE




GHALEHYRDMGYPLAVKLGTIT

PENVDDEWSSALQAKSAGVK




PDGADVYSFQEEEPVLDPHLAK

TSRFASFPEYLVVQIKKETE




HLAHFGIDMLHMHGTENGLQDN

GLDWVPKKFDVSIDMPDLLD




DIKLRVSEWEVIQESGTKLKPM

INHLRARGLQPGEEELPDIS




YGPGYTGLKNLGNSCYLSSVMQ

PPIVIPDDSKDRLMNQLIDP




AIFSIPEFQRAYVGNLPRIFDY

SDIDESSVMQLAEMGFPLEA




SPLDPTQDENTQMTKLGHGLLS

CRKAVYFTGNMGAEVAFNWI




GQYSKPPVKSELIEQVMKEEHK

IVHMEEPDFAEPLTMPGYGG




PQQNGISPRMFKAFVSKSHPEF

AASAGASVEGASGLDNQPPE




SSNRQQDAQEFFLHLVNLVERN

EIVAIITSMGFQRNQAIQAL




RIGSENPSDVFRELVEERIQCC

RATNNNLERALDWIFSHPEF




QTRKVRYTERVDYLMQLPVAME

EEDSDEVIEMENNANANIIS




AATNKDELIAYELTRREAEANR

EAKPEGPRVKDGSGTYELFA




RPLPELVRAKIPFSACLQAFSE

FISHMGTSTMSGHYICHIKK




PENVDDFWSSALQAKSAGVKTS

EGRWVIYNDHKVCASERPPK




RFASFPEYLVVQIKKETFGLDW

DLGYMYFYRRIPS




VPKKFDVSIDMPDLLDINHLRA






RGLQPGEEELPDISPPIVIPDD






SKDRLMNQLIDPSDIDESSVMQ






LAEMGFPLEACRKAVYFTGNMG






AEVAFNWIIVHMEEPDFAEPLT






MPGYGGAASAGASVEGASGLDN






QPPEEIVAIITSMGFQRNQAIQ






ALRATNNNLERALDWIFSHPEF






EEDSDEVIEMENNANANIISEA






KPEGPRVKDGSGTYELFAFISH






MGTSTMSGHYICHIKKEGRWVI






YNDHKVCASERPPKDLGYMYFY






RRIPS







UBP11_HUMAN
22
MAVAPRLEGGLCFRFRDQNPEV
134
KGQPGICGLTNLGNTCEMNS


Ubiquitin

AVEGRLPISHSCVGCRRERTAM

ALQCLSNVPQLTEYFLNNCY


carboxyl-

ATVAANPAAAAAAVAAAAAVTE

LEELNERNPLGMKGEIAEAY


terminal

DREPQHEELPGLDSQWRQIENG

ADLVKQAWSGHHRSIVPHVE


hydrolase 11

ESGRERPLRAGESWELVEKHWY

KNKVGHFASQFLGYQQHDSQ




KQWEAYVQGGDQDSSTFPGCIN

ELLSFLLDGLHEDLNRVKKK




NATLFQDEINWRLKEGLVEGED

EYVELCDAAGRPDQEVAQEA




YVLLPAAAWHYLVSWYGLEHGQ

WQNHKRRNDSVIVDTFHGLE




PPIERKVIELPNIQKVEVYPVE

KSTLVCPDCGNVSVTFDPFC




LLLVRHNDLGKSHTVQFSHTDS

YLSVPLPISHKRVLEVFFIP




IGLVLRTARERELVEPQEDTRL

MDPRRKPEQHRLVVPKKGKI




WAKNSEGSLDRLYDTHITVLDA

SDLCVALSKHTGISPERMMV




ALETGQLIIMETRKKDGTWPSA

ADVESHRFYKLYQLEEPLSS




QLHVMNNNMSEEDEDEKGQPGI

ILDRDDIFVYEVSGRIEAIE




CGLTNLGNTCFMNSALQCLSNV

GSREDIVVPVYLRERTPARD




PQLTEYFLNNCYLEELNERNPL

YNNSYYGLMLFGHPLLVSVP




GMKGEIAEAYADLVKQAWSGHH

RDRFTWEGLYNVLMYRLSRY




RSIVPHVEKNKVGHFASQFLGY

VTKPNSDDEDDGDEKEDDEE




QQHDSQELLSFLLDGLHEDLNR

DKDDVPGPSTGGSLRDPEPE




VKKKEYVELCDAAGRPDQEVAQ

QAGPSSGVTNRCPFLLDNCL




EAWQNHKRRNDSVIVDTFHGLF

GTSQWPPRRRRKQLFTLQTV




KSTLVCPDCGNVSVTFDPFCYL

NSNGTSDRTTSPEEVHAQPY




SVPLPISHKRVLEVFFIPMDPR

IAIDWEPEMKKRYYDEVEAE




RKPEQHRLVVPKKGKISDLCVA

GYVKHDCVGYVMKKAPVRLQ




LSKHTGISPERMMVADVESHRE

ECIELFTTVETLEKENPWYC




YKLYQLEEPLSSILDRDDIFVY

PSCKQHQLATKKLDLWMLPE




EVSGRIEAIEGSREDIVVPVYL

ILIIHLKRFSYTKESREKLD




RERTPARDYNNSYYGLMLFGHP

TLVEFPIRDLDESEFVIQPQ




LLVSVPRDRETWEGLYNVLMYR

NESNPELYKYDLIAVSNHYG




LSRYVTKPNSDDEDDGDEKEDD

GMRDGHYTTFACNKDSGQWH




EEDKDDVPGPSTGGSLRDPEPE

YFDDNSVSPVNENQIESKAA




QAGPSSGVTNRCPFLLDNCLGT

YVLFYQRQD




SQWPPRRRRKQLFTLQTVNSNG






TSDRTTSPEEVHAQPYIAIDWE






PEMKKRYYDEVEAEGYVKHDCV






GYVMKKAPVRLQECIELFTTVE






TLEKENPWYCPSCKQHQLATKK






LDLWMLPEILIIHLKRFSYTKE






SREKLDTLVEFPIRDLDESEFV






IQPQNESNPELYKYDLIAVSNH






YGGMRDGHYTTFACNKDSGQWH






YFDDNSVSPVNENQIESKAAYV






LFYQRQDVARRLLSPAGSSGAP






ASPACSSPPSSEFMDVN







U17L1_HUMAN
23
MGDDSLYLGGEWQFNHFSKLTS
135
AVGAGLQNMGNTCYENASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


carboxyl-

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


hydrolase 17-

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


like protein 1

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHCKDTTLIHQI




TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHCKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFSDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHDGHYF




AGNKLAKNVQYPECLDMQPYMS

SYVKAQEVQWYKMDDAEVTV




QQNTGPLVYVLYAVLVHAGWSC

CSIISVLSQQAYVLFYIQKS




HDGHYFSYVKAQEVQWYKMDDA






EVTVCSIISVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGA






EDTDRRAKQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVGKVEGTLPPN






ALVIHQSKYKCGMKNHHPEQQS






SLLNLSSTTRTDQESMNTGTLA






SLQGRTRRAKGKNKHSKRALLV






CQ







UBP14_HUMAN
24
MPLYSVTVKWGKEKFEGVELNT
136
ASAMELPCGLTNLGNTCYMN


Ubiquitin

DEPPMVFKAQLFALTGVQPARQ

ATVQCIRSVPELKDALKRYA


carboxyl-

KVMVKGGTLKDDDWGNIKIKNG

GALRASGEMASAQYITAALR


terminal

MTLLMMGSADALPEEPSAKTVE

DLFDSMDKTSSSIPPIILLQ


hydrolase 14

VEDMTEEQLASAMELPCGLTNL

FLHMAFPQFAEKGEQGQYLQ




GNTCYMNATVQCIRSVPELKDA

QDANECWIQMMRVLQQKLEA




LKRYAGALRASGEMASAQYITA

IEDDSVKETDSSSASAATPS




ALRDLEDSMDKTSSSIPPIILL

KKKSLIDQFFGVEFETTMKC




QFLHMAFPQFAEKGEQGQYLQQ

TESEEEEVTKGKENQLQLSC




DANECWIQMMRVLQQKLEAIED

FINQEVKYLFTGLKLRLQEE




DSVKETDSSSASAATPSKKKSL

ITKQSPTLQRNALYIKSSKI




IDQFFGVEFETTMKCTESEEEE

SRLPAYLTIQMVRFFYKEKE




VTKGKENQLQLSCFINQEVKYL

SVNAKVLKDVKFPLMLDMYE




FTGLKLRLQEEITKQSPTLQRN

LCTPELQEKMVSERSKEKDL




ALYIKSSKISRLPAYLTIQMVR

EDKKVNQQPNTSDKKSSPQK




FFYKEKESVNAKVLKDVKFPLM

EVKYEPFSFADDIGSNNCGY




LDMYELCTPELQEKMVSERSKF

YDLQAVLTHQGRSSSSGHYV




KDLEDKKVNQQPNTSDKKSSPQ

SWVKRKQDEWIKEDDDKVSI




KEVKYEPFSFADDIGSNNCGYY

VTPEDILRLSGGGDWHIAYV




DLQAVLTHQGRSSSSGHYVSWV

LLYGPRR




KRKQDEWIKFDDDKVSIVTPED






ILRLSGGGDWHIAYVLLYGPRR






VEIMEEESEQ







Q13107|UBP4
25
MAEGGGCRERPDAETQKSELGP
137
SHIQPGLCGLGNLGNTCFMN


HUMAN

LMRTTLQRGAQWYLIDSRWFKQ

SALQCLSNTAPLTDYELKDE


Ubiquitin

WKKYVGFDSWDMYNVGEHNLEP

YEAEINRDNPLGMKGEIAEA


carboxyl-

GPIDNSGLFSDPESQTLKEHLI

YAELIKQMWSGRDAHVAPRM


terminal

DELDYVLVPTEAWNKLLNWYGC

FKTQVGRFAPQFSGYQQQDS


hydrolase 4

VEGQQPIVRKVVEHGLFVKHCK

QELLAFLLDGLHEDLNRVKK




VEVYLLELKLCENSDPTNVLSC

KPYLELKDANGRPDAVVAKE




HFSKADTIATIEKEMRKLENIP

AWENHRLRNDSVIVDTFHGL




AERETRLWNKYMSNTYEQLSKL

FKSTLVCPECAKVSVTEDPF




DNTVQDAGLYQGQVLVIEPQNE

CYLTLPLPLKKDRVMEVFLV




DGTWPRQTLQSKSSTAPSRNFT

PADPHCRPTQYRVTVPLMGA




TSPKSSASPYSSVSASLIANGD

VSDLCEALSRLSGIAAENMV




STSTCGMHSSGVSRGGSGESAS

VADVYNHRFHKIFQMDEGLN




YNCQEPPSSHIQPGLCGLGNLG

HIMPRDDIFVYEVCSTSVDG




NTCFMNSALQCLSNTAPLTDYF

SECVTLPVYFRERKSRPSST




LKDEYEAEINRDNPLGMKGEIA

SSASALYGQPLLLSVPKHKL




EAYAELIKQMWSGRDAHVAPRM

TLESLYQAVCDRISRYVKQP




FKTQVGRFAPQFSGYQQQDSQE

LPDEFGSSPLEPGACNGSRN




LLAFLLDGLHEDLNRVKKKPYL

SCEGEDEEEMEHQEEGKEQL




ELKDANGRPDAVVAKEAWENHR

SETEGSGEDEPGNDPSETTQ




LRNDSVIVDTFHGLFKSTLVCP

KKIKGQPCPKRLFTESLVNS




ECAKVSVTFDPFCYLTLPLPLK

YGTADINSLAADGKLLKLNS




KDRVMEVFLVPADPHCRPTQYR

RSTLAMDWDSETRRLYYDEQ




VTVPLMGAVSDLCEALSRLSGI

ESEAYEKHVSMLQPQKKKKT




AAENMVVADVYNHRFHKIFQMD

TVALRDCIELFTTMETLGEH




EGLNHIMPRDDIFVYEVCSTSV

DPWYCPNCKKHQQATKKEDL




DGSECVTLPVYFRERKSRPSST

WSLPKILVVHLKRFSYNRYW




SSASALYGQPLLLSVPKHKLTL

RDKLDTVVEFPIRGLNMSEF




ESLYQAVCDRISRYVKQPLPDE

VCNLSARPYVYDLIAVSNHY




FGSSPLEPGACNGSRNSCEGED

GAMGVGHYTAYAKNKLNGKW




EEEMEHQEEGKEQLSETEGSGE

YYFDDSNVSLASEDQIVTKA




DEPGNDPSETTQKKIKGQPCPK

AYVLFYQRRD




RLFTFSLVNSYGTADINSLAAD






GKLLKLNSRSTLAMDWDSETRR






LYYDEQESEAYEKHVSMLQPQK






KKKTTVALRDCIELFTTMETLG






EHDPWYCPNCKKHQQATKKEDL






WSLPKILVVHLKRFSYNRYWRD






KLDTVVEFPIRGLNMSEFVCNL






SARPYVYDLIAVSNHYGAMGVG






HYTAYAKNKLNGKWYYFDDSNV






SLASEDQIVTKAAYVLFYQRRD






DEFYKTPSLSSSGSSDGGTRPS






SSQQGFGDDEACSMDTN







UBP26_HUMAN
26
MAALFLRGFVQIGNCKTGISKS
138
KICHGLPNLGNTCYMNAVLQ


Ubiquitin

KEAFIEAVERKKKDRLVLYFKS

SLLSIPSFADDLLNQSFPWG


carboxyl-

GKYSTFRLSDNIQNVVLKSYRG

KIPLNALTMCLARLLFFKDT


terminal

NQNHLHLTLQNNNGLFIEGLSS

YNIEIKEMLLLNLKKAISAA


hydrolase 26

TDAEQLKIFLDRVHQNEVQPPV

AEIFHGNAQNDAHEFLAHCL




RPGKGGSVFSSTTQKEINKTSF

DQLKDNMEKLNTIWKPKSEF




HKVDEKSSSKSFEIAKGSGTGV

GEDNFPKQVFADDPDTSGES




LQRMPLLTSKLTLTCGELSENQ

CPVITNFELELLHSIACKAC




HKKRKRMLSSSSEMNEEFLKEN

GQVILKTELNNYLSINLPQR




NSVEYKKSKADCSRCVSYNREK

IKAHPSSIQSTEDLFFGAEE




QLKLKELEENKKLECESSCIMN

LEYKCAKCEHKTSVGVHSES




ATGNPYLDDIGLLQALTEKMVL

RLPRILIVHLKRYSLNEFCA




VFLLQQGYSDGYTKWDKLKLFF

LKKNDQEVIISKYLKVSSHC




ELFPEKICHGLPNLGNTCYMNA

NEGTRPPLPLSEDGEITDFQ




VLQSLLSIPSFADDLLNQSFPW

LLKVIRKMTSGNISVSWPAT




GKIPLNALTMCLARLLFFKDTY

KESKDILAPHIGSDKESEQK




NIEIKEMLLLNLKKAISAAAEI

KGQTVFKGASRRQQQKYLGK




FHGNAQNDAHEFLAHCLDQLKD

NSKPNELESVYSGDRAFIEK




NMEKLNTIWKPKSEFGEDNEPK

EPLAHLMTYLEDTSLCQFHK




QVFADDPDTSGFSCPVITNFEL

AGGKPASSPGTPLSKVDFQT




ELLHSIACKACGQVILKTELNN

VPENPKRKKYVKTSKEVAFD




YLSINLPQRIKAHPSSIQSTED

RIINPTKDLYEDKNIRIPER




LFFGAEELEYKCAKCEHKTSVG

FQKVSEQTQQCDGMRICEQA




VHSFSRLPRILIVHLKRYSLNE

PQQALPQSFPKPGTQGHTKN




FCALKKNDQEVIISKYLKVSSH

LLRPTKLNLQKSNRNSLLAL




CNEGTRPPLPLSEDGEITDFQL

GSNKNPRNKDILDKIKSKAK




LKVIRKMTSGNISVSWPATKES

ETKRNDDKGDHTYRLISVVS




KDILAPHIGSDKESEQKKGQTV

HLGKTLKSGHYICDAYDFEK




FKGASRRQQQKYLGKNSKPNEL

QIWFTYDDMRVLGIQEAQMQ




ESVYSGDRAFIEKEPLAHLMTY

EDRRCTGYIFFYMHN




LEDTSLCQFHKAGGKPASSPGT






PLSKVDFQTVPENPKRKKYVKT






SKFVAFDRIINPTKDLYEDKNI






RIPERFQKVSEQTQQCDGMRIC






EQAPQQALPQSFPKPGTQGHTK






NLLRPTKLNLQKSNRNSLLALG






SNKNPRNKDILDKIKSKAKETK






RNDDKGDHTYRLISVVSHLGKT






LKSGHYICDAYDFEKQIWFTYD






DMRVLGIQEAQMQEDRRCTGYI






FFYMHNEIFEEMLKREENAQLN






SKEVEETLQKE







UBP19_HUMAN
27
MSGGASATGPRRGPPGLEDTTS
139
LPGFTGLVNLGNTCEMNSVI


Ubiquitin

KKKQKDRANQESKDGDPRKETG

QSLSNTRELRDFFHDRSFEA


carboxyl-

SRYVAQAGLEPLASGDPSASAS

EINYNNPLGTGGRLAIGFAV


terminal

HAAGITGSRHRTRLFFPSSSGS

LLRALWKGTHHAFQPSKLKA


hydrolase 19

ASTPQEEQTKEGACEDPHDLLA

IVASKASQFTGYAQHDAQEF




TPTPELLLDWRQSAEEVIVKLR

MAFLLDGLHEDLNRIQNKPY




VGVGPLQLEDVDAAFTDTDCVV

TETVDSDGRPDEVVAEEAWQ




RFAGGQQWGGVFYAEIKSSCAK

RHKMRNDSFIVDLFQGQYKS




VQTRKGSLLHLTLPKKVPMLTW

KLVCPVCAKVSITFDPFLYL




PSLLVEADEQLCIPPLNSQTCL

PVPLPQKQKVLPVFYFAREP




LGSEENLAPLAGEKAVPPGNDP

HSKPIKFLVSVSKENSTASE




VSPAMVRSRNPGKDDCAKEEMA

VLDSLSQSVHVKPENLRLAE




VAADAATLVDEPESMVNLAFVK

VIKNRFHRVFLPSHSLDTVS




NDSYEKGPDSVVVHVYVKEICR

PSDTLLCFELLSSELAKERV




DTSRVLFREQDFTLIFQTRDGN

VVLEVQQRPQVPSVPISKCA




FLRLHPGCGPHTTFRWQVKLRN

ACQRKQQSEDEKLKRCTRCY




LIEPEQCTFCFTASRIDICLRK

RVGYCNQLCQKTHWPDHKGL




RQSQRWGGLEAPAARVGGAKVA

CRPENIGYPFLVSVPASRLT




VPTGPTPLDSTPPGGAPHPLTG

YARLAQLLEGYARYSVSVFQ




QEEARAVEKDKSKARSEDTGLD

PPFQPGRMALESQSPGCTTL




SVATRTPMEHVTPKPETHLASP

LSTGSLEAGDSERDPIQPPE




KPTCMVPPMPHSPVSGDSVEEE

LQLVTPMAEGDTGLPRVWAA




EEEEKKVCLPGFTGLVNLGNTC

PDRGPVPSTSGISSEMLASG




FMNSVIQSLSNTRELRDFFHDR

PIEVGSLPAGERVSRPEAAV




SFEAEINYNNPLGTGGRLAIGF

PGYQHPSEAMNAHTPQFFIY




AVLLRALWKGTHHAFQPSKLKA

KIDSSNREQRLEDKGDTPLE




IVASKASQFTGYAQHDAQEFMA

LGDDCSLA




FLLDGLHEDLNRIQNKPYTETV

LVWRNNERLQEFVLVASKEL




DSDGRPDEVVAEEAWQRHKMRN

ECAEDPGSAGEAARAGHFTL




DSFIVDLFQGQYKSKLVCPVCA

DQCLNLFTRPEVLAPEEAWY




KVSITFDPFLYLPVPLPQKQKV

CPQCKQHREASKQLLLWRLP




LPVFYFAREPHSKPIKFLVSVS

NVLIVQLKRFSFRSFIWRDK




KENSTASEVLDSLSQSVHVKPE

INDLVEFPVRNLDLSKFCIG




NLRLAEVIKNRFHRVFLPSHSL

QKEEQLPSYDLYAVINHYGG




DTVSPSDTLLCFELLSSELAKE

MIGGHYTACARLPNDRSSQR




RVVVLEVQQRPQVPSVPISKCA

SDVGWRLFDDSTVTTVDESQ




ACQRKQQSEDEKLKRCTRCYRV

VVTRYAYVLFYRRRN




GYCNQLCQKTHWPDHKGLCRPE






NIGYPFLVSVPASRLTYARLAQ






LLEGYARYSVSVFQPPFQPGRM






ALESQSPGCTTLLSTGSLEAGD






SERDPIQPPELQLVTPMAEGDT






GLPRVWAAPDRGPVPSTSGISS






EMLASGPIEVGSLPAGERVSRP






EAAVPGYQHPSEAMNAHTPQFF






IYKIDSSNREQRLEDKGDTPLE






LGDDCSLALVWRNNERLQEFVL






VASKELECAEDPGSAGEAARAG






HFTLDQCLNLFTRPEVLAPEEA






WYCPQCKQHREASKQLLLWRLP






NVLIVQLKRFSFRSFIWRDKIN






DLVEFPVRNLDLSKFCIGQKEE






QLPSYDLYAVINHYGGMIGGHY






TACARLPNDRSSQRSDVGWRLF






DDSTVTTVDESQVVTRYAYVLF






YRRRNSPVERPPRAGHSEHHPD






LGPAAEAAASQASRIWQELEAE






EEPVPEGSGPLGPWGPQDWVGP






LPRGPTTPDEGCLRYFVLGTVA






ALVALVLNVFYPLVSQSRWR







UBP10_HUMAN
28
MALHSPQYIFGDESPDEFNQFF
140
SLQPRGLINKGNWCYINATL


Ubiquitin

VTPRSSVELPPYSGTVLCGTQA

QALVACPPMYHLMKFIPLYS


carboxyl-

VDKLPDGQEYQRIEFGVDEVIE

KVQRPCTSTPMIDSFVRLMN


terminal

PSDTLPRTPSYSISSTLNPQAP

EFTNMPVPPKPRQALGDKIV


hydrolase 10

EFILGCTASKITPDGITKEASY

RDIRPGAAFEPTYIYRLLTV




GSIDCQYPGSALALDGSSNVEA

NKSSLSEKGRQEDAEEYLGE




EVLENDGVSGGLGQRERKKKKK

ILNGLHEEMLNLKKLLSPSN




RPPGYYSYLKDGGDDSISTEAL

EKLTISNGPKNHSVNEEEQE




VNGHANSAVPNSVSAEDAEFMG

EQGEGSEDEWEQVGPRNKTS




DMPPSVTPRTCNSPQNSTDSVS

VTRQADFVQTPITGIFGGHI




DIVPDSPFPGALGSDTRTAGQP

RSVVYQQSSKESATLQPFFT




EGGPGADFGQSCFPAEAGRDTL

LQLDIQSDKIRTVQDALESL




SRTAGAQPCVGTDTTENLGVAN

VARESVQGYTTKTKQEVEIS




GQILESSGEGTATN

RRVTLEKLPPVLVLHLKREV




GVELHTTESIDLDPTKPESASP

YEKTGGCQKLIKNIEYPVDL




PADGTGSASGTLPVSQPKSWAS

EISKELLSPGVKNKNFKCHR




LFHDSKPSSSSPVAYVETKYSP

TYRLFAVVYHHGNSATGGHY




PAISPLVSEKQVEVKEGLVPVS

TTDVFQIGLNGWLRIDDQTV




EDPVAIKIAELLENVTLIHKPV

KVINQYQVVKPTAERTAYLL




SLQPRGLINKGNWCYINATLQA

YYRRVD




LVACPPMYHLMKFIPLYSKVQR






PCTSTPMIDSFVRLMNEFTNMP






VPPKPRQALGDKIVRDIRPGAA






FEPTYIYRLLTVNKSSLSEKGR






QEDAEEYLGFILNGLHEEMLNL






KKLLSPSNEKLTISNGPKNHSV






NEEEQEEQGEGSEDEWEQVGPR






NKTSVTRQADFVQT






PITGIFGGHIRSVVYQQSSKES






ATLQPFFTLQLDIQSDKIRTVQ






DALESLVARESVQGYTTKTKQE






VEISRRVTLEKLPPVLVLHLKR






FVYEKTGGCQKLIKNIEYPVDL






EISKELLSPGVKNKNFKCHRTY






RLFAVVYHHGNSATGGHYTTDV






FQIGLNGWLRIDDQTVKVINQY






QVVKPTAERTAYLLYYRRVDLL







UBP49_HUMAN
29
MDRCKHVGRLRLAQDHSILNPQ
141
MDRCKHVGRLRLAQDHSILN


Ubiquitin

KWCCLECATTESVWACLKCSHV

PQKWCCLECATTESVWACLK


carboxyl-

ACGRYIEDHALKHFEETGHPLA

CSHVACGRYIEDHALKHFEE


terminal

MEVRDLYVFCYLCKDYVLNDNP

TGHPLAMEVRDLYVFCYLCK


hydrolase 49

EGDLKLLRSSLLAVRGQKQDTP

DYVLNDNPEGDLKLLRSSLL




VRRGRTLRSMASGEDVVLPQRA

AVRGQKQDTPVRRGRTLRSM




PQGQPQMLTALWYRRQRLLART

ASGEDVVLPQRAPQGQPQML




LRLWFEKSSRGQAKLEQRRQEE

TALWYRRQRLLARTLRLWFE




ALERKKEEARRRRREVKRRLLE

KSSRGQAKLEQRRQEEALER




ELASTPPRKSARLLLHTPRDAG

KKEEARRRRREVKRRLLEEL




PAASRPAALPTSRRVPAATLKL

ASTPPRKSARLLLHTPRDAG




RRQPAMAPGVTGLRNLGNTCYM

PAASRPAALPTSRRVPAATL




NSILQVLSHLQKFRECFLNLDP

KLRRQPAMAPGVTGLRNLGN




SKTEHLFPKATNGK

TCYMNSILQVLSHLQKFREC




TQLSGKPTNSSATELSLRNDRA

FLNLDPSKTEHLFPKATNGK




EACEREGFCWNGRASISRSLEL

TQLSGKPTNSSATELSLRND




IQNKEPSSKHISLCRELHTLER

RAEACEREGFCWNGRASISR




VMWSGKWALVSPFAMLHSVWSL

SLELIQNKEPSSKHISLCRE




IPAFRGYDQQDAQEFLCELLHK

LHTLFRVMWSGKWALVSPFA




VQQELESEGTTRRILIPFSQRK

MLHSVWSLIPAFRGYDQQDA




LTKQVLKVVNTIFHGQLLSQVT

QEFLCELLHKVQQELESEGT




CISCNYKSNTIEPFWDLSLEEP

TRRILIPFSQRKLTKQVLKV




ERYHCIEKGFVPLNQTECLLTE

VNTIFHGQLLSQVTCISCNY




MLAKFTETEALEGRIYACDQCN

KSNTIEPFWDLSLEFPERYH




SKRRKSNPKPLVLSEARKQLMI

CIEKGFVPLNQTECLLTEML




YRLPQVLRLHLKRFRWSGRNHR

AKFTETEALEGRIYACDQCN




EKIGVHVVEDQVLTMEPYCCRD

SKRRKSNPKPLVLSEARKQL




MLSSLDKETFAYDL

MIYRLPQVLRLHLKRFRWSG




SAVVMHHGKGFGSGHYTAYCYN

RNHREKIGVHVVEDQVLTME




TEGGFWVHCNDSKLNVCSVEEV

PYCCRDMLSSLDKETFAYDL




CKTQAYILFYTQRTVQGNARIS

SAVVMHHGKGFGSGHYTAYC




ETHLQAQVQSSNNDEGRPQTES

YNTEGGFWVHCNDSKLNVCS






VEEVCKTQAYILFYTQRT





U17L8_HUMAN
30
MEDDSLYLGGEWQFNHESKLTS
142
AVGAGLQNMGNTCYLNASLQ


Inactive

PRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


ubiquitin

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


terminal

CYLNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


hydrolase 17-

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI


like protein 8

TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYPCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRFCDVTGNKLAKNVQ




PEELNGENAYPCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRFCDV

YVLYAVLVHAGWSCHNGYYF




TGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGYYFSYVKAQEG






QWYKMDDAEVTACSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRPATQGELKR






DHPCLQVPELDEHLVERATEES






TLDHWKFPQEQNKMKPEFNVRK






VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSMNSTDQE






SMNTGTLASLQGRTRRSKGKNK






HSKRSLLVCQ







6VN6_1
31
GSKKHTGYVGLKNQGATCYMNS
143
TGYVGLKNQGATCYMNSLLQ




LLQTLFFTNQLRKAVYMMPTEG

TLFFTNQLRKAVYMMPTEGD




DDSSKSVPLALQRVFYELQHSD

DSSKSVPLALQRVFYELQHS




KPVGTKKLTKSFGWETLDSFMQ

DKPVGTKKLTKSFGWETLDS




HDVQELCRVLLDNVENKMKGTC

FMQHDVQELCRVLLDNVENK




VEGTIPKLFRGKMVSYIQCKEV

MKGTCVEGTIPKLFRGKMVS




DYRSDRREDYYDIQLSIKGKKN

YIQCKEVDYRSDRREDYYDI




IFESFVDYVAVEQLDGDNKYDA

QLSIKGKKNIFESFVDYVAV




GEHGLQEAEKGVKFLTLPPVLH

EQLDGDNKYDAGEHGLQEAE




LQLMRFMYDPQTDQNIKINDRE

KGVKFLTLPPVLHLQLMREM




EFPEQLPLDEFLQKTDPKDPAN

YDPQTDQNIKINDRFEFPEQ




YILHAVLVHSGDNHGGHYVVYL

LPLDEFLQKTDPKDPANYIL




NPKGDGKWCKFDDDVVSRCTKE

HAVLVHSGDNHGGHYVVYLN




EAIEHNYGGHDDDLSVRHCTNA

PKGDGKWCKFDDDVVSRCTK




YMLVYIRESKLSEVLQAVTDHD

EEAIEHNYGGHDDDLSVRHC




IPQQLVERLQEEKRIEAQKR

TNAYMLVYIRE





6DGF_1
32
AQGLAGLRNLGNTCEMNSILQC
144
AQGLAGLRNLGNTCEMNSIL




LSNTRELRDYCLQRLYMRDLHH

QCLSNTRELRDYCLQRLYMR




GSNAHTALVEEFAKLIQTIWTS

DLHHGSNAHTALVEEFAKLI




SPNDVVSPSEFKTQIQRYAPRE

QTIWTSSPNDVVSPSEFKTQ




VGYNQQDAQEFLRFLLDGLHNE

IQRYAPRFVGYNQQDAQEFL




VNRVTLRPKSNPENLDHLPDDE

RFLLDGLHNEVNRVTLRPKS




KGRQMWRKYLEREDSRIGDLFV

NPENLDHLPDDEKGRQMWRK




GQLKSSLTCTDCGYCSTVEDPF

YLEREDSRIGDLFVGQLKSS




WDLSLPIAKRGYPEVTLMDCMR

LTCTDCGYCSTVEDPEWDLS




LFTKEDVLDGDEKPTCCRCRGR

LPIAKRGYPEVTLMDCMRLF




KRCIKKFSIQRFPKILVLHLKR

TKEDVLDGDEKPTCCRCRGR




FSESRIRTSKLTTFVNFPLRDL

KRCIKKFSIQRFPKILVLHL




DLREFASENTNHAVYNLYAVSN

KRFSESRIRTSKLTTFVNFP




HSGTTMGGHYTAYCRSPGTGEW

LRDLDLREFASENTNHAVYN




HTENDSSVTPMSSSQVRTSDAY

LYAVSNHSGTTMGGHYTAYC




LLFYELASPPSRM

RSPGTGEWHTENDSSVTPMS






SSQVRTSDAYLLFYELAS





2VHF_1
33
GLEIMIGKKKGIQGHYNSCYLD
145
MIGKKKGIQGHYNSCYLDST




STLFCLFAFSSVLDTVLLRPKE

LFCLFAFSSVLDTVLLRPKE




KNDVEYYSETQELLRTEIVNPL

KNDVEYYSETQELLRTEIVN




RIYGYVCATKIMKLRKILEKVE

PLRIYGYVCATKIMKLRKIL




AASGFTSEEKDPEEFLNILFHH

EKVEAASGFTSEEKDPEEFL




ILRVEPLLKIRSAGQKVQDCYF

NILFHHILRVEPLLKIRSAG




YQIFMEKNEKVGVPTIQQLLEW

QKVQDCYFYQIFMEKNEKVG




SFINSNLKFAEAPSCLIIQMPR

VPTIQQLLEWSFINSNLKFA




FGKDFKLEKKIFPSLELNITDL

EAPSCLIIQMPREGKDFKLE




LEDTPRQCRICGGLAMYECREC

KKIFPSLELNITDLLEDTPR




YDDPDISAGKIKQFCKTCNTQV

QCRICGGLAMYECRECYDDP




HLHPKRLNHKYNPVSLPKDLPD

DISAGKIKQFCKTCNTQVHL




WDWRHGCIPCQNMELFAVLCIE

HPKRLNHKYNPVSLPKDLPD




TSHYVAFVKYGKDDSAWLFFDS

WDWRHGCIPCQNMELFAVLC




MADRDGGQNGFNIPQVTPCPEV

IETSHYVAFVKYGKDDSAWL




GEYLKMSLEDLHSLDSRRIQGC

FFDSMADRDGGQNGFNIPQV




ARRLLCDAYMCMYQSPTMSLYK

TPCPEVGEYLKMSLEDLHSL






DSRRIQGCARRLLCDAYMCM






YQS





U17LI_HUMAN
34
MEDDSLYLGGEWQFNHFSKLTS
146
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 18

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQTNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQTNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRAKQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP22_HUMAN
35
MVSRPEPEGEAMDAELAVAPPG
147
LGNTCFMNCIVQALTHTPLL


Ubiquitin

CSHLGSFKVDNWKQNLRAIYQC

RDFFLSDRHRCEMQSPSSCL


carboxyl-

FVWSGTAEARKRKAKSCICHVC

VCEMSSLFQEFYSGHRSPHI


terminal

GVHLNRLHSCLYCVFFGCFTKK

PYKLLHLVWTHARHLAGYEQ


hydrolase 22

HIHEHAKAKRHNLAIDLMYGGI

QDAHEFLIAALDVLHRHCKG




YCFLCQDYIYDKDMEIIAKEEQ

DDNGKKANNPNHCNCIIDQI




RKAWKMQGVGEKESTWEPTKRE

FTGGLQSDVTCQVCHGVSTT




LELLKHNPKRRKITSNCTIGLR

IDPFWDISLDLPGSSTPFWP




GLINLGNTCEMNCIVQALTHTP

LSPGSEGNVVNGESHVSGTT




LLRDFFLSDRHRCEMQSPSSCL

TLTDCLRRFTRPEHLGSSAK




VCEMSSLFQEFYSGHRSPHIPY

IKCSGCHSYQESTKQLTMKK




KLLHLVWTHARHLAGYEQQDAH

LPIVACFHLKRFEHSAKLRR




EFLIAALDVLHRHCKGDDNGKK

KITTYVSFPLELDMTPEMAS




ANNPNHCNCIIDQIFTGGLQSD

SKESRMNGQYQQPTDSLNND




VTCQVCHGVSTTIDPFWDISLD

NKYSLFAVVNHQGTLESGHY




LPGSSTPFWPLSPGSEGNVVNG

TSFIRQHKDQWFKCDDAIIT




ESHVSGTTTLTDCLRRFTRPEH

KASIKDVLDSEGYLLFYHKQ




LGSSAKIKCSGCHSYQESTKQL

E




TMKKLPIVACFHLKRFEHSAKL






RRKITTYVSFPLELDMTPEMAS






SKESRMNGQYQQPTDSLNNDNK






YSLFAVVNHQGTLESGHYTSFI






RQHKDQWFKCDDAIITKASIKD






VLDSEGYLLFYHKQFLEYE







UBP18_HUMAN
36
MSKAFGLLRQICQSILAESSQS
148
KGLVPGLVNLGNTCEMNSLL


Ubl

PADLEEKKEEDSNMKREQPRER

QGLSACPAFIRWLEEFTSQY


carboxyl-

PRAWDYPHGLVGLHNIGQTCCL

SRDQKEPPSHQYLSLTLLHL


terminal

NSLIQVFVMNVDFTRILKRITV

LKALSCQEVTDDEVLDASCL


hydrolase 18

PRGADEQRRSVPFQMLLLLEKM

LDVLRMYRWQISSFEEQDAH




QDSRQKAVRPLELAYCLQKCNV

ELFHVITSSLEDERDRQPRV




PLFVQHDAAQLYLKLWNLIKDQ

THLFDVHSLEQQSEITPKQI




ITDVHLVERLQALYTIRVKDSL

TCRTRGSPHPTSNHWKSQHP




ICVDCAMESSRNSSMLTLPLSL

FHGRLTSNMVCKHCEHQSPV




FDVDSKPLKTLEDALHCFFQPR

RFDTFDSLSLSIPAATWGHP




ELSSKSKCFCENCGKKTRGKQV

LTLDHCLHHFISSESVRDVV




LKLTHLPQTLTIHLMRESIRNS

CDNCTKIEAKGTLNGEKVEH




QTRKICHSLYFPQSLDESQILP

QRTTFVKQLKLGKLPQCLCI




MKRESCDAEEQSGG

HLQRLSWSSHGTPLKRHEHV




QYELFAVIAHVGMADSGHYCVY

QFNEFLMMDIYKYHLLGHKP




IRNAVDGKWFCENDSNICLVSW

SQHNPKLNKNPGPTLELQDG




EDIQCTYGNPNYHWQETAYLLV

PGAPTPVLNQPGAPKTQIFM




YMKMEC

NGACSPSLLPTLSAPMPFPL






PVVPDYSSSTYLERLMAVVV






HHGDMHSGHFVTYRRSPPSA






RNPLSTSNQWLWVSDDTVRK






ASLQEVLSSSAYLLEYERVL





UBP28_HUMAN
37
MTAELQQDDAAGAADGHGSSCQ
149
GWPVGLKNVGNTCWFSAVIQ


Ubiquitin

MLLNQLREITGIQDPSFLHEAL

SLFQLPEFRRLVLSYSLPQN


carboxyl-

KASNGDITQAVSLLTDERVKEP

VLENCRSHTEKRNIMEMQEL


terminal

SQDTVATEPSEVEGSAANKEVL

QYLFALMMGSNRKFVDPSAA


hydrolase 28

AKVIDLTHDNKDDLQAAIALSL

LDLLKGAFRSSEEQQQDVSE




LESPKIQADGRDLNRMHEATSA

FTHKLLDWLEDAFQLAVNVN




ETKRSKRKRCEVWGENPNPNDW

SPRNKSENPMVQLFYGTELT




RRVDGWPVGLKNVGNTCWFSAV

EGVREGKPFCNNETFGQYPL




IQSLFQLPEFRRLVLSYSLPQN

QVNGYRNLDECLEGAMVEGD




VLENCRSHTEKRNIMFMQELQY

VELLPSDHSVKYGQERWFTK




LFALMMGSNRKFVDPSAALDLL

LPPVLTFELSRFEFNQSLGQ




KGAFRSSEEQQQDVSEFTHKLL

PEKIHNKLEFPQIIYMDRYM




DWLEDAFQLAVNVNSPRNKSEN

YRSKELIRNKRECIRKLKEE




PMVQLFYGTELTEG

IKILQQKLERYVKYGSGPAR




VREGKPFCNNETFGQYPLQVNG

FPLPDMLKYVIEFASTKPAS




YRNLDECLEGAMVEGDVELLPS

ESCPPESDTHMTLPLSSVHC




DHSVKYGQERWFTKLPPVLTFE

SVSDQTSKESTSTESSSQDV




LSRFEFNQSLGQPEKIHNKLEF

ESTESSPEDSLPKSKPLTSS




PQIIYMDRYMYRSKELIRNKRE

RSSMEMPSQPAPRTVTDEEI




CIRKLKEEIKILQQKLERYVKY

NFVKTCLQRWRSEIEQDIQD




GSGPARFPLPDMLKYVIEFAST

LKTCIASTTQTIEQMYCDPL




KPASESCPPESDTHMTLPLSSV

LRQVPYRLHAVLVHEGQANA




HCSVSDQTSKESTSTESSSQDV

GHYWAYIYNQPRQSWLKYND




ESTESSPEDSLPKSKPLTSSRS

ISVTESSWEEVERDSYGGLR




SMEMPSQPAPRTVTDEEINFVK

NVSAYCLMYINDKLPY




TCLQRWRSEIEQDIQDLKTCIA






STTQTIEQMYCDPLLRQVPYRL






HAVLVHEGQANAGHYWAYIYNQ






PRQSWLKYNDISVTESSWEEVE






RDSYGGLRNVSAYCLMYINDKL






PYFNAEAAPTESDQMSEVEALS






VELKHYIQEDNWRFEQEVEEWE






EEQSCKIPQMESSINSSSQDYS






TSQEPSVASSHGVRCLSSEHAV






IVKEQTAQAIANTARAYEKSGV






EAALSEVMLSPAMQGVILAIAK






ARQTFDRDGSEAGLIKAFHEEY






SRLYQLAKETPTSHSDPRLQHV






LVYFFQNEAPKRVVERTLLEQF






ADKNLSYDERSISIMKVAQAKL






KEIGPDDMNMEEYKKWHEDYSL






FRKVSVYLLTGLELYQKGKYQE






ALSYLVYAYQSNAALLMKGPRR






GVKESVIALYRRKCLLELNAKA






ASLFETNDDHSVTEGINVMNEL






IIPCIHLIINNDISKDDLDAIE






VMRNHWCSYLGQDIAENLQLCL






GEFLPRLLDPSAEIIVLKEPPT






IRPNSPYDLCSRFAAVMESIQG






VSTVTVK






MEDDSLYLGGEWQFNHFSKLTS






SRPDAAFAEIQRTSLPEKSPLS






SEARVDLCDDLAPVARQLAPRK






KLPLSSRRPAAVGAGLQNMGNT






CYENASLQCLTYTPPLANYMLS







U17L2_HUMAN
38
REHSQTCQRPKCCMLCTMQAHI
150
AVGAGLQNMGNTCYENASLQ


Ubiquitin

TWALHSPGHVIQPSQALAAGFH

CLTYTPPLANYMLSREHSQT


carboxyl-

RGKQEDAHEFLMFTVDAMKKAC

CQRPKCCMLCTMQAHITWAL


terminal

LPGHKQVDHHSKDTTLIHQIFG

HSPGHVIQPSQALAAGFHRG


hydrolase 17

GCWRSQIKCLHCHGISDTFDPY

KQEDAHEFLMFTVDAMKKAC




LDIALDIQAAQSVKQALEQLVK

LPGHKQVDHHSKDTTLIHQI




PEELNGENAYHCGLCLQRAPAS

FGGCWRSQIKCLHCHGISDT




KTLTLHTSAKVLILVLKRESDV

FDPYLDIALDIQAAQSVKQA




TGNKLAKNVQYPEC

LEQLVKPEELNGENAYHCGL




LDMQPYMSQQNTGPLVYVLYAV

CLQRAPASKTLTLHTSAKVL




LVHAGWSCHDGHYFSYVKAQEG

ILVLKRFSDVTGNKLAKNVQ




QWYKMDDAKVTACSITSVLSQQ

YPECLDMQPYMSQQNTGPLV




AYVLFYIQKSEWERHSESVSRG

YVLYAVLVHAGWSCHDGHYF




REPRALGAEDTDRRATQGELKR

SYVKAQEGQWYKMDDAKVTA




DHPCLQAPELDERLVERATQES

CSITSVLSQQAYVLFYIQKS




TLDHWKFPQEQNKTKPEFNVRK






VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTRTDQE






SVNTGTLASLQGRTRRSKGKNK






HSKRALLVCQ







UBP31_HUMAN
39
MSKVTAPGSGPPAAASGKEKRS
151
PVPGVAGLRNHGNTCEMNAT


Ubiquitin

FSKRLERSGRAGGGGAGGPGAS

LQCLSNTELFAEYLALGQYR


carboxyl-

GPAAPSSPSSPSSARSVGSEMS

AGRPEPSPDPEQPAGRGAQG


terminal

RVLKTLSTLSHLSSEGAAPDRG

QGEVTEQLAHLVRALWTLEY


hydrolase 31

GLRSCFPPGPAAAPTPPPCPPP

TPQHSRDFKTIVSKNALQYR




PASPAPPACAAEPVPGVAGLRN

GNSQHDAQEFLLWLLDRVHE




HGNTCFMNATLQCLSNTELFAE

DLNHSVKQSGQPPLKPPSET




YLALGQYRAGRPEPSPDPEQPA

DMMPEGPSFPVCSTEVQELE




GRGAQGQGEVTEQLAHLVRALW

QAQYRSSLTCPHCQKQSNTF




TLEYTPQHSRDFKTIVSKNALQ

DPFLCISLPIPLPHTRPLYV




YRGNSQHDAQEFLLWLLDRVHE

TVVYQGKCSHCMRIGVAVPL




DLNHSVKQSGQPPLKPPSETDM

SGTVARLREAVSMETKIPTD




MPEGPSFPVCSTFVQELFQAQY

QIVLTEMYYDGFHRSFCDTD




RSSLTCPHCQKQSN

DLETVHESDCIFAFETPEIF




TFDPFLCISLPIPLPHTRPLYV

RPEGILSQRGIHLNNNLNHL




TVVYQGKCSHCMRIGVAVPLSG

KFGLDYHRLSSPTQTAAKQG




TVARLREAVSMETKIPTDQIVL

KMDSPTSRAGSDKIVLLVCN




TEMYYDGFHRSFCDTDDLETVH

RACTGQQGKRFGLPFVLHLE




ESDCIFAFETPEIFRPEGILSQ

KTIAWDLLQKEILEKMKYFL




RGIHLNNNLNHLKFGLDYHRLS

RPTVCIQVCPFSLRVVSVVG




SPTQTAAKQGKMDSPTSRAGSD

ITYLLPQEEQPLCHPIVE




KIVLLVCNRACTGQQGKRFGLP

RALKSCGPGGTAHVKLVVEW




FVLHLEKTIAWDLLQKEILEKM

DKETRDFLFVNTEDEYIPDA




KYFLRPTVCIQVCPFSLRVVSV

ESVRLQRERHHQPQTCTLSQ




VGITYLLPQEEQPLCHPIVERA

CFQLYTKEERLAPDDAWRCP




LKSCGPGGTAHVKLVVEWDKET

HCKQLQQGSITLSLWTLPDV




RDFLFVNTEDEYIPDAESVRLQ

LIIHLKRFRQEGDRRMKLQN




RERHHQPQTCTLSQ

MVKFPLTGLDMTPHVVKRSQ




CFQLYTKEERLAPDDAWRCPHC

SSWSLPSHWSPWRRPYGLGR




KQLQQGSITLSLWTLPDVLIIH

DPEDYIYDLYAVCNHHGTMQ




LKRFRQEGDRRMKLQNMVKFPL

GGHYTAYCKNSVDGLWYCFD




TGLDMTPHVVKRSQSSWSLPSH

DSDVQQLSEDEVCTQTAYIL




WSPWRRPYGLGRDPEDYIYDLY

FYQRRT




AVCNHHGTMQGGHYTAYCKNSV






DGLWYCFDDSDVQQLSEDEVCT






QTAYILFYQRRTAIPSWSANSS






VAGSTSSSLCEHWVSRLPGSKP






ASVTSAASSRRTSLASLSESVE






MTGERSEDDGGFSTRPFVRSVQ






RQSLSSRSSVTSPLAVNENCMR






PSWSLSAKLQMRSNSPSRFSGD






SPIHSSASTLEKIG






EAADDKVSISCFGSLRNLSSSY






QEPSDSHSRREHKAVGRAPLAV






MEGVFKDESDTRRLNSSVVDTQ






SKHSAQGDRLPPLSGPFDNNNQ






IAYVDQSDSVDSSPVKEVKAPS






HPGSLAKKPESTTKRSPSSKGT






SEPEKSLRKGRPALASQESSLS






STSPSSPLPVKVSLKPSRSRSK






ADSSSRGSGRHSSPAPAQPKKE






SSPKSQDSVSSPSPQKQKSASA






LTYTASSTSAKKASGPATRSPF






PPGKSRTSDHSLSREGSRQSLG






SDRASATSTSKPNSPRVSQARA






GEGRGAGKHVRSSS






MASLRSPSTSIKSGLKRDSKSE






DKGLSFFKSALRQKETRRSTDL






GKTALLSKKAGGSSVKSVCKNT






GDDEAERGHQPPASQQPNANTT






GKEQLVTKDPASAKHSLLSARK






SKSSQLDSGVPSSPGGRQSAEK






SSKKLSSSMQTSARPSQKPQ







U17LJ_HUMAN
40
MEEDSLYLGGEWQFNHESKLTS
152
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 19

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQTNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQTNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG

EWERHSESVSRGREPRALGA




QWYKMDDAEVTASSITSVLSQQ

EDTDRRATQGELKRDHPCLQ




AYVLFYIQKSEWERHSESVSRG

APEL




REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17LF_HUMAN
41
MEDDSLYLGGEWQFNHESKLTS
153
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 15

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGEH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIDKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMKLYMSQTNSGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIDKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMKLYMSQTNSGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQWSQWKYRPTRRG






AHTHAHTQTHT







UBP47_HUMAN
42
MVPGEENQLVPKEDVEWRCRQN
154
ETGYVGLVNQAMTCYLNSLL


Ubiquitin

IFDEMKKKFLQIENAAEEPRVL

QTLEMTPEFRNALYKWEFEE


carboxyl-

CIIQDTTNSKTVNERITLNLPA

SEEDPVTSIPYQLQRLFVLL


terminal

STPVRKLFEDVANKVGYINGTF

QTSKKRAIETTDVTRSFGWD


hydrolase 47

DLVWGNGINTADMAPLDHTSDK

SSEAWQQHDVQELCRVMEDA




SLLDANFEPGKKNFLHLTDKDG

LEQKWKQTEQADLINELYQG




EQPQILLEDSSAGEDSVHDRFI

KLKDYVRCLECGYEGWRIDT




GPLPREGSGGSTSDYVSQSYSY

YLDIPLVIRPYGSSQAFASV




SSILNKSETGYVGLVNQAMTCY

EEALHAFIQPEILDGPNQYF




LNSLLQTLFMTPEFRNALYKWE

CERCKKKCDARKGLRFLHEP




FEESEEDPVTSIPYQLQRLFVL

YLLTLQLKRFDFDYTTMHRI




LQTSKKRAIETTDVTRSFGWDS

KLNDRMTFPEELDMSTFIDV




SEAWQQHDVQELCRVMEDALEQ

EDEKSPQTESCTDSGAENEG




KWKQTEQADLINEL

SCHSDQMSNDFSNDDGVDEG




YQGKLKDYVRCLECGYEGWRID

ICLETNSGTEKISKSGLEKN




TYLDIPLVIRPYGSSQAFASVE

SLIYELFSVMVHSGSAAGGH




EALHAFIQPEILDGPNQYFCER

YYACIKSESDEQWYSENDQH




CKKKCDARKGLRFLHFPYLLTL

VSRITQEDIKKTHGGSSGSR




QLKRFDEDYTTMHRIKLNDRMT

GYYSSAFASSTNAYMLIYRL




FPEELDMSTFIDVEDEKSPQTE

KD




SCTDSGAENEGSCHSDQMSNDE






SNDDGVDEGICLETNSGTEKIS






KSGLEKNSLIYELFSVMVHSGS






AAGGHYYACIKSESDEQWYSEN






DQHVSRITQEDIKKTHGGSSGS






RGYYSSAFASSTNAYMLIYRLK






DPARNAKFLEVDEYPEHIKNLV






QKERELEEQEKRQR






EIERNTCKIKLFCLHPTKQVMM






ENKLEVHKDKTLKEAVEMAYKM






MDLEEVIPLDCCRLVKYDEFHD






YLERSYEGEEDTPMGLLLGGVK






STYMEDLLLETRKPDQVFQSYK






PGEVMVKVHVVDLKAESVAAPI






TVRAYLNQTVTEFKQLISKAIH






LPAETMRIVLERCYNDLRLLSV






SSKTLKAEGFERSNKVFVESSE






TLDYQMAFADSHLWKLLDRHAN






TIRLFVLLPEQSPVSYSKRTAY






QKAGGDSGNVDDDCERVKGPVG






SLKSVEAILEESTEKLKSLSLQ






QQQDGDNGDSSKST






ETSDFENIESPLNERDSSASVD






NRELEQHIQTSDPENFQSEERS






DSDVNNDRSTSSVDSDILSSSH






SSDTLCNADNAQIPLANGLDSH






SITSSRRTKANEGKKETWDTAE






EDSGTDSEYDESGKSRGEMQYM






YFKAEPYAADEGSGEGHKWLMV






HVDKRITLAAFKQHLEPFVGVL






SSHFKVERVYASNQEFESVRLN






ETLSSFSDDNKITIRLGRALKK






GEYRVKVYQLLVNEQEPCKELL






DAVFAKGMTVRQSKEELIPQLR






EQCGLELSIDRERLRKKTWKNP






GTVELDYHIYEEDI






NISSNWEVELEVLDGVEKMKSM






SQLAVLSRRWKPSEMKLDPFQE






VVLESSSVDELREKLSEISGIP






LDDIEFAKGRGTFPCDISVLDI






HQDLDWNPKVSTLNVWPLYICD






DGAVIFYRDKTEELMELTDEQR






NELMKKESSRLQKTGHRVTYSP






RKEKALKIYLDGAPNKDLTQD







UBP51_HUMAN
43
MAQVRETSLPSGSGVRWISGGG
155
YTVGLRGLINLGNTCEMNCI


Ubiquitin

GGASPEEAVEKAGKMEEAAAGA

VQALTHIPLLKDFFLSDKHK


carboxyl-

TKASSRREAEEMKLEPLQEREP

CIMTSPSLCLVCEMSSLFHA


terminal

APEENLTWSSSGGDEKVLPSIP

MYSGSRTPHIPYKLLHLIWI


hydrolase 51

LRCHSSSSPVCPRRKPRPRPQP

HAEHLAGYRQQDAHEFLIAI




RARSRSQPGLSAPPPPPARPPP

LDVLHRHSKDDSGGQEANNP




PPPPPPPPAPRPRAWRGSRRRS

NCCNCIIDQIFTGGLQSDVT




RPGSRPQTRRSCSGDLDGSGDP

CQACHSVSTTIDPCWDISLD




GGLGDWLLEVEFGQGPTGCSHV

LPGSCATFDSQNPERADSTV




ESFKVGKNWQKNLRLIYQREVW

SRDDHIPGIPSLTDCLQWFT




SGTPETRKRKAKSCICHVCSTH

RPEHLGSSAKIKCNSCQSYQ




MNRLHSCLSCVFFGCFTEKHIH

ESTKQLTMKKLPIVACFHLK




KHAETKQHHLAVDLYHGVIYCF

RFEHVGKQRRKINTFISFPL




MCKDYVYDKDIEQI

ELDMTPFLASTKESRMKEGQ




AKETKEKILRLLTSTSTDVSHQ

PPTDCVPNENKYSLFAVINH




QFMTSGFEDKQSTCETKEQEPK

HGTLESGHYTSFIRQQKDQW




LVKPKKKRRKKSVYTVGLRGLI

FSCDDAIITKATIEDLLYSE




NLGNTCFMNCIVQALTHIPLLK

GYLLFYHKQG




DFFLSDKHKCIMTSPSLCLVCE






MSSLFHAMYSGSRTPHIPYKLL






HLIWIHAEHLAGYRQQDAHEFL






IAILDVLHRHSKDDSGGQEANN






PNCCNCIIDQIFTGGLQSDVTC






QACHSVSTTIDPCWDISLDLPG






SCATFDSQNPERADSTVSRDDH






IPGIPSLTDCLQWFTRPEHLGS






SAKIKCNSCQSYQESTKQLTMK






KLPIVACFHLKRFE






HVGKQRRKINTFISFPLELDMT






PFLASTKESRMKEGQPPTDCVP






NENKYSLFAVINHHGTLESGHY






TSFIRQQKDQWFSCDDAIITKA






TIEDLLYSEGYLLFYHKQGLEK






D







UBP36_HUMAN
44
MPIVDKLKEALKPGRKDSADDG
156
RVGAGLHNLGNTCELNATIQ


Ubiquitin

ELGKLLASSAKKVLLQKIEFEP

CLTYTPPLANYLLSKEHARS


carboxyl-

ASKSFSYQLEALKSKYVLLNPK

CHQGSFCMLCVMQNHIVQAF


terminal

TEGASRHKSGDDPPARRQGSEH

ANSGNAIKPVSFIRDLKKIA


hydrolase 36

TYESCGDGVPAPQKVLFPTERL

RHFREGNQEDAHEFLRYTID




SLRWERVERVGAGLHNLGNTCF

AMQKACLNGCAKLDRQTQAT




LNATIQCLTYTPPLANYLLSKE

TLVHQIFGGYLRSRVKCSVC




HARSCHQGSFCMLCVMQNHIVQ

KSVSDTYDPYLDVALEIRQA




AFANSGNAIKPVSFIRDLKKIA

ANIVRALELFVKADVLSGEN




RHFREGNQEDAHEFLRYTIDAM

AYMCAKCKKKVPASKRFTIH




QKACLNGCAKLDRQTQATTLVH

RTSNVLTLSLKRFANFSGGK




QIFGGYLRSRVKCSVCKSVSDT

ITKDVGYPEFLNIRPYMSQN




YDPYLDVALEIRQAANIVRALE

NG




LFVKADVLSGENAY

DPVMYGLYAVLVHSGYSCHA




MCAKCKKKVPASKRFTIHRTSN

GHYYCYVKASNGQWYQMNDS




VLTLSLKRFANESGGKITKDVG

LVHSSNVKVVLNQQAYVLFY




YPEFLNIRPYMSQNNGDPVMYG

LRIP




LYAVLVHSGYSCHAGHYYCYVK






ASNGQWYQMNDSLVHSSNVKVV






LNQQAYVLFYLRIPGSKKSPEG






LISRTGSSSLPGRPSVIPDHSK






KNIGNGIISSPLTGKRQDSGTM






KKPHTTEEIGVPISRNGSTLGL






KSQNGCIPPKLPSGSPSPKLSQ






TPTHMPTILDDPGKKVKKPAPP






QHFSPRTAQGLPGTSNSNSSRS






GSQRQGSWDSRDVVLSTSPKLL






ATATANGHGLKGND






ESAGLDRRGSSSSSPEHSASSD






STKAPQTPRSGAAHLCDSQETN






CSTAGHSKTPPSGADSKTVKLK






SPVLSNTTTEPASTMSPPPAKK






LALSAKKASTLWRATGNDLRPP






PPSPSSDLTHPMKTSHPVVAST






WPVHRARAVSPAPQSSSRLQPP






FSPHPTLLSSTPKPPGTSEPRS






CSSISTALPQVNEDLVSLPHQL






PEASEPPQSPSEKRKKTFVGEP






QRLGSETRLPQHIREATAAPHG






KRKRKKKKRPEDTAASALQEGQ






TQRQPGSPMYRREGQAQLPAVR






RQEDGTQPQVNGQQ






VGCVTDGHHASSRKRRRKGAEG






LGEEGGLHQDPLRHSCSPMGDG






DPEAMEESPRKKKKKKRKQETQ






RAVEEDGHLKCPRSAKPQDAVV






PESSSCAPSANGWCPGDRMGLS






QAPPVSWNGERESDVVQELLKY






SSDKAYGRKVLTWDGKMSAVSQ






DAIEDSRQARTETVVDDWDEEF






DRGKEKKIKKEKREKRRNFNAF






QKLQTRRNEWSVTHPAKAASLS






YRR







UBP44_HUMAN
45
MLAMDTCKHVGQLQLAQDHSSL
157
TPGVTGLRNLGNTCYMNSVL


Ubiquitin

NPQKWHCVDCNTTESIWACLSC

QVLSHLLIFRQCFLKLDLNQ


carboxyl-

SHVACGRYIEEHALKHFQESSH

WLAMTASEKTRSCKHPPVTD


terminal

PVALEVNEMYVFCYLCDDYVLN

TVVYQMNECQEKDTGFVCSR


hydrolase 44

DNTTGDLKLLRRTLSAIKSQNY

QSSLSSGLSGGASKGRKMEL




HCTTRSGRFLRSMGTGDDSYEL

IQPKEPTSQYISLCHELHTL




HDGAQSLLQSEDQLYTALWHRR

FQVMWSGKWALVSPFAMLHS




RILMGKIFRTWFEQSPIGRKKQ

VWRLIPAFRGYAQQDAQEFL




EEPFQEKIVVKREVKKRRQELE

CELLDKIQRELETTGTSLPA




YQVKAELESMPPRKSLRLQGLA

LIPTSQRKLIKQVLNVVNNI




QSTIIEIVSVQVPAQTPASPAK

FHGQLLSQVTCLACDNKSNT




DKVLSTSENEISQKVSDSSVKR

IEPFWDLSLEFPERYQCSGK




RPIVTPGVTGLRNLGNTCYMNS

DIASQPCLVTEMLAKFTETE




VLQVLSHLLIFRQC

ALEGKIYVCDQCNSKRRRES




FLKLDLNQWLAMTASEKTRSCK

SKPVVLTEAQKQLMICHLPQ




HPPVTDTVVYQMNECQEKDTGF

VLRLHLKRFRWSGRNNREKI




VCSRQSSLSSGLSGGASKGRKM

GVHVGFEEILNMEPYCCRET




ELIQPKEPTSQYISLCHELHTL

LKSLRPECFIYDLSAVVMHH




FQVMWSGKWALVSPFAMLHSVW

GKGFGSGHYTAYCYNSEGGF




RLIPAFRGYAQQDAQEFLCELL

WVHCNDSKLSMCTMDEVCKA




DKIQRELETTGTSLPALIPTSQ

QAYILFYTQRV




RKLIKQVLNVVNNIFHGQLLSQ






VTCLACDNKSNTIEPFWDLSLE






FPERYQCSGKDIASQPCLVTEM






LAKFTETEALEGKIYVCDQCNS






KRRRFSSKPVVLTEAQKQLMIC






HLPQVLRLHLKRFRWSGRNNRE






KIGVHVGFEEILNM






EPYCCRETLKSLRPECFIYDLS






AVVMHHGKGFGSGHYTAYCYNS






EGGFWVHCNDSKLSMCTMDEVC






KAQAYILFYTQRVTENGHSKLL






PPELLLGSQHPNEDADTSSNEI






LS







UBP8_HUMAN
46
MPAVASVPKELYLSSSLKDLNK
158
PALTGLRNLGNTCYMNSILQ


Ubiquitin

KTEVKPEKISTKSYVHSALKIF

CLCNAPHLADYENRNCYQDD


carboxyl-

KTAEECRLDRDEERAYVLYMKY

INRSNLLGHKGEVAEEFGII


terminal

VTVYNLIKKRPDFKQQQDYFHS

MKALWTGQYRYISPKDFKIT


hydrolase 8

ILGPGNIKKAVEEAERLSESLK

IGKINDQFAGYSQQDSQELL




LRYEEAEVRKKLEEKDRQEEAQ

LFLMDGLHEDLNKADNRKRY




RLQQKRQETGREDGGTLAKGSL

KEENNDHLDDFKAAEHAWQK




ENVLDSKDKTQKSNGEKNEKCE

HKQLNESIIVALFQGQFKST




TKEKGAITAKELYTMMTDKNIS

VQCLTCHKKSRTFEAFMYLS




LIIMDARRMQDYQDSCILHSLS

LPLASTSKCTLQDCLRLESK




VPEEAISPGVTASWIEAHLPDD

EEKLTDNNRFYCSHCRARRD




SKDTWKKRGNVEYVVLLDWESS

SLKKIEIWKLPPVLLVHLKR




AKDLQIGTTLRSLKDALFKWES

FSYDGRWKQKLQTSVDEPLE




KTVLRNEPLVLEGG

NLDLSQYVIGPKNNLKKYNL




YENWLLCYPQYTTNAKVTPPPR

FSVSNHYGGLDGGHYTAYCK




RQNEEVSISLDFTYPSLEESIP

NAARQRWFKEDDHEVSDISV




SKPAAQTPPASIEVDENIELIS

SSVKSSAAYILFYTSLG




GQNERMGPLNISTPVEPVAASK






SDVSPIIQPVPSIKNVPQIDRT






KKPAVKLPEEHRIKSESTNHEQ






QSPQSGKVIPDRSTKPVVESPT






LMLTDEEKARIHAETALLMEKN






KQEKELRERQQEEQKEKLRKEE






QEQKAKKKQEAEENEITEKQQK






AKEEMEKKESEQAKKEDKETSA






KRGKEITGVKRQSKSEHETSDA






KKSVEDRGKRCPTPEIQKKSTG






DVPHTSVTGDSGSG






KPFKIKGQPESGILRTGTFRED






TDDTERNKAQREPLTRARSEEM






GRIVPGLPSGWAKFLDPITGTF






RYYHSPTNTVHMYPPEMAPSSA






PPSTPPTHKAKPQIPAERDREP






SKLKRSYSSPDITQAIQEEEKR






KPTVTPTVNRENKPTCYPKAEI






SRLSASQIRNLNPVEGGSGPAL






TGLRNLGNTCYMNSILQCLCNA






PHLADYFNRNCYQDDINRSNLL






GHKGEVAEEFGIIMKALWTGQY






RYISPKDFKITIGKINDQFAGY






SQQDSQELLLFLMDGLHEDLNK






ADNRKRYKEENNDH






LDDEKAAEHAWQKHKQLNESII






VALFQGQFKSTVQCLTCHKKSR






TFEAFMYLSLPLASTSKCTLQD






CLRLFSKEEKLTDNNRFYCSHC






RARRDSLKKIEIWKLPPVLLVH






LKRFSYDGRWKQKLQTSVDFPL






ENLDLSQYVIGPKNNLKKYNLF






SVSNHYGGLDGGHYTAYCKNAA






RQRWFKEDDHEVSDISVSSVKS






SAAYILFYTSLGPRVTDVAT







UBP37_HUMAN
47
MSPLKIHGPIRIRSMQTGITKW
159
QQLQGFSNLGNTCYMNAILQ


Ubiquitin

KEGSFEIVEKENKVSLVVHYNT

SLFSLQSFANDLLKQGIPWK


carboxyl-

GGIPRIFQLSHNIKNVVLRPSG

KIPLNALIRRFAHLLVKKDI


terminal

AKQSRLMLTLQDNSFLSIDKVP

CNSETKKDLLKKVKNAISAT


hydrolase 37

SKDAEEMRLFLDAVHQNRLPAA

AERFSGYMQNDAHEFLSQCL




MKPSQGSGSFGAILGSRTSQKE

DQLKEDMEKLNKTWKTEPVS




TSRQLSYSDNQASAKRGSLETK

GEENSPDISATRAYTCPVIT




DDIPFRKVLGNPGRGSIKTVAG

NLEFEVQHSIICKACGEIIP




SGIARTIPSLISTSTPLRSGLL

KREQFNDLSIDLPRRKKPLP




ENRTEKRKRMISTGSELNEDYP

PRSIQDSLDLFFRAEELEYS




KENDSSSNNKAMTDPSRKYLTS

CEKCGGKCALVRHKENRLPR




SREKQLSLKQSEENRTSGLLPL

VLILHLKRYSENVALSLNNK




QSSSFYGSRAGSKEHSSGGTNL

IGQQVIIPRYLTLSSHCTEN




DRTNVSSQTPSAKR

TKP




SLGFLPQPVPLSVKKLRCNQDY

PFTLGWSAHMAISRPLKASQ




TGWNKPRVPLSSHQQQQLQGES

MVNSCITSPSTPSKKFTEKS




NLGNTCYMNAILQSLFSLQSFA

KSSLALCLDSDSEDELKRSV




NDLLKQGIPWKKIPLNALIRRE

ALSQRLCEMLGNEQQQEDLE




AHLLVKKDICNSETKKDLLKKV

KDSKLCPIEPDKSELENSGE




KNAISATAERFSGYMQNDAHEF

DRMSEEELLAAVLEISKRDA




LSQCLDQLKEDMEKLNKTWKTE

SPSLSHEDDDKPTSSPDTGE




PVSGEENSPDISATRAYTCPVI

AEDDIQEMPENPDTMETEKP




TNLEFEVQHSIICKACGEIIPK

KTITELDPASFTEITKDCDE




REQENDLSIDLPRRKKPLPPRS

NKENKTPEGSQGEVDWLQQY




IQDSLDLFFRAEELEYSCEKCG

DMEREREEQELQQALAQSLQ




GKCALVRHKENRLPRVLILHLK

EQEAWEQKEDDDLKRATELS




RYSFNVALSLNNKIGQQVIIPR

LQEENNSFVDALGSDEDSGN




YLTLSSHCTENTKP

EDVEDMEYTEAEAEELKRNA




PFTLGWSAHMAISRPLKASQMV

ETGNLPHSYRLISVVSHIGS




NSCITSPSTPSKKFTFKSKSSL

TSSSGHYISDVYDIKKQAWF




ALCLDSDSEDELKRSVALSQRL

TYNDLEVSKIQEAAVQSDRD




CEMLGNEQQQEDLEKDSKLCPI

RSGYIFFYMHK




EPDKSELENSGEDRMSEEELLA






AVLEISKRDASPSLSHEDDDKP






TSSPDTGFAEDDIQEMPENPDT






METEKPKTITELDPASFTEITK






DCDENKENKTPEGSQGEVDWLQ






QYDMEREREEQELQQALAQSLQ






EQEAWEQKEDDDLKRATELSLQ






EFNNSFVDALGSDEDSGNEDVE






DMEYTEAEAEELKRNAETGNLP






HSYRLISVVSHIGS






TSSSGHYISDVYDIKKQAWFTY






NDLEVSKIQEAAVQSDRDRSGY






IFFYMHKEIFDELLETEKNSQS






LSTEVGKTTRQAL







U17LD_HUMAN
48
MEEDSLYLGGEWQFNHESKLTS
160
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRLDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLVPEARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 13

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHPSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHPSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

ASITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTAASITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDRWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSSTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17L3_HUMAN
49
MGDDSLYLGGEWQFNHFSKLTS
161
AVGAGLQNMGNTCYENASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


carboxyl-

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALASGFHRG


hydrolase 17-

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


like protein 3

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TWALHSPGHVIQPSQALASGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTEDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRESDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV




NTLTLHTSAKVLILVLKRFSDV

YVLYAVLVHAGWSCHDGHYF




AGNKLAKNVQYPEC

SYVKAQEGQWYKMDDAEVTV




LDMQPYMSQQNTGPLVYVLYAV

CSITSVLSQQAYVLFYIQKS




LVHAGWSCHDGHYFSYVKAQEG






QWYKMDDAEVTVCSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRAKQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVGK






VEGTLPPNALVIHQSKYKCGMK






NHHPEQQSSLLNLSSTTRTDQE






SMNTGTLASLQGRTRRAKGKNK






HSKRALLVCQ







UBP54_HUMAN
50
MSWKRNYFSGGRGSVQGMFAPR
162
APSKGLSNEPGQNSCFLNSA


Inactive

SSTSIAPSKGLSNEPGQNSCEL

LQVLWHLDIFRRSFRQLTTH


ubiquitin

NSALQVLWHLDIFRRSFRQLTT

KCMGDSCIFCALKGIFNQFQ


carboxyl-

HKCMGDSCIFCALKGIFNQFQC

CSSEKVLPSDTLRSALAKTF


terminal

SSEKVLPSDTLRSALAKTFQDE

QDEQRFQLGIMDDAAECFEN


hydrolase 54

QRFQLGIMDDAAECFENLLMRI

LLMRIHFHIADETKEDICTA




HFHIADETKEDICTAQHCISHQ

QHCISHQKFAMTLFEQCVCT




KFAMTLFEQCVCTSCGATSDPL

SCGATSDPLPFIQ




PFIQMVHYISTTSLCNQAICML

MVHYISTTSLCNQAICMLER




ERREKPSPSMFGELLQNASTMG

REKPSPSMFGELLQNASTMG




DLRNCPSNCGERIRIRRVLMNA

DLRNCPSNCGERIRIRRVLM




PQIITIGLVWDSDHSDLAEDVI

NAPQIITIGLVWDSDHSDLA




HSLGTCLKLGDLFFRVTDDRAK

EDVIHSLGTCLKLGDLFFRV




QSELYLVGMICYYG

TDDRAKQSELYLVGMICYYG




KHYSTFFFQTKIRKWMYEDDAH

KHYSTFFFQTKIRKWMYFDD




VKEIGPKWKDVVTKCIKGHYQP

AHVKEIGPKWKDVVTKCIKG




LLLLYADPQGTPVSTQDLPPQA

HYQPLLLLYADPQGTPVSTQ




EFQSYSRTCYDSEDSGREPSIS

DLPPQAEFQSYSRTCYDSED




SDTRTDSSTESYPYKHSHHESV

SGREPSISSDTRTDSSTESY




VSHFSSDSQGTVIYNVENDSMS

PYKHSHHESVVSHFSSDSQG




QSSRDTGHLTDSECNQKHTSKK

TVIYNVEND




GSLIERKRSSGRVRRKGDEPQA






SGYHSEGETLKEKQAPRNASKP






SSSTNRLRDFKETVSNMIHNRP






SLASQTNVGSHCRGRGGDQPDK






KPPRTLPLHSRDWEIESTSSES






KSSSSSKYRPTWRPKRESLNID






SIFSKDKRKHCGYT






QLSPFSEDSAKEFIPDEPSKPP






SYDIKFGGPSPQYKRWGPARPG






SHLLEQHPRLIQRMESGYESSE






RNSSSPVSLDAALPESSNVYRD






PSAKRSAGLVPSWRHIPKSHSS






SILEVDSTASMGGWTKSQPFSG






EEISSKSELDELQEEVARRAQE






QELRRKREKELEAAKGENPHPS






REMDLDELQNQGRSDGFERSLQ






EAESVFEESLHLEQKGDCAAAL






ALCNEAISKLRLALHGASCSTH






SRALVDKKLQISIRKARSLQDR






MQQQQSPQQPSQPSACLPTQAG






TLSQPTSEQPIPLQ






VLLSQEAQLESGMDTEFGASSE






FHSPASCHESHSSLSPESSAPQ






HSSPSRSALKLLTSVEVDNIEP






SAFHRQGLPKAPGWTEKNSHHS






WEPLDAPEGKLQGSRCDNSSCS






KLPPQEGRGIAQEQLFQEKKDP






ANPSPVMPGIATSERGDEHSLG






CSPSNSSAQPSLPLYRTCHPIM






PVASSFVLHCPDPVQKTNQCLQ






GQSLKTSLTLKVDRGSEETYRP






EFPSTKGLVRSLAEQFQRMQGV






SMRDSTGFKDRSLSGSLRKNSS






PSDSKPPFSQGQEKGHWPWAKQ






QSSLEGGDRPLSWE






ESTEHSSLALNSGLPNGETSSG






GQPRLAEPDIYQEKLSQVRDVR






SKDLGSSTDLGTSLPLDSWVNI






TRFCDSQLKHGAPRPGMKSSPH






DSHTCVTYPERNHILLHPHWNQ






DTEQETSELESLYQASLQASQA






GCSGWGQQDTAWHPLSQTGSAD






GMGRRLHSAHDPGLSKTSTAEM






EHGLHEARTVRTSQATPCRGLS






RECGEDEQYSAENLRRISRSLS






GTVVSEREEAPVSSHSFDSSNV






RKPLETGHRCSSSSSLPVIHDP






SVFLLGPQLYLPQPQFLSPDVL






MPTMAGEPNRLPGT






SRSVQQFLAMCDRGETSQGAKY






TGRTLNYQSLPHRSRTDNSWAP






WSETNQHIGTRELTTPGCNPQL






TYTATLPERSKGLQVPHTQSWS






DLFHSPSHPPIVHPVYPPSSSL






HVPLRSAWNSDPVPGSRTPGPR






RVDMPPDDDWRQSSYASHSGHR






RTVGEGFLFVLSDAPRREQIRA






RVLQHSQW







SNUT2_HUMAN
51
MSGRSKRESRGSTRGKRESESR
163
LPGIVGLNNIKANDYANAVL


U4/U6.U5

GSSGRVKRERDREREPEAASSR

QALSNVPPLRNYFLEEDNYK


tri-snRNP-

GSPVRVKREFEPASAREAPASV

NIKRPPGDIMELLVQRFGEL


associated

VPFVRVKREREVDEDSEPEREV

MRKLWNPRNFKAHVSPHEML


protein 2

RAKNGRVDSEDRRSRHCPYLDT

QAVVLCSKKTFQITKQGDGV




INRSVLDEDFEKLCSISLSHIN

DFLSWFLNALHSALGGTKKK




AYACLVCGKYFQGRGLKSHAYI

KKTIVTDVFQGSMRIFTKKL




HSVQFSHHVELNLHTLKFYCLP

PHPDLPAEEKEQLLHNDEYQ




DNYEIIDSSLEDITYVLKPTFT

ETMVESTFMYLTLDLPTAPL




KQQIANLDKQAKLSRAYDGTTY

YKDEKEQLIIPQVPLENILA




LPGIVGLNNIKANDYANAVLQA

KENGITEKEYKTYKENFLKR




LSNVPPLRNYFLEEDNYKNIKR

FQLTKLPPYLIFCIKRFTKN




PPGDIMFLLVQRFGELMRKLWN

NFFVEKNPTIVNFPITNVDL




PRNFKAHVSPHEML

REYLSEEVQAVHKNTTYDLI




QAVVLCSKKTFQITKQGDGVDE

ANIVHDGKPSEGSYRIHVLH




LSWFLNALHSALGGTKKKKKTI

HGTGKWYELQDLQVTDILPQ




VTDVFQGSMRIFTKKLPHPDLP

MITLSEAYIQIWKRRD




AEEKEQLLHNDEYQETMVESTE






MYLTLDLPTAPLYKDEKEQLII






PQVPLENILAKENGITEKEYKT






YKENFLKRFQLTKLPPYLIFCI






KRFTKNNFFVEKNPTIVNEPIT






NVDLREYLSEEVQAVHKNTTYD






LIANIVHDGKPSEGSYRIHVLH






HGTGKWYELQDLQVTDILPQMI






TLSEAYIQIWKRRDNDETNQQG






A







UBP35_HUMAN
52
MDKILEAVVTSSYPVSVKQGLV
164
SDTGKIGLINLGNTCYVNSI


Ubiquitin

RRVLEAARQPLEREQCLALLAL

LQALFMASDERHCVLRLTEN


carboxyl-

GARLYVGGAEELPRRVGCQLLH

NSQPLMTKLQWLFGFLEHSQ


terminal

VAGRHHPDVFAEFFSARRVLRL

RPAISPENELSASWTPWESP


hydrolase 35

LQGGAGPPGPRALACVQLGLQL

GTQQDCSEYLKYLLDRLHEE




LPEGPAADEVFALLRREVLRTV

EKTGTRICQKLKQSSSPSPP




CERPGPAACAQVARLLARHPRC

EEPPAPSSTSVEKMEGGKIV




VPDGPHRLLFCQQLVRCLGRER

TRICCLCCLNVSSREEAFTD




CPAEGEEGAVEFLEQAQQVSGL

LSLAFPPPERCRRRRLGSVM




LAQLWRAQPAAILPCLKELFAV

RPTEDITARELPPPTSAQGP




ISCAEEEPPSSALASVVQHLPL

GRVGPRRQRKHCITEDTPPT




ELMDGVVRNLSNDDSVTDSQML

SLYIEGLDSKEAGGQSSQEE




TAISRMIDWVSWPLGKNIDKWI

RIEREEEGKEERTEKEEVGE




IALLKGLAAVKKES

EEESTRGEGEREKEEEVEEE




ILIEVSLTKIEKVESKLLYPIV

EEKVE




RGAALSVLKYMLLTFQHSHEAF

KETEKEAEQEKEEDSLGAGT




HLLLPHIPPMVASLVKEDSNSG

HPDAAIPSGERTCGSEGSRS




TSCLEQLAELVHCMVFRFPGEP

VLDLVNYFLSPEKLTAENRY




DLYEPVMEAIKDLHVPNEDRIK

YCESCASLQDAEKVVELSQG




QLLGQDAWTSQKSELAGFYPRL

PCYLILTLLRESFDLRTMRR




MAKSDTGKIGLINLGNTCYVNS

RKILDDVSIPLLLRLPLAGG




ILQALFMASDERHCVLRLTENN

RGQAYDLCSVVVHSGVSSES




SQPLMTKLQWLFGFLEHSQRPA

GHYYCYAREGAARPAASLGT




ISPENFLSASWTPWFSPGTQQD

ADRPEPENQWYLENDTRVSE




CSEYLKYLLDRLHEEEKTGTRI

SSFESVSNVTSFFPKDTAYV




CQKLKQSSSPSPPEEPPAPSST

LFYRQRP




SVEKMFGGKIVTRICCLCCLNV






SSREEAFTDLSLAF






PPPERCRRRRLGSVMRPTEDIT






ARELPPPTSAQGPGRVGPRRQR






KHCITEDTPPTSLYIEGLDSKE






AGGQSSQEERIEREEEGKEERT






EKEEVGEEEESTRGEGEREKEE






EVEEEEEKVEKETEKEAEQEKE






EDSLGAGTHPDAAIPSGERTCG






SEGSRSVLDLVNYFLSPEKLTA






ENRYYCESCASLQDAEKVVELS






QGPCYLILTLLRFSFDLRTMRR






RKILDDVSIPLLLRLPLAGGRG






QAYDLCSVVVHSGVSSESGHYY






CYAREGAARPAASLGTADRPEP






ENQWYLENDTRVSE






SSFESVSNVTSFFPKDTAYVLF






YRQRPREGPEAELGSSRVRTEP






TLHKDLMEAISKDNILYLQEQE






KEARSRAAYISALPTSPHWGRG






FDEDKDEDEGSPGGCNPAGGNG






GDFHRLVE







UBP15_HUMAN
53
MAEGGAADLDTQRSDIATLLKT
165
EQPGLCGLSNLGNTCEMNSA


Ubiquitin

SLRKGDTWYLVDSRWFKQWKKY

IQCLSNTPPLTEYELNDKYQ


carboxyl-

VGFDSWDKYQMGDQNVYPGPID

EELNFDNPLGMRGEIAKSYA


terminal

NSGLLKDGDAQSLKEHLIDELD

ELIKQMWSGKFSYVTPRAFK


hydrolase 15

YILLPTEGWNKLVSWYTLMEGQ

TQVGRFAPQFSGYQQQDCQE




EPIARKVVEQGMFVKHCKVEVY

LLAFLLDGLHEDLNRIRKKP




LTELKLCENGNMNNVVTRRESK

YIQLKDADGRPDKVVAEEAW




ADTIDTIEKEIRKIFSIPDEKE

ENHLKRNDSIIVDIFHGLFK




TRLWNKYMSNTFEPLNKPDSTI

STLVCPECAKISVTFDPFCY




QDAGLYQGQVLVIEQKNEDGTW

LTLPLPMKKERTLEVYLVRM




PRGPSTPKSPGASNESTLPKIS

DPLTKPMQYKVVVPKIGNIL




PSSLSNNYNNMNNRNVKNSNYC

DLCTALSALSGIPADKMIVT




LPSYTAYKNYDYSEPGRNNEQP

DIYNHRFHRIFAMDENLSSI




GLCGLSNLGNTCEM

MERDDIYVFEININRTEDTE




NSAIQCLSNTPPLTEYELNDKY

HVIIPVCLREKFRHSSYTHH




QEELNFDNPLGMRGEIAKSYAE

TGSSLFGQPFLMAVPRNNTE




LIKQMWSGKFSYVTPRAFKTQV

DKLYNLLLLRMCRYVKISTE




GRFAPQFSGYQQQDCQELLAFL

TEETEGSLHCCKDQNINGNG




LDGLHEDLNRIRKKPYIQLKDA

PNGIHEEGSPSEMETDEPDD




DGRPDKVVAEEAWENHLKRNDS

ESSQDQELPSENENSQSEDS




IIVDIFHGLFKSTLVCPECAKI

VGGDNDSENGLCTEDTCKGQ




SVTFDPFCYLTLPLPMKKERTL

LTGHKKRLFTFQFNNLGNTD




EVYLVRMDPLTKPMQYKVVVPK

INYIKDDTRHIREDDRQLRL




IGNILDLCTALSALSGIPADKM

DERSFLALDWDPDLKKRYED




IVTDIYNHRFHRIFAMDENLSS

ENAAEDFEKHESVEYKPPKK




IMERDDIYVFEININRTEDTEH

PFVKLKDCIELFTTKEKLGA




VIIPVCLREKFRHSSYTHHTGS

EDPWYCPNCKEHQQATKKLD




SLFGQPFLMAVPRN

LWSLPPVLVVHLKRESYSRY




NTEDKLYNLLLLRMCRYVKIST

MRDKLDTLVDFPINDLDMSE




ETEETEGSLHCCKDQNINGNGP

FLINPNAGPCRYNLIAVSNH




NGIHEEGSPSEMETDEPDDESS

YGGMGGGHYTAFAKNKDDGK




QDQELPSENENSQSEDSVGGDN

WYYFDDSSVSTASEDQIVSK




DSENGLCTEDTCKGQLTGHKKR

AAYVLFYQRQD




LFTFQFNNLGNTDINYIKDDTR






HIREDDRQLRLDERSFLALDWD






PDLKKRYFDENAAEDFEKHESV






EYKPPKKPFVKLKDCIELFTTK






EKLGAEDPWYCPNCKEHQQATK






KLDLWSLPPVLVVHLKRESYSR






YMRDKLDTLVDFPINDLDMSEF






LINPNAGPCRYNLIAVSNHYGG






MGGGHYTAFAKNKD






DGKWYYFDDSSVSTASEDQIVS






KAAYVLFYQRQDTFSGTGFFPL






DRETKGASAATGIPLESDEDSN






DNDNDIENENCMHTN







UBP29_HUMAN
54
MISLKVCGFIQIWSQKTGMTKL
166
QLQQGFPNLGNTCYMNAVLQ


Ubiquitin

KEALIETVQRQKEIKLVVTEKS

SLFAIPSFADDLLTQGVPWE


carboxyl-

GKFIRIFQLSNNIRSVVLRHCK

YIPFEALIMTLTQLLALKDE


terminal

KRQSHLRLTLKNNVELFIDKLS

CSTKIKRELLGNVKKVISAV


hydrolase 29

YRDAKQLNMELDIIHQNKSQQP

AEIFSGNMQNDAHEFLGQCL




MKSDDDWSVFESRNMLKEIDKT

DQLKEDMEKLNATLNTGKEC




SFYSICNKPSYQKMPLFMSKSP

GDENSSPQMHVGSAATKVEV




THVKKGILENQGGKGQNTLSSD

CPVVANFEFELQLSLICKAC




VQTNEDILKEDNPVPNKKYKTD

GHAVLKVEPNNYLSINLHQE




SLKYIQSNRKNPSSLEDLEKDR

TKPLPLSIQNSLDLFFKEEE




DLKLGPSENTNCNGNPNLDETV

LEYNCQMCKQKSCVARHTES




LATQTLNAKNGLTSPLEPEHSQ

RLSRVLIIHLKRYSENNAWL




GDPRCNKAQVPLDSHSQQLQQG

LVKNNEQVYIPKSLSLSSYC




FPNLGNTCYMNAVL

NESTKPPLPLSSSAPVGKCE




QSLFAIPSFADDLLTQGVPWEY

VLEVSQEMISEINSPLTPSM




IPFEALIMTLTQLLALKDECST

KLTSESSDSLVLPVEPDKNA




KIKRELLGNVKKVISAVAEIFS

DLQRFQRDCGDASQEQHQRD




GNMQNDAHEFLGQCLDQLKEDM

LENGSALESELVHERDRAIG




EKLNATLNTGKECGDENSSPQM

EKELPVADSLMDQGDISLPV




HVGSAATKVFVCPVVANFEFEL

MYEDGGKLISSPDTRLVEVH




QLSLICKACGHAVLKVEPNNYL

LQEVPQHPELQKYEKTNTFV




SINLHQETKPLPLSIQNSLDLF

EFNFDSVTESTNGFYDCKEN




FKEEELEYNCQMCKQKSCVARH

RIPEGSQGMAEQLQQCIEES




TFSRLSRVLIIHLKRYSENNAW

IIDEFLQQAPPPGVRKLDAQ




LLVKNNEQVYIPKSLSLSSYCN

EHTEETLNQSTELRLQKADL




ESTKPPLPLSSSAPVGKCEVLE

NHLGALGSDNPGNKNILDAE




VSQEMISEINSPLTPSMKLTSE

NTRGEAKELTRNVKMGDPLQ




SSDSLVLPVEPDKN

AYRLISVVSHIGSSPNSGHY




ADLQRFQRDCGDASQEQHQRDL

ISDVYDFQKQAWFTYNDLCV




ENGSALESELVHERDRAIGEKE

SEISETKMQEARLHSGYIFF




LPVADSLMDQGDISLPVMYEDG

YMHN




GKLISSPDTRLVEVHLQEVPQH






PELQKYEKTNTFVEFNEDSVTE






STNGFYDCKENRIPEGSQGMAE






QLQQCIEESIIDEFLQQAPPPG






VRKLDAQEHTEETLNQSTELRL






QKADLNHLGALGSDNPGNKNIL






DAENTRGEAKELTRNVKMGDPL






QAYRLISVVSHIGSSPNSGHYI






SDVYDFQKQAWFTYNDLCVSEI






SETKMQEARLHSGYIFFYMHNG






IFEELLRKAENSRLPSTQAGVI






PQGEYEGDSLYRPA







UBP6_HUMAN
55
MDMVENADSLQAQERKDILMKY
167
KGATGLSNLGNTCEMNSSIQ


Ubiquitin

DKGHRAGLPEDKGPEPVGINSS

CVSNTQPLTQYFISGRHLYE


carboxyl-

IDRFGILHETELPPVTAREAKK

LNRTNPIGMKGHMAKCYGDL


terminal

IRREMTRTSKWMEMLGEWETYK

VQELWSGTQKSVAPLKLRRT


hydrolase 6

HSSKLIDRVYKGIPMNIRGPVW

IAKYAPKFDGFQQQDSQELL




SVLLNIQEIKLKNPGRYQIMKE

AFLLDGLHEDLNRVHEKPYV




RGKRSSEHIHHIDLDVRTTLRN

ELKDSDGRPDWE




HVFFRDRYGAKQRELFYILLAY

VAAEAWDNHLRRNRSIIVDL




SEYNPEVGYCRDLSHITALFLL

FHGQLRSQVKCKTCGHISVR




YLPEEDAFWALVQLLASERHSL

FDPNFLSLPLPMDSYMDLEI




PGFHSPNGGTVQGLQDQQEHVV

TVIKLDGTTPVRYGLRLNMD




PKSQPKTMWHQDKEGLCGQCAS

EKYTGLKKQLRDLCGLNSEQ




LGCLLRNLIDGISLGLTLRLWD

ILLAEVHDSNIKNFPQDNQK




VYLVEGEQVLMPIT

VQLSVSGFLCAFEIPVPSSP




SIALKVQQKRLMKTSRCGLWAR

ISASSPTQIDESSSPSTNGM




LRNQFFDTWAMNDDTVLKHLRA

FTLTTNGDLPKPIFIPNGMP




STKKLTRKQGDLPPPAKREQGS

NTVVPCGTEKNFTNGMVNGH




LAPRPVPASRGGKTLCKGYRQA

MPSLPDSPFTGYIIAVHRKM




PPGPPAQFQRPICSASPPWASR

MRTELYFLSPQENRPSLEGM




FSTPCPGGAVREDTYPVGTQGV

PLIVPCTVHTRKKDLYDAVW




PSLALAQGGPQGSWRFLEWKSM

IQVSWLARPLPPQEASIHAQ




PRLPTDLDIGGPWFPHYDFEWS

DRDNCMGYQYPFTLRVVQKD




CWVRAISQEDQLATCWQAEHCG

GNSCAWCPQYRFCRGCKIDC




EVHNKDMSWPEEMSFTANSSKI

GEDRAFIGNAYIAVDWHPTA




DRQKVPTEKGATGLSNLGNTCF

LHLRYQTSQERVVDKHESVE




MNSSIQCVSNTQPLTQYFISGR

QSRRAQAEPINLDSCLRAFT




HLYELNRTNPIGMKGHMAKCYG

SEEELGESEMYYCSKCKTHC




DLVQELWSGTQKSV

LATKKLDLWRLPPFLIIHLK




APLKLRRTIAKYAPKEDGEQQQ

RFQFVNDQWIKSQKIVRFLR




DSQELLAFLLDGLHEDLNRVHE

ESFDPSAFLVPRDPALCQHK




KPYVELKDSDGRPDWEVAAEAW

PLTPQGDELSKPRILAREVK




DNHLRRNRSIIVDLFHGQLRSQ

KVDAQSSAGKEDMLLSKSPS




VKCKTCGHISVREDPENFLSLP

SLSANISSSPKGSPSSSRKS




LPMDSYMDLEITVIKLDGTTPV

GTSCPSSKNSSPNSSPRTLG




RYGLRLNMDEKYTGLKKQLRDL

RSKGRLRLPQIGSKNKPSSS




CGLNSEQILLAEVHDSNIKNFP

KKNLDASKENGAGQICELAD




QDNQKVQLSVSGFLCAFEIPVP

ALSRGHMRGGSQPELVTPQD




SSPISASSPTQIDESSSPSTNG

HEVALANGFLYEHEACGNGC




MFTLTINGDLPKPIFIPNGMPN

GDGYSNGQLGNHSEEDSTDD




TVVPCGTEKNFTNGMVNGHMPS

QREDTHIKPIYNLYAISCHS




LPDSPFTGYIIAVHRKMMRTEL

GILSGGHYITYAKNPNCKWY




YFLSPQENRPSLFG

CYNDSSCEELHPDEIDTDSA




MPLIVPCTVHTRKKDLYDAVWI

YILFYEQQG




QVSWLARPLPPQEASIHAQDRD






NCMGYQYPFTLRVVQKDGNSCA






WCPQYRFCRGCKIDCGEDRAFI






GNAYIAVDWHPTALHLRYQTSQ






ERVVDKHESVEQSRRAQAEPIN






LDSCLRAFTSEEELGESEMYYC






SKCKTHCLATKKLDLWRLPPEL






IIHLKRFQFVNDQWIKSQKIVR






FLRESFDPSAFLVPRDPALCQH






KPLTPQGDELSKPRILAREVKK






VDAQSSAGKEDMLLSKSPSSLS






ANISSSPKGSPSSSRKSGTSCP






SSKNSSPNSSPRTL






GRSKGRLRLPQIGSKNKPSSSK






KNLDASKENGAGQICELADALS






RGHMRGGSQPELVTPQDHEVAL






ANGFLYEHEACGNGCGDGYSNG






QLGNHSEEDSTDDQREDTHIKP






IYNLYAISCHSGILSGGHYITY






AKNPNCKWYCYNDSSCEELHPD






EIDTDSAYILFYEQQGIDYAQF






LPKIDGKKMADTSSTDEDSESD






YEKYSMLQ







UBP53_HUMAN
56
MAWVKFLRKPGGNLGKVYQPGS
168
APTKGLLNEPGQNSCFLNSA


Inactive

MLSLAPTKGLLNEPGQNSCFLN

VQVLWQLDIFRRSLRVLTGH


ubiquitin

SAVQVLWQLDIFRRSLRVLTGH

VCQGDACIFCALKTIFAQFQ


carboxyl-

VCQGDACIFCALKTIFAQFQHS

HSREKALPSDNIRHALAESF


terminal

REKALPSDNIRHALAESFKDEQ

KDEQRFQLGLMDDAAECFEN


hydrolase 53

RFQLGLMDDAAECFENMLERIH

MLERIHFHIVPSRDADMCTS




FHIVPSRDADMCTSKSCITHQK

KSCITHQKFAMTLYEQCVCR




FAMTLYEQCVCRSCGASSDPLP

SCGASSDPLPFTEFVRYIST




FTEFVRYISTTALCNEVERMLE

TALCNEVERMLERHERFKPE




RHERFKPEMFAELLQAANTTDD

MFAELLQAANTTDDYRKCPS




YRKCPSNCGQKIKIRRVLMNCP

NCGQKIKIRRVLMNCPEIVT




EIVTIGLVWDSEHSDLTEAVVR

IGLVWDSEHSDLTEAVVRNL




NLATHLYLPGLFYRVTDENAKN

ATHLYLPGLFYRVTDENAKN




SELNLVGMICYTSQ

SELNLVGMICYTSQHYCAFA




HYCAFAFHTKSSKWVFEDDANV

FHTKSSKWVFEDDANVKEIG




KEIGTRWKDVVSKCIRCHFQPL

TRWKDVVSKCIRCHFQPLLL




LLFYANPDGTAVSTEDALRQVI

FYANPDGTAVSTEDALRQVI




SWSHYKSVAENMGCEKPVIHKS

SWSHYKSVAENMGCEKPVIH




DNLKENGFGDQAKQRENQKEPT

KSDNLKENGFGDQAKQRENQ




DNISSSNRSHSHTGVGKGPAKL

KFPTDNISSSNRSHSHTGVG




SHIDQREKIKDISRECALKAIE

KGPAKLSHIDQREKIKDISR




QKNLLSSQRKDLEKGQRKDLGR

ECALKAIEQKNLLSSQRKDL




HRDLVDEDLSHFQSGSPPAPNG

EKGQRK




FKQHGNPHLYHSQGKGSYKHDR






VVPQSRASAQIISSSKSQILAP






GEKITGKVKSDNGTGYDTDSSQ






DSRDRGNSCDSSSKSRNRGWKP






MRETLNVDSIFSES






EKRQHSPRHKPNISNKPKSSKD






PSFSNWPKENPKQKGLMTIYED






EMKQEIGSRSSLESNGKGAEKN






KGLVEGKVHGDNWQMQRTESGY






ESSDHISNGSTNLDSPVIDGNG






TVMDISGVKETVCFSDQITTSN






LNKERGDCTSLQSQHHLEGERK






ELRNLEAGYKSHEFHPESHLQI






KNHLIKRSHVHEDNGKLFPSSS






LQIPKDHNAREHIHQSDEQKLE






KPNECKESEWLNIENSERTGLP






FHVDNSASGKRVNSNEPSSLWS






SHLRTVGLKPETAPLIQQQNIM






DQCYFENSLSTECI






IRSASRSDGCQMPKLFCQNLPP






PLPPKKYAITSVPQSEKSESTP






DVKLTEVFKATSHLPKHSLSTA






SEPSLEVSTHMNDERHKETFQV






RECFGNTPNCPSSSSTNDEQAN






SGAIDAFCQPELDSISTCPNET






VSLTTYFSVDSCMTDTYRLKYH






QRPKLSFPESSGFCNNSLS







U17LO_HUMAN
57
MEDDSLYLRGEWQFNHESKLTS
169
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 24

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTEDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQPNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSSTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







U17LM_

MEDDSLYLGGEWQFNHFSKLTS

AVGAGLQNMGNTCYVNASLQ


HUMAN

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


Ubiquitin

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


carboxyl-

KLPLSSRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


terminal

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


hydrolase 17-

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI


like protein 22

TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKTLTLHTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQQNTGPLV




KTLTLHTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQQNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP5_HUMAN
58
MAELSEEALLSVLPTIRVPKAG
170
FGPGYTGIRNLGNSCYLNSV


Ubiquitin

DRVHKDECAFSEDTPESEGGLY

VQVLFSIPDFQRKYVDKLEK


carboxyl-

ICMNTFLGFGKQYVERHENKTG

IFQNAPTDPTQDESTQVAKL


terminal

QRVYLHLRRTRRPKEEDPATGT

GHGLLSGEYSKPVPESGDGE


hydrolase 5

GDPPRKKPTRLAIGVEGGEDLS

RVPEQKEVQDGIAPRMEKAL




EEKFELDEDVKIVILPDYLEIA

IGKGHPEFSTNRQQDAQEFF




RDGLGGLPDIVRDRVTSAVEAL

LHLINMVERNCRSSENPNEV




LSADSASRKQEVQAWDGEVRQV

FRELVEEKIKCLATEKVKYT




SKHAFSLKQLDNPARIPPCGWK

QRVDYIMQLPVPMDAALNKE




CSKCDMRENLWLNLTDGSILCG

ELLEYEEKKRQAEEEKMALP




RRYFDGSGGNNHAVEHYRETGY

ELVRAQVPESSCLEAYGAPE




PLAVKLGTITPDGADVYSYDED

QVDDFWSTALQAKSVAVKTT




DMVLDPSLAEHLSHFGIDMLKM

RFASFPDYLVIQIKKFTFGL




QKTDKTMTELEIDM

DWVPKKLDVSIEMPEELDIS




NQRIGEWELIQESGVPLKPLFG

QLRGTGLQPGEEELPDIAPP




PGYTGIRNLGNSCYLNSVVQVL

LVTPDEPKGSLGFYGNEDED




FSIPDFQRKYVDKLEKIFQNAP

SFCSPHESSPTSPMLDESVI




TDPTQDFSTQVAKLGHGLLSGE

IQLVEMGFPMDACRKAVYYT




YSKPVPESGDGERVPEQKEVQD

GNSGAEAAMNWVMSHMDDPD




GIAPRMFKALIGKGHPEFSTNR

FANPLILPGSSGPGSTSAAA




QQDAQEFFLHLINMVERNCRSS

DPPPEDCVTTIVSMGESRDQ




ENPNEVERELVEEKIKCLATEK

ALKALRATNNSLERAVDWIE




VKYTQRVDYIMQLPVPMDAALN

SHIDDLDAEAAMDISEGRSA




KEELLEYEEKKRQAEEEKMALP

ADSISESVPVGPKVRDGPGK




ELVRAQVPFSSCLEAYGAPEQV

YQLFAFISHMGTSTMCGHYV




DDFWSTALQAKSVAVKTTRFAS

CHIKKEGRWVIYNDQKVCAS




FPDYLVIQIKKFTFGLDWVPKK

EKPPKDLGYIYFYQRVA




LDVSIEMPEELDIS






QLRGTGLQPGEEELPDIAPPLV






TPDEPKGSLGFYGNEDEDSFCS






PHESSPTSPMLDESVIIQLVEM






GFPMDACRKAVYYTGNSGAEAA






MNWVMSHMDDPDFANPLILPGS






SGPGSTSAAADPPPEDCVTTIV






SMGFSRDQALKALRATNNSLER






AVDWIFSHIDDLDAEAAMDISE






GRSAADSISESVPVGPKVRDGP






GKYQLFAFISHMGTSTMCGHYV






CHIKKEGRWVIYNDQKVCASEK






PPKDLGYIYFYQRVAS







UBP25_HUMAN
59
MTVEQNVLQQSAAQKHQQTELN

KAPVGLKNVGNTCWFSAVIQ


Ubiquitin

QLREITGINDTQILQQALKDSN

SLENLLEFRRLVLNYKPPSN


carboxyl-

GNLELAVAFLTAKNAKTPQQEE

AQDLPRNQKEHRNLPEMREL


terminal

TTYYQTALPGNDRYISVGSQAD

RYLFALLVGTKRKYVDPSRA


hydrolase 25

TNVIDLTGDDKDDLQRAIALSL

VEILKDAFKSNDSQQQDVSE




AESNRAFRETGITDEEQAISRV

FTHKLLDWLEDAFQMKAEEE




LEASIAENKACLKRTPTEVWRD

TDEEKPKNPMVELFYGRELA




SRNPYDRKRQDKAPVGLKNVGN

VGVLEGKKFENTEMFGQYPL




TCWFSAVIQSLENLLEFRRLVL

QVNGFKDLHECLEAAMIEGE




NYKPPSNAQDLPRNQKEHRNLP

IESLHSENSGKSGQEHWFTE




FMRELRYLFALLVGTKRKYVDP

LPPVLTFELSRFEFNQALGR




SRAVEILKDAFKSNDSQQQDVS

PEKIHNKLEFPQVLYLDRYM




EFTHKLLDWLEDAFQMKAEEET

HRNREITRIKREEIKRLKDY




DEEKPKNPMVELFY

LTVLQQRLERYLSYGSGPKR




GRFLAVGVLEGKKFENTEMFGQ

FPLVDVLQYALEFASSKPVC




YPLQVNGFKDLHECLEAAMIEG

TSPVDDIDASSPPSGSIPSQ




EIESLHSENSGKSGQEHWFTEL

TLPSTTEQQGALSSELPSTS




PPVLTFELSRFEFNQALGRPEK

PSSVAAISSRSVIHKPFTQS




IHNKLEFPQVLYLDRYMHRNRE

RIPPDLPMHPAPRHITEEEL




ITRIKREEIKRLKDYLTVLQQR

SVLESCLHRWRTEIENDTRD




LERYLSYGSGPKRFPLVDVLQY

LQESISRIHRTIELMYSDKS




ALEFASSKPVCTSPVDDIDASS

MIQVPYRLHAVLVHEGQANA




PPSGSIPSQTLPSTTEQQGALS

GHYWAYIFDHRESRWMKYND




SELPSTSPSSVAAISSRSVIHK

IAVTKSSWEELVRDSEGGYR




PFTQSRIPPDLPMHPAPRHITE

NAS




EELSVLESCLHRWRTEIENDTR






DLQESISRIHRTIELMYSDKSM






IQVPYRLHAVLVHE






GQANAGHYWAYIFDHRESRWMK






YNDIAVTKSSWEELVRDSFGGY






RNASAYCLMYINDKAQFLIQEE






FNKETGQPLVGIETLPPDLRDE






VEEDNQRFEKELEEWDAQLAQK






ALQEKLLASQKLRESETSVTTA






QAAGDPEYLEQPSRSDESKHLK






EETIQIITKASHEHEDKSPETV






LQSAIKLEYARLVKLAQEDTPP






ETDYRLHHVVVYFIQNQAPKKI






IEKTLLEQFGDRNLSFDERCHN






IMKVAQAKLEMIKPEEVNLEEY






EEWHQDYRKERETTMYLIIGLE






NFQRESYIDSLLEL






ICAYQNNKELLSKGLYRGHDEE






LISHYRRECLLKLNEQAAELFE






SGEDREVNNGLIIMNEFIVPEL






PLLLVDEMEEKDILAVEDMRNR






WCSYLGQEMEPHLQEKLTDELP






KLLDCSMEIKSFHEPPKLPSYS






THELCERFARIMLSLSRTPADG






R







UBP33_HUMAN
60
MTGSNSHITILTLKVLPHFESL
171
ARGLTGLKNIGNTCYMNAAL


Ubiquitin

GKQEKIPNKMSAFRNHCPHLDS

QALSNCPPLTQFELDCGGLA


carboxyl-

VGEITKEDLIQKSLGTCQDCKV

RTDKKPAICKSYLKLMTELW


terminal

QGPNLWACLENRCSYVGCGESQ

HKSRPGSVVPTTLFQGIKTV


hydrolase 33

VDHSTIHSQETKHYLTVNLTTL

NPTFRGYSQQDAQEFLRCLM




RVWCYACSKEVELDRKLGTQPS

DLLHEELKEQVMEVEEDPQT




LPHVRQPHQIQENSVQDEKIPS

ITTEETMEEDKSQSDVDFQS




NTTLKTPLVAVEDDLDIEADEE

CESCSNSDRAENENGSRCES




DELRARGLTGLKNIGNTCYMNA

EDNNETTMLIQDDENNSEMS




ALQALSNCPPLTQFFLDCGGLA

KDWQKEKMCNKINKVNSEGE




RTDKKPAICKSYLKLMTELWHK

FDKDRDSISETVDLNNQETV




SRPGSVVPTTLFQGIKTVNPTF

KVQIHSRASEYITDVHSNDL




RGYSQQDAQEFLRCLMDLLHEE

STPQILPSNEGVNPRLSASP




LKEQVMEVEEDPQT

PKSGNLWPGLAPPHKKAQSA




ITTEETMEEDKSQSDVDFQSCE

SPKRKKQHKKYRSVISDIED




SCSNSDRAENENGSRCESEDNN

GTIISSVQCLTCDRVSVTLE




ETTMLIQDDENNSEMSKDWQKE

TFQDLSLPIPGKEDLAKLHS




KMCNKINKVNSEGEFDKDRDSI

SSHPTSIVKAGSCGEAYAPQ




SETVDLNNQETVKVQIHSRASE

GWIAFFMEYVKRFVVSCVPS




YITDVHSNDLSTPQILPSNEGV

WFWGPVVTLQDCLAAFFARD




NPRLSASPPKSGNLWPGLAPPH

ELKGDNMYSCEKCKKLRNGV




KKAQSASPKRKKQHKKYRSVIS

KFCKVQNFPEILCIHLKRER




DIFDGTIISSVQCLTCDRVSVT

HELMESTKISTHVSFPLEGL




LETFQDLSLPIPGKEDLAKLHS

DLQPFLAKDSPAQIVTYDLL




SSHPTSIVKAGSCGEAYAPQGW

SVICHHGTASSGHYIAYCRN




IAFFMEYVKRFVVSCVPSWEWG

NLNNLWYEFDDQSVTEVSES




PVVTLQDCLAAFFARDELKGDN

TVQNAEAYVLFYRKSS




MYSCEKCKKLRNGV






KFCKVQNFPEILCIHLKRFRHE






LMFSTKISTHVSFPLEGLDLQP






FLAKDSPAQIVTYDLLSVICHH






GTASSGHYIAYCRNNLNNLWYE






FDDQSVTEVSESTVQNAEAYVL






FYRKSSEEAQKERRRISNLLNI






MEPSLLQFYISRQWLNKFKTFA






EPGPISNNDFLCIHGGVPPRKA






GYIEDLVLMLPQNIWDNLYSRY






GGGPAVNHLYICHTCQIEAEKI






EKRRKTELEIFIRLNRAFQKED






SPATFYCISMQWFREWESFVKG






KDGDPPGPIDNTKIAVTKCGNV






MLRQGADSGQISEETWNFLQSI






YGGGPEVILRPPVVHVDPDILQ






AEEKIEVETRSL







UBP21_HUMAN
61
MPQASEHRLGRTREPPVNIQPR
172
LGSGHVGLRNLGNTCFLNAV


Ubiquitin

VGSKLPFAPRARSKERRNPASG

LQCLSSTRPLRDFCLRRDER


carboxyl-

PNPMLRPLPPRPGLPDERLKKL

QEVPGGGRAQELTEAFADVI


terminal

ELGRGRTSGPRPRGPLRADHGV

GALWHPDSCEAVNPTRFRAV


hydrolase 21

PLPGSPPPTVALPLPSRTNLAR

FQKYVPSFSGYSQQDAQEFL




SKSVSSGDLRPMGIALGGHRGT

KLLMERLHLEINRRGRRAPP




GELGAALSRLALRPEPPTLRRS

ILANGPVPSPPRRGGALLEE




TSLRRLGGFPGPPTLESIRTEP

PELSDDDRANLMWK




PASHGSFHMISARSSEPFYSDD

RYLEREDSKIVDLFVGQLKS




KMAHHTLLLGSGHVGLRNLGNT

CLKCQACGYRSTTFEVECDL




CFLNAVLQCLSSTRPLRDFCLR

SLPIPKKGFAGGKVSLRDCF




RDFRQEVPGGGRAQELTEAFAD

NLFTKEEELESENAPVCDRC




VIGALWHPDSCEAVNPTRFRAV

RQKTRSTKKLTVQRFPRILV




FQKYVPSFSGYSQQ

LHLNRFSASRGSIKKSSVGV




DAQEFLKLLMERLHLEINRRGR

DFPLQRLSLGDFASDKAGSP




RAPPILANGPVPSPPRRGGALL

VYQLYALCNHSGSVHYGHYT




EEPELSDDDRANLMWKRYLERE

ALCRCQTGWHVYNDSRVSPV




DSKIVDLFVGQLKSCLKCQACG

SENQVASSEGYVLFYQLMQ




YRSTTFEVFCDLSLPIPKKGFA






GGKVSLRDCENLFTKEEELESE






NAPVCDRCRQKTRSTKKLTVQR






FPRILVLHLNRESASRGSIKKS






SVGVDFPLQRLSLGDFASDKAG






SPVYQLYALCNHSGSVHYGHYT






ALCRCQTGWHVYNDSRVSPVSE






NQVASSEGYVLFYQLMQEPPRC






L







U17L4_HUMAN
62
MGDDSLYLGGEWQFNHESKLTS
173
AVGAGLQNMGNTCYENASLQ


Inactive

SRPDAAFAEIQRTSLPEKSPLS

CLTYTLPLANYMLSREHSQT


ubiquitin

SETRVDLCDDLAPVARQLAPRE

CQRPKCCMLCTMQAHITWAL


carboxyl-

KLPLSSRRPAAVGAGLQNMGNT

HSPGHVIQPSQALAAGFHRG


terminal

CYENASLQCLTYTLPLANYMLS

KQEDVHEFLMFTVDAMKKAC


hydrolase 17-

REHSQTCQRPKCCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI


like protein 4

TWALHSPGHVIQPSQALAAGFH

FGGCWRSQIKCLHCHGISDT




RGKQEDVHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVKQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGL




GCWRSQIKCLHCHGISDTFDPY

CLQRAPASNTLTLHTSAKVL




LDIALDIQAAQSVKQALEQLVK

ILVLKRESDVAGNKLAKNVQ




PEELNGENAYHCGLCLQRAPAS

YPECLDMQPYMSQQNTGPLV






YVLYAVLVHAGWSCHDGYYE




NTLTLHTSAKVLILVLKRFSDV
174
SYVKAQEGQWYKMDDAEVTV




AGNKLAKNVQYPEC

CSITSVLSQQAYVLFYIQKS




LDMQPYMSQQNTGPLVYVLYAV

AVGAGLQNMGNTCYVNASLQ




LVHAGWSCHDGYYFSYVKAQEG

CLTYTPPLANYMLSREHSQT




QWYKMDDAEVTVCSITSVLSQQ

CHRHKGCMLCTMQAHITRAL




AYVLFYIQKSEWERHSESVSRG

HNPGHVIQPSQALAAGFHRG




REPRALGAEDTDRPATQGELKR

KQEDAHEFLMFTVDAMKKAC




DHPCLQVPELDEHLVERATEES

LPGHKQVDHHSKDTTLIHQI




TLDHWKFPQEQNKMKPEFNVRK

FGGYWRSQIKCLHCHGISDT




VEGTLPPNVLVIHQSKYKCGMK






NHHPEQQSSLLNLSSMNSTDQE






SMNTGTLASLQGRTRRSKGKNK






HSKRSLLVCQ






MEDDSLYLGGEWQFNHFSKLTS






SRPDAAFAEIQRTSLPEKSPLS






CETRVDLCDDLAPVARQLAPRE






KLPLSSRRPAAVGAGLQNMGNT






CYVNASLQCLTYTPPLANYMLS






REHSQTCHRHKGCMLCTMQAHI







U17LK_HUMAN
63
TRALHNPGHVIQPSQALAAGFH

FDPYLDIALDIQAAQSVQQA


Ubiquitin

RGKQEDAHEFLMFTVDAMKKAC

LEQLVKPEELNGENAYHCGV


carboxyl-

LPGHKQVDHHSKDTTLIHQIFG

CLQRAPASKTLTLHTSAKVL


terminal

GYWRSQIKCLHCHGISDTEDPY

ILVLKRFSDVTGNKIAKNVQ


hydrolase 17-

LDIALDIQAAQSVQQALEQLVK

YPECLDMQPYMSQPNTGPLV


like protein 20

PEELNGENAYHCGVCLQRAPAS

YVLYAVLVHAGWSCHNGHYF




KTLTLHTSAKVLILVLKRFSDV

SYVKAQEGQWYKMDDAEVTA




TGNKIAKNVQYPECLDMQPYMS

SSITSVLSQQAYVLFYIQKS




QPNTGPLVYVLYAVLVHAGWSC






HNGHYFSYVKAQEGQWYKMDDA






EVTASSITSVLSQQAYVLFYIQ






KSEWERHSESVSRGREPRALGA






EDTDRRATQGELKRDHPCLQAP






ELDEHLVERATQESTLDHWKEL






QEQNKTKPEFNVRKVEGTLPPD






VLVIHQSKYKCGMKNHHPEQQS






SLLNLSSTTPTHQESMNTGTLA






SLRGRARRSKGKNKHSKRALLV






CQ







UBP12_HUMAN
64
MEILMTVSKFASICTMGANASA
175
EHYFGLVNFGNTCYCNSVLQ


Ubiquitin

LEKEIGPEQFPVNEHYFGLVNF

ALYFCRPFREKVLAYKSQPR


carboxyl-

GNTCYCNSVLQALYFCRPFREK

KKESLLTCLADLFHSIATQK


terminal

VLAYKSQPRKKESLLTCLADLF

KKVGVIPPKKFITRLRKENE


hydrolase 12

HSIATQKKKVGVIPPKKFITRL

LFDNYMQQDAHEFLNYLLNT




RKENELFDNYMQQDAHEFLNYL

IADILQEERKQEKQNGRLPN




LNTIADILQEERKQEKQNGRLP

GNIDNENNNSTPDPTWVHEI




NGNIDNENNNSTPDPTWVHEIF

FQGTLTNETRCLTCETISSK




QGTLTNETRCLTCETISSKDED

DEDFLDLSVDVEQNTSITHC




FLDLSVDVEQNTSITHCLRGES

LRGESNTETLCSEYKYYCEE




NTETLCSEYKYYCEECRSKQEA

CRSKQEAHKRMKVKKLPMIL




HKRMKVKKLPMILALHLKRFKY

ALHLKRFKYMDQLHRYTKLS






YRVVFPLELRLENTSGDATN




MDQLHRYTKLSYRVVFPLELRL

PDRMYDLVAVVVHCGSGPNR




FNTSGDATNPDRMY

GHYIAIVKSHDFWLLEDDDI




DLVAVVVHCGSGPNRGHYIAIV

VEKIDAQAIEEFYGLTSDIS




KSHDEWLLEDDDIVEKIDAQAI

KNSESGYILFYQSR




EEFYGLTSDISKNSESGYILFY






QSRD







UL17C_HUMAN
65
MEEDSLYLGGEWQENHESKLTS
176
AVGAGLQNMGNTCYVNASLQ


Ubiquitin

SRPDAAFAEIQRTSLPEKSPLS

CLTYTPPLANYMLSREHSQT


carboxyl-

CETRVDLCDDLAPVARQLAPRE

CHRHKGCMLCTMQAHITRAL


terminal

KLPLSNRRPAAVGAGLQNMGNT

HNPGHVIQPSQALAAGFHRG


hydrolase 17-

CYVNASLQCLTYTPPLANYMLS

KQEDAHEFLMFTVDAMKKAC


like protein 12

REHSQTCHRHKGCMLCTMQAHI

LPGHKQVDHHSKDTTLIHQI




TRALHNPGHVIQPSQALAAGFH

FGGYWRSQIKCLHCHGISDT




RGKQEDAHEFLMFTVDAMKKAC

FDPYLDIALDIQAAQSVQQA




LPGHKQVDHHSKDTTLIHQIFG

LEQLVKPEELNGENAYHCGV




GYWRSQIKCLHCHGISDTFDPY

CLQRAPASKMLTLLTSAKVL




LDIALDIQAAQSVQQALEQLVK

ILVLKRFSDVTGNKIAKNVQ




PEELNGENAYHCGVCLQRAPAS

YPECLDMQPYMSQPNTGPLV




KMLTLLTSAKVLILVLKRESDV

YVLYAVLVHAGWSCHNGHYF




TGNKIAKNVQYPEC

SYVKAQEGQWYKMDDAEVTA




LDMQPYMSQPNTGPLVYVLYAV

SSITSVLSQQAYVLFYIQKS




LVHAGWSCHNGHYFSYVKAQEG






QWYKMDDAEVTASSITSVLSQQ






AYVLFYIQKSEWERHSESVSRG






REPRALGAEDTDRRATQGELKR






DHPCLQAPELDEHLVERATQES






TLDHWKFLQEQNKTKPEFNVRK






VEGTLPPDVLVIHQSKYKCGMK






NHHPEQQSSLLKLSSTTPTHQE






SMNTGTLASLRGRARRSKGKNK






HSKRALLVCQ







UBP20_HUMAN
66
MGDSRDLCPHLDSIGEVTKEDL
177
PRGLTGMKNLGNSCYMNAAL


Ubiquitin

LLKSKGTCQSCGVTGPNLWACL

QALSNCPPLTQFFLECGGLV


carboxyl-

QVACPYVGCGESFADHSTIHAQ

RTDKKPALCKSYQKLVSEVW


terminal

AKKHNLTVNLTTFRLWCYACEK

HKKRPSYVVPTSLSHGIKLV


hydrolase

EVFLEQRLAAPLLGSSSKFSEQ

NPMFRGYAQQDTQEFLRCLM




DSPPPSHPLKAVPIAVADEGES

DQLHEELKEPVVATVALTEA




ESEDDDLKPRGLTGMKNLGNSC

RDSDSSDTDEKREGDRSPSE




YMNAALQALSNCPPLTQFFLEC

DEFLSCDSSSDRGEGDGQGR




GGLVRTDKKPALCKSYQKLVSE

GGGSSQAETELLIPDEAGRA




VWHKKRPSYVVPTSLSHGIKLV

ISEKERMKDRKESWGQQRTN




NPMFRGYAQQDTQEFLRCLMDQ

SEQVDEDADVDTAMAALDDQ




LHEELKEPVVATVALTEARDSD

PAEAQPPSPRSSSPCRTPEP




SSDTDEKREGDRSPSEDEFLSC

DNDAHLRSSSRPCSPVHHHE




DSSSDRGEGDGQGR

GHAKLSSSPPRASPVRMAPS




GGGSSQAETELLIPDEAGRAIS

YVLKKAQVLSAGSRRRKEQR




EKERMKDRKFSWGQQRTNSEQV

YRSVISDIFDGSILSLVQCL




DEDADVDTAMAALDDQPAEAQP

TCDRVSTTVETFQDLSLPIP




PSPRSSSPCRTPEPDNDAHLRS

GKEDLAKLHSAIYQNVPAKP




SSRPCSPVHHHEGHAKLSSSPP

GACGDSYAAQGWLAFIVEYI




RASPVRMAPSYVLKKAQVLSAG

RRFVVSCTPSWFWGPVVTLE




SRRRKEQRYRSVISDIFDGSIL

DCLAAFFAADELKGDNMYSC




SLVQCLTCDRVSTTVETFQDLS

ERCKKLRNGVKYCKVLRLPE




LPIPGKEDLAKLHSAIYQNVPA

ILCIHLKRFRHEVMYSFKIN




KPGACGDSYAAQGWLAFIVEYI

SHVSFPLEGLDLRPFLAKEC




RRFVVSCTPSWFWGPVVTLEDC

TSQITTYDLLSVICHHGTAG




LAAFFAADELKGDNMYSCERCK

SGHYIAYCQNVINGQWYEFD




KLRNGVKYCKVLRLPEILCIHL

DQYVTEVHETVVQNAEGYVL




KRFRHEVMYSEKIN

FYRKSS




SHVSFPLEGLDLRPFLAKECTS






QITTYDLLSVICHHGTAGSGHY






IAYCQNVINGQWYEFDDQYVTE






VHETVVQNAEGYVLFYRKSSEE






AMRERQQVVSLAAMREPSLLRE






YVSREWLNKENTFAEPGPITNQ






TELCSHGGIPPHKYHYIDDLVV






ILPQNVWEHLYNRFGGGPAVNH






LYVCSICQVEIEALAKRRRIEI






DTFIKLNKAFQAEESPGVIYCI






SMQWFREWEAFVKGKDNEPPGP






IDNSRIAQVKGSGHVQLKQGAD






YGQISEETWTYLNSLYGGGPEI






AIRQSVAQPLGPENLHGEQKIE






AETRAV







UBP46_HUMAN
67
MTVRNIASICNMGTNASALEKD
178
EHYFGLVNFGNTCYCNSVLQ


Ubiquitin

IGPEQFPINEHYFGLVNFGNTC

ALYFCRPFRENVLAYKAQQK


carboxyl-

YCNSVLQALYFCRPERENVLAY

KKENLLTCLADLFHSIATQK


terminal

KAQQKKKENLLTCLADLFHSIA

KKVGVIPPKKFISRLRKEND


hydrolase 46

TQKKKVGVIPPKKFISRLRKEN

LFDNYMQQDAHEFLNYLLNT




DLFDNYMQQDAHEFLNYLLNTI

IADILQEEKKQEKQNGKLKN




ADILQEEKKQEKQNGKLKNGNM

GNMNEPAENNKPELTWVHEI




NEPAENNKPELTWVHEIFQGTL

FQGTLTNETRCLNCETVSSK




TNETRCLNCETVSSKDEDELDL

DEDFLDLSVDVEQNTSITHC




SVDVEQNTSITHCLRDESNTET

LRDESNTETLCSEQKYYCET




LCSEQKYYCETCCSKQEAQKRM

CCSKQEAQKRMRVKKLPMIL




RVKKLPMILALHLKRFKYMEQL

ALHLKRFKYMEQLHRYTKLS




HRYTKLSYRVVFPLELRLENTS

YRVVFPLELRLENTSSDAVN




SDAVNLDRMYDLVA

LDRMYDLVAVVVHCGSGPNR




VVVHCGSGPNRGHYITIVKSHG

GHYITIVKSHGFWLLFDDDI




FWLLEDDDIVEKIDAQAIEEFY

VEKIDAQAIEEFYGLTSDIS




GLTSDISKNSESGYILFYQSRE

KNSESGYILFYQSR





CYLD_HUMAN
68
MSSGLWSQEKVTSPYWEERIFY
179
GKKKGIQGHYNSCYLDSTLF


Ubiquitin

LLLQECSVTDKQTQKLLKVPKG

CLFAFSSVLDTVLLRPKEKN


carboxyl-

SIGQYIQDRSVGHSRIPSAKGK

DVEYYSETQELLRTEIVNPL


terminal

KNQIGLKILEQPHAVLEVDEKD

RIYGYVCATKIMKLRKILEK


hydrolase

VVEINEKFTELLLAITNCEERF

VEAASGFTSEEKDPEEFLNI


CYLD

SLFKNRNRLSKGLQIDVGCPVK

LFHHILRVEPLLKIRSAGQK




VQLRSGEEKFPGVVRERGPLLA

VQDCYFYQIFME




ERTVSGIFFGVELLEEGRGQGF

KNEKVGVPTIQQLLEWSFIN




TDGVYQGKQLFQCDEDCGVEVA

SNLKFAEAPSCLIIQMPREG




LDKLELIEDDDTALESDYAGPG

KDFKLFKKIFPSLELNITDL




DTMQVELPPLEINSRVSLKVGE

LEDTPRQCRICGGLAMYECR




TIESGTVIFCDVLPGKESLGYE

ECYDDPDISAGKIKQFCKTC




VGVDMDNPIGNWDGREDGVQLC

NTQVHLHPKRLNHKYNPVSL




SFACVESTILLHIN

PKDLPDWDWRHGCIPCQNME




DIIPALSESVTQERRPPKLAFM

LFAVLCIETSHYVAFVKYGK




SRGVGDKGSSSHNKPKATGSTS

DDSAWLFFDSMADRDGGQNG




DPGNRNRSELFYTLNGSSVDSQ

FNIPQVTPCPEVGEYLKMSL




PQSKSKNTWYIDEVAEDPAKSL

EDLHSLDSRRIQGCARRLLC




TEISTDEDRSSPPLQPPPVNSL

DAYMCMYQSPT




TTENRFHSLPFSLTKMPNINGS






IGHSPLSLSAQSVMEELNTAPV






QESPPLAMPPGNSHGLEVGSLA






EVKENPPFYGVIRWIGQPPGLN






EVLAGLELEDECAGCTDGTERG






TRYFTCALKKALFVKLKSCRPD






SRFASLQPVSNQIERCNSLAFG






GYLSEVVEENTPPKMEKEGLEI






MIGKKKGIQGHYNS






CYLDSTLFCLFAFSSVLDTVLL






RPKEKNDVEYYSETQELLRTEI






VNPLRIYGYVCATKIMKLRKIL






EKVEAASGFTSEEKDPEEFLNI






LFHHILRVEPLLKIRSAGQKVQ






DCYFYQIFMEKNEKVGVPTIQQ






LLEWSFINSNLKFAEAPSCLII






QMPREGKDEKLFKKIFPSLELN






ITDLLEDTPRQCRICGGLAMYE






CRECYDDPDISAGKIKQFCKTC






NTQVHLHPKRLNHKYNPVSLPK






DLPDWDWRHGCIPCQNMELFAV






LCIETSHYVAFVKYGKDDSAWL






FFDSMADRDGGQNGFNIPQVTP






CPEVGEYLKMSLEDLHSLDSRR






IQGCARRLLCDAYMCMYQSPTM






SLYK







UBP16_HUMAN
69
MGKKRTKGKTVPIDDSSETLEP
180
ITVKGLSNLGNTCFFNAVMQ


Ubiquitin

VCRHIRKGLEQGNLKKALVNVE

NLSQTPVLRELLKEVKMSGT


carboxyl-

WNICQDCKTDNKVKDKAEEETE

IVKIEPPDLALTEPLEINLE


terminal

EKPSVWLCLKCGHQGCGRNSQE

PPGPLTLAMSQFLNEMQETK


hydrolase 16

QHALKHYLTPRSEPHCLVLSLD

KGVVTPKELFSQVCKKAVRE




NWSVWCYVCDNEVQYCSSNQLG

KGYQQQDSQELLRYLLDGMR




QVVDYVRKQASITTPKPAEKDN

AEEHQRVSKGILKAFGNSTE




GNIELENKKLEKESKNEQEREK

KLDEELKNKVKDYEKKKSMP




KENMAKENPPMNSPCQITVKGL

SFVDRIFGGELTSMIMCDQC




SNLGNTCFFNAVMQNLSQTPVL

RTVSLVHESELDLSLPVLDD




RELLKEVKMSGTIVKIEPPDLA

QSGKKSVNDKNLKKTVEDED




LTEPLEINLEPPGPLTLAMSQF

QDSEEEKDNDSYIKERSDIP




LNEMQETKKGVVTPKELFSQVC

SGTSKHLQKKAKKQAKKQAK




KKAVRFKGYQQQDS

NQRRQQKIQGKVLHLNDICT




QELLRYLLDGMRAEEHQRVSKG

IDHPEDSEYEAEMSLQGEVN




ILKAFGNSTEKLDEELKNKVKD

IKSNHISQEGVMHKEYCVNQ




YEKKKSMPSFVDRIFGGELTSM

KDLNGQAKMIESVTDNQKST




IMCDQCRTVSLVHESFLDLSLP

EEVDMKNINMDNDLEVLTSS




VLDDQSGKKSVNDKNLKKTVED

PTRNLNGAYLTEGSNGEVDI




EDQDSEEEKDNDSYIKERSDIP

SNGFKNLNLNAALHPDEINI




SGTSKHLQKKAKKQAKKQAKNQ

EILNDSHTPGTKVYEVVNED




RRQQKIQGKVLHLNDICTIDHP

PETAFCTLANREVENTDECS




EDSEYEAEMSLQGEVNIKSNHI

IQHCLYQFTRNEKLRDANKL




SQEGVMHKEYCVNQKDLNGQAK

LCEVCTRRQCNGPKANIKGE




MIESVTDNQKSTEEVDMKNINM

RKHVYTNAKKQMLISLAPPV




DNDLEVLTSSPTRNLNGAYLTE

LTLHLKRFQQAGENLRKVNK




GSNGEVDISNGFKNLNLNAALH

HIKFPEIL




PDEINIEILNDSHT

DLAPFCTLKCKNVAEENTRV




PGTKVYEVVNEDPETAFCTLAN

LYSLYGVVEHSGTMRSGHYT




REVENTDECSIQHCLYQFTRNE

AYAKARTANSHLSNLVLHGD




KLRDANKLLCEVCTRRQCNGPK

IPQDFEMESKGQWFHISDTH




ANIKGERKHVYTNAKKQMLISL

VQAVPTTKVLNSQAYLLFYE




APPVLTLHLKRFQQAGENLRKV

RIL




NKHIKFPEILDLAPFCTLKCKN






VAEENTRVLYSLYGVVEHSGTM






RSGHYTAYAKARTANSHLSNLV






LHGDIPQDFEMESKGQWFHISD






THVQAVPTTKVLNSQAYLLFYE






RIL







ALG13_HUMAN
70
MKCVFVTVGTTSEDDLIACVSA
181
YRYKDSLKEDIQKADLVISH


Putative

PDSLQKIESLGYNRLILQIGRG

AGAGSCLETLEKGKPLVVVI


bifunctional

TVVPEPESTESFTLDVYRYKDS

NEKLMNNHQLELAKQLHKEG


UDP-N-

LKEDIQKADLVISHAGAGSCLE

HLFYCTCRVLTCPGQAKSIA


acetylglucosa

TLEKGKPLVVVINEKLMNNHQL

SAPGKCQDSAALTSTAFSGL


mine

ELAKQLHKEGHLFYCTCRVLTC

DFGLLSGYLHKQALVTATHP


transferase

PGQAKSIASAPGKCQDSAALTS

TCTLLFPSCHAFFPLPLTPT


and

TAFSGLDFGLLSGYLHKQALVT

LYKMHKGWKNYCSQKSLNEA


deubiquitinase

ATHPTCTLLFPSCHAFFPLPLT

SMDEYLGSLGLFRKLTAKDA


ALG13

PTLYKMHKGWKNYCSQKSLNEA

SCLFRAISEQLFCSQVHHLE




SMDEYLGSLGLFRKLTAKDASC

IRKACVSYMRENQQTFESYV




LFRAISEQLFCSQVHHLEIRKA

EGSFEKYLERLGDPKESAGQ




CVSYMRENQQTFESYVEGSFEK

LEIRALSLIYNRDFILYRFP




YLERLGDPKESAGQ

GKPPTYVTDNGYEDKILLCY




LEIRALSLIYNRDFILYRFPGK

SSSGHYDSVYS




PPTYVTDNGYEDKILLCYSSSG






HYDSVYSKQFQSSAAVCQAVLY






EILYKDVFVVDEEELKTAIKLE






RSGSKKNRNNAVTGSEDAHTDY






KSSNQNRMEEWGACYNAENIPE






GYNKGTEETKSPENPSKMPFPY






KVLKALDPEIYRNVEFDVWLDS






RKELQKSDYMEYAGRQYYLGDK






CQVCLESEGRYYNAHIQEVGNE






NNSVTVFIEELAEKHVVPLANL






KPVTQVMSVPAWNAMPSRKGRG






YQKMPGGYVPEIVISEMDIKQQ






KKMFKKIRGKEVYM






TMAYGKGDPLLPPRLQHSMHYG






HDPPMHYSQTAGNVMSNEHFHP






QHPSPRQGRGYGMPRNSSRFIN






RHNMPGPKVDFYPGPGKRCCQS






YDNESYRSRSFRRSHRQMSCVN






KESQYGFTPGNGQMPRGLEETI






TFYEVEEGDETAYPTLPNHGGP






STMVPATSGYCVGRRGHSSGKQ






TLNLEEGNGQSENGRYHEEYLY






RAEPDYETSGVYSTTASTANLS






LQDRKSCSMSPQDTVTSYNYPQ






KMMGNIAAVAASCANNVPAPVL






SNGAAANQAISTTSVSSQNAIQ






PLFVSPPTHGRPVI






ASPSYPCHSAIPHAGASLPPPP






PPPPPPPPPPPPPPPPPPPPPP






PALDVGETSNLQPPPPLPPPPY






SCDPSGSDLPQDTKVLQYYENL






GLQCYYHSYWHSMVYVPQMQQQ






LHVENYPVYTEPPLVDQTVPQC






YSEVRREDGIQAEASANDTEPN






ADSSSVPHGAVYYPVMSDPYGQ






PPLPGFDSCLPVVPDYSCVPPW






HPVGTAYGGSSQIHGAINPGPI






GCIAPSPPASHYVPQGM







OTU1_HUMAN
71
MFGPAKGRHFGVHPAPGFPGGV
182
QGLSSRTRVRELQGQIAAIT


Ubiquitin

SQQAAGTKAGPAGAWPVGSRTD

GIAPGGQRILVGYPPECLDL


thioesterase

TMWRLRCKAKDGTHVLQGLSSR

SNGDTILEDLPIQSGDMLII


OTU1

TRVRELQGQIAAITGIAPGGQR

EEDQTRPRSSPAFTKRGASS




ILVGYPPECLDLSNGDTILEDL

YVRETLPVLTRTVVPADNSC




PIQSGDMLIIEEDQTRPRSSPA

LETSVYYVVEGGVLNPACAP




FTKRGASSYVRETLPVLTRTVV

EMRRLIAQIVASDPDFYSEA




PADNSCLFTSVYYVVEGGVLNP

ILGKTNQEYCDWIKRDDTWG




ACAPEMRRLIAQIVASDPDFYS

GAIEISILSKFYQCEICVVD




EAILGKTNQEYCDWIKRDDTWG

TQTVRIDRFGEDAGYTKRVL




GAIEISILSKFYQCEICVVDTQ

LIYDGIHYDPLQ




TVRIDRFGEDAGYTKRVLLIYD






GIHYDPLQRNFPDPDTPPLTIF






SSNDDIVLVQALELADEARRRR






QFTDVNRFTLRCMVCQKGLTGQ






AEAREHAKETGHTNEGEV







OTUD1_HUMAN
72
MQLYSSVCTHYPAGAPGPTAAA
183
HREAAAVPAAKMPAFSSCFE


MOTU

PAPPAAATPFKVSLQPPGAAGA

VVSGAAAPASAAAGPPGASC


domain-

APEPETGECQPAAAAEHREAAA

KPPLPPHYTSTAQITVRALG


containing

VPAAKMPAFSSCFEVVSGAAAP

ADRLLLHGPDPVPGAAGSAA


protein 1

ASAAAGPPGASCKPPLPPHYTS

APRGRCLLLAPAPAAPVPPR




TAQITVRALGADRLLLHGPDPV

RGSSAWLLEELLRPDCPEPA




PGAAGSAAAPRGRCLLLAPAPA

GLDATREGPDRNERLSEHRQ




APVPPRRGSSAWLLEELLRPDC

ALAAAKHRGPAATPGSPDPG




PEPAGLDATREGPDRNERLSEH

PGPWGEEHLAERGPRGWERG




RQALAAAKHRGPAATPGSPDPG

GDRCDAPGGDAARRPDPEAE




PGPWGEEHLAERGPRGWERGGD

APPAGSIEAAPSSAAEPVIV




RCDAPGGDAARRPDPEAEAPPA

SRSDPRDEKLALYLAEVEKQ




GSIEAAPSSAAEPVIVSRSDPR

DKYLRQRNKYRFHIIPDGNC




DEKLALYLAEVEKQ

LYRAVSKTVYGDQSLHRELR




DKYLRQRNKYRFHIIPDGNCLY

EQTVHYIADHLDHFSPLIEG




RAVSKTVYGDQSLHRELREQTV

DVGEFIIAAAQDGAWAGYPE




HYIADHLDHESPLIEGDVGEFI

LLAMGQMLNVNIHLTTGGRL




IAAAQDGAWAGYPELLAMGQML

ESPTVSTMIHYLGPEDSLRP




NVNIHLTTGGRLESPTVSTMIH

SIWLSWLSNGHYDAV




YLGPEDSLRPSIWLSWLSNGHY






DAVFDHSYPNPEYDNWCKQTQV






QRKRDEELAKSMAISLSKMYIE






QNACS







OTU6B_HUMAN
73
MEAVLTEELDEEEQLLRRHRKE
184
QKHREELEQLKLTTKENKID


MAN

KKELQAKIQGMKNAVPKNDKKR

SVAVNISNLVLENQPPRISK


Deubiquitinas

RKQLTEDVAKLEKEMEQKHREE

AQKRREKKAALEKEREERIA


e OTUD6B

LEQLKLTTKENKIDSVAVNISN

EAEIENLTGARHMESEKLAQ




LVLENQPPRISKAQKRREKKAA

ILAARQLEIKQIPSDGHCMY




LEKEREERIAEAEIENLTGARH

KAIEDQLKEKDCALTVVALR




MESEKLAQILAARQLEIKQIPS

SQTAEYMQSHVEDFLPFLTN




DGHCMYKAIEDQLKEKDCALTV

PNTGDMYTPEEFQKYCEDIV




VALRSQTAEYMQSHVEDELPEL

NTAAWGGQLELRALSHILQT




TNPNTGDMYTPEEFQKYCEDIV

PIEIIQADSPPIIVGEEYSK




NTAAWGGQLELRALSHILQTPI

KPLILVYMRHAYG




EIIQADSPPIIVGEEYSKKPLI






LVYMRHAYGLGEHYNSVTRLVN






IVTENCS







OTU6A_HUMAN
74
MDDPKSEQQRILRRHQRERQEL
185
QELEKFQDDSSIESVVEDLA


MOTU

QAQIRSLKNSVPKTDKTKRKQL

KMNLENRPPRSSKAHRKRER


domain-

LQDVARMEAEMAQKHRQELEKF

MESEERERQESIFQAEMSEH


containing

QDDSSIESVVEDLAKMNLENRP

LAGFKREEEEKLAAILGARG


protein 6A

PRSSKAHRKRERMESEERERQE

LEMKAIPADGHCMYRAIQDQ




SIFQAEMSEHLAGFKREEEEKL

LVFSVSVEMLRCRTASYMKK




AAILGARGLEMKAIPADGHCMY

HVDEFLPFFSNPETSDSEGY




RAIQDQLVFSVSVEMLRCRTAS

DDFMIYCDNIVRTTAWGGQL




YMKKHVDEFLPFFSNPETSDSF

ELRALSHVLKTPIEVIQADS




GYDDFMIYCDNIVRTTAWGGQL

PTLIIGEEYVKKPIILVYLR




ELRALSHVLKTPIEVIQADSPT

YAYS




LIIGEEYVKKPIILVYLRYAYS






LGEHYNSVTPLEAGAAGGVLPR






LL







OTUB1_
75
MAAEEPQQQKQEPLGSDSEGVN
75
MAAEEPQQQKQEPLGSDSEG


HUMAN

CLAYDEAIMAQQDRIQQEIAVQ

VNCLAYDEAIMAQQDRIQQE


Ubiquitin

NPLVSERLELSVLYKEYAEDDN

IAVQNPLVSERLELSVLYKE


thioesterase

IYQQKIKDLHKKYSYIRKTRPD

YAEDDNIYQQKIKDLHKKYS


OTUB1

GNCFYRAFGFSHLEALLDDSKE

YIRKTRPDGNCFYRAFGESH




LQRFKAVSAKSKEDLVSQGFTE

LEALLDDSKELQRFKAVSAK




FTIEDEHNTFMDLIEQVEKQTS

SKEDLVSQGFTEFTIEDEHN




VADLLASENDQSTSDYLVVYLR

TEMDLIEQVEKQTSVADLLA




LLTSGYLQRESKFFEHFIEGGR

SENDQSTSDYLVVYLRLLTS




TVKEFCQQEVEPMCKESDHIHI

GYLQRESKFFEHFIEGGRTV




IALAQALSVSIQVEYMDRGEGG

KEFCQQEVEPMCKESDHIHI




TTNPHIFPEGSEPKVYLLYRPG

IALAQALSVSIQVEYMDRGE




HYDILYK

GGTTNPHIFPEGSEPKVYLL






YRPGHYDILYK





OTU7A_HUMAN
76
MVSSVLPNPTSAECWAALLHDP
186
SDYEQLRQVHTANLPHVENE


MOTU

MTLDMDAVLSDFVRSTGAEPGL

GRGPKQPEREPQPGHKVERP


domain-

ARDLLEGKNWDLTAALSDYEQL

CLQRQDDIAQEKRLSRGISH


containing

RQVHTANLPHVENEGRGPKQPE

ASSAIVSLARSHVASECNNE


protein 7A

REPQPGHKVERPCLQRQDDIAQ

QFPLEMPIYTFQLPDLSVYS




EKRLSRGISHASSAIVSLARSH

EDERSFIERDLIEQATMVAL




VASECNNEQFPLEMPIYTFQLP

EQAGRLNWWSTVCTSCKRLL




DLSVYSEDERSFIERDLIEQAT

PLATTGDGNCLLHAASLGMW




MVALEQAGRLNWWSTVCTSCKR

GFHDRDLVLRKALYTMMRTG




LLPLATTGDGNCLLHAASLGMW

AEREALKRRWRWQQTQQNKE




GFHDRDLVLRKALYTMMRTGAE

EEWEREWTELLKLASSEPRT




REALKRRWRWQQTQQNKEEEWE

HFSKNGGTGGGVDNSEDPVY




REWTELLKLASSEPRTHESKNG

ESLEEFHVEVLAHILRRPIV




GTGGGVDNSEDPVY

VVADTMLRDSGGEAFAPIPE




ESLEEFHVEVLAHILRRPIVVV

GGIYLPLEVPPNRCHCSPLV




ADTMLRDSGGEAFAPIPEGGIY

LAYDQAHFSAL




LPLEVPPNRCHCSPLVLAYDQA






HFSALVSMEQRDQQREQAVIPL






TDSEHKLLPLHFAVDPGKDWEW






GKDDNDNARLAHLILSLEAKLN






LLHSYMNVTWIRIPSETRAPLA






QPESPTASAGEDVQSLADSLDS






DRDSVCSNSNSNNGKNGKDKEK






EKQRKEKDKTRADSVANKLGSF






SKTLGIKLKKNMGGLGGLVHGK






MGRANSANGKNGDSAERGKEKK






AKSRKGSKEESGASASTSPSEK






TTPSPTDKAAGASP






AEKGGGPRGDAWKYSTDVKLSL






NILRAAMQGERKFIFAGLLLTS






HRHQFHEEMIGYYLTSAQERES






AEQEQRRRDAATAAAAAAAAAA






ATAKRPPRRPETEGVPVPERAS






PGPPTQLVLKLKERPSPGPAAG






RAARAAAGGTASPGGGARRASA






SGPVPGRSPPAPARQSVIHVQA






SGARDEACAPAVGALRPCATYP






QQNRSLSSQSYSPARAAALRTV






NTVESLARAVPGALPGAAGTAG






AAEHKSQTYTNGFGALRDGLEF






ADADAPTARSNGECGRGGPGPV






QRRCQRENCAFYGRAETEHYCS






YCYREELRRRREARGARP







OTUD4_HUMAN
77
MEAAVGVPDGGDQGGAGPREDA
187
MEAAVGVPDGGDQGGAGPRE


MOTU

TPMDAYLRKLGLYRKLVAKDGS

DATPMDAYLRKLGLYRKLVA


domain-

CLFRAVAEQVLHSQSRHVEVRM

KDGSCLFRAVAEQVLHSQSR


containing

ACIHYLRENREKFEAFIEGSFE

HVEVRMACIHYLRENREKFE


protein

EYLKRLENPQEWVGQVEISALS

AFIEGSFEEYLKRLENPQEW


4

LMYRKDFIIYREPNVSPSQVTE

VGQVEISALSLMYRKDFIIY




NNFPEKVLLCESNGNHYDIVYP

REPNVSPSQVTENNFPEKVL




IKYKESSAMCQSLLYELLYEKV

LCFSNGNHYDIVYP




FKTDVSKIVMELDTLEVADEDN






SEISDSEDDSCKSKTAAAAADV






NGFKPLSGNEQLKNNGNSTSLP






LSRKVLKSLNPAVYRNVEYEIW






LKSKQAQQKRDYSIAAGLQYEV






GDKCQVRLDHNGKF






LNADVQGIHSENGPVLVEELGK






KHTSKNLKAPPPESWNTVSGKK






MKKPSTSGQNFHSDVDYRGPKN






PSKPIKAPSALPPRLQHPSGVR






QHAFSSHSSGSQSQKESSEHKN






LSRTPSQIIRKPDRERVEDEDH






TSRESNYFGLSPEERREKQAIE






ESRLLYEIQNRDEQAFPALSSS






SVNQSASQSSNPCVQRKSSHVG






DRKGSRRRMDTEERKDKDSIHG






HSQLDKRPEPSTLENITDDKYA






TVSSPSKSKKLECPSPAEQKPA






EHVSLSNPAPLLVSPEVHLTPA






VPSLPATVPAWPSE






PTTFGPTGVPAPIPVLSVTQTL






TTGPDSAVSQAHLTPSPVPVSI






QAVNQPLMPLPQTLSLYQDPLY






PGFPCNEKGDRAIVPPYSLCQT






GEDLPKDKNILRFFFNLGVKAY






SCPMWAPHSYLYPLHQAYLAAC






RMYPKVPVPVYPHNPWFQEAPA






AQNESDCTCTDAHFPMQTEASV






NGQMPQPEIGPPTFSSPLVIPP






SQVSESHGQLSYQADLESETPG






QLLHADYEESLSGKNMFPQSFG






PNPFLGPVPIAPPFFPHVWYGY






PFQGFIENPVMRQNIVLPSDEK






GELDLSLENLDLS






KDCGSVSTVDEFPEARGEHVHS






LPEASVSSKPDEGRTEQSSQTR






KADTALASIPPVAEGKAHPPTQ






ILNRERETVPVELEPKRTIQSL






KEKTEKVKDPKTAADVVSPGAN






SVDSRVQRPKEESSEDENEVSN






ILRSGRSKQFYNQTYGSRKYKS






DWGYSGRGGYQHVRSEESWKGQ






PSRSRDEGYQYHRNVRGRPERG






DRRRSGMGDGHRGQHT







OTUB2_
78
MSETSENLISEKCDILSILRDH
78
MSETSENLISEKCDILSILR


HUMAN

PENRIYRRKIEELSKRFTAIRK

DHPENRIYRRKIEELSKRFT


Ubiquitin

TKGDGNCFYRALGYSYLESLLG

AIRKTKGDGNCFYRALGYSY


thioesterase

KSREIFKFKERVLQTPNDLLAA

LESLLGKSREIFKFKERVLQ


OTUB2

GFEEHKERNFFNAFYSVVELVE

TPNDLLAAGFEEHKERNFEN




KDGSVSSLLKVENDQSASDHIV

AFYSVVELVEKDGSVSSLLK




QFLRLLTSAFIRNRADFFRHFI

VENDQSASDHIVQFLRLLTS




DEEMDIKDFCTHEVEPMATECD

AFIRNRADFFRHFIDEEMDI




HIQITALSQALSIALQVEYVDE

KDFCTHEVEPMATECDHIQI




MDTALNHHVFPEAATPSVYLLY

TALSQALSIALQVEYVDEMD




KTSHYNILYAADKH

TALNHHVFPEAATPSVYLLY






KTSHYNILYAADKH





OTUD3_HUMAN
79
MSRKQAAKSRPGSGSRKAEAER
188
MSRKQAAKSRPGSGSRKAEA


MOTU

KRDERAARRALAKERRNRPESG

ERKRDERAARRALAKERRNR


domain-

GGGGCEEEFVSFANQLQALGLK

PESGGGGGCEEEFVSFANQL


containing

LREVPGDGNCLFRALGDQLEGH

QALGLKLREVPGDGNCLFRA


protein 3

SRNHLKHRQETVDYMIKQREDE

LGDQLEGHSRNHLKHRQETV




EPFVEDDIPFEKHVASLAKPGT

DYMIKQREDFEPFVEDDIPF




FAGNDAIVAFARNHQLNVVIHQ

EKHVASLAKPGTFAGNDAIV




LNAPLWQIRGTEKSSVRELHIA

AFARNHQLNVVIHQLNAPLW




YRYGEHYDSVRRINDNSEAPAH

QIRGTEKSSVRELHIAYRYG




LQTDFQMLHQDESNKREKIKTK

EHYDSVRR




GMDSEDDLRDEVEDAVQKVCNA






TGCSDENLIVQNLEAENYNIES






AIIAVLRMNQGKRNNAEENLEP






SGRVLKQCGPLWEE






GGSGARIFGNQGLNEGRTENNK






AQASPSEENKANKNQLAKVINK






QRREQQWMEKKKRQEERHRHKA






LESRGSHRDNNRSEAEANTQVT






LVKTFAALNI







OTU7B_HUMAN
80
MTLDMDAVLSDFVRSTGAEPGL
189
MTLDMDAVLSDFVRSTGAEP


MOTU

ARDLLEGKNWDVNAALSDFEQL

GLARDLLEGKNWDVNAALSD


domain-

RQVHAGNLPPSFSEGSGGSRTP

FEQLRQVHAGNLPPSFSEGS


containing

EKGFSDREPTRPPRPILQRQDD

GGSRTPEKGFSDREPTRPPR




IVQEKRLSRGISHASSSIVSLA

PILQRQDDIVQEKRLSRGIS




RSHVSSNGGGGGSNEHPLEMPI

HASSSIVSLARSHVSSNGGG




CAFQLPDLTVYNEDERSFIERD

GGSNEHPLEMPICAFQLPDL




LIEQSMLVALEQAGRLNWWVSV

TVYNEDERSFIERDLIEQSM




DPTSQRLLPLATTGDGNCLLHA

LVALEQAGRLNWWVSVDPTS




ASLGMWGFHDRDLMLRKALYAL

QRLLPLATTGDGNCLLHAAS




MEKGVEKEALKRRWRWQQTQQN

LGMWGFHDRDLMLRKALYAL




KESGLVYTEDEWQKEWNELIKL

MEKGVEKEALKRRWRWQQTQ




ASSEPRMHLGTNGANCGGVESS

QNKESGLVYTEDEWQKEWNE




EEPVYESLEEFHVEVLAHVLRR

LIKLASSEPRMHLGTNGANC




PIVVVADTMLRDSGGEAFAPIP

GGVESSEEPVYESLEEFHVE




FGGIYLPLEVPASQCHRSPLVL

VLAHVLRRPIVVVADTMLRD




AYDQAHFSALVSMEQKENTKEQ

SGGEAFAPIPFGGIYLPLEV




AVIPLTDSEYKLLPLHFAVDPG

PASQCHRSPLVLAYDQAHES




KGWEWGKDDSDNVRLASVILSL

AL





protein 7B

EVKLHLLHSYMNVKWIPLSSDA
293
PPSFSEGSGGSRTPEKGFSD


(Also referred

QAPLAQPESPTASAGDEPRSTP

REPTRPPRPILQRQDDIVQE


to herein as

ESGDSDKESVGSSSTSNEGGRR

KRLSRGISHASSSIVSLARS


Cezanne)

KEKSKRDREKDKKRADSVANKL

HVSSNGGGGGSNEHPLEMPI




GSFGKTLGSKLKKNMGGLMHSK
190
CAFQLPDLTVYNEDERSFIE




GSKPGGVGTGLGGSSGTETLEK

RDLIEQSMLVALEQAGRLNW




KKKNSLKSWKGGKEEAAGDGPV

WVSVDPTSQRLLPLATTGDG




SEKPPAESVGNGGSKYSQEVMQ

NCLLHAASLGMWGFHDRDLM




SLSILRTAMQGEGKFIFVGTLK

LRKALYALMEKGVEKEALKR




MGHRHQYQEEMIQRYLSDAEER

RWRWQQTQQNKESGLVYTED




FLAEQKQKEAERKIMNGGIGGG

EWQKEWNELIKLASSEPRMH




PPPAKKPEPDAREEQPTGPPAE

LGTNGANCGGVESSEEPVYE




SRAMAFSTGYPGDFTIPRPSGG

SLEEFHVFVLAHVLRRPIVV




GVHCQEPRRQLAGGPCVGGLPP

VADTMLRDSGGEAFAPIPFG




YATFPRQCPPGRPYPHQDSIPS

GIYLPLEVPASQCHRSPLVL




LEPGSHSKDGLHRGALLPPPYR

AYDQAHFSALVSMEQKENTK




VADSYSNGYREPPEPDGWAGGL

EQAVIPLTDSEYKLLPLHFA




RGLPPTQTKCKQPNCSFYGHPE

VDPGKGWEWGKDDSDNVRLA




TNNFCSCCYREELRRREREPDG

SVILSLEVKLHLLHSYMNVK




ELLVHRE

WIPLSSDAQAPLAQ




MTILPKKKPPPPDADPANEPPP






PGPMPPAPRRGGGVGVGGGGTG






VGGGDRDRDSGVVGARPRASPP






PQGPLPGPPGALHRWALAVPPG






AVAGPRPQQASPPPCGGPGGPG






GGPGDALGAAAAGVGAAGVVVG







OTUD5_HUMAN
81
VGGAVGVGGCCSGPGHSKRRRQ

MTILPKKKPPPPDADPANEP


MOTU

APGVGAVGGGSPEREEVGAGYN

PPPGPMPPAPRRGGGVGVGG


domain-

SEDEYEAAAARIEAMDPATVEQ

GGTGVGGGDRDRDSGVVGAR


containing

QEHWFEKALRDKKGFIIKQMKE

PRASPPPQGPLPGPPGALHR


protein 5

DGACLFRAVADQVYGDQDMHEV

WALAVPPGAVAGPRPQQASP




VRKHCMDYLMKNADYFSNYVTE

PPCGGPGGPGGGPGDALGAA




DETTYINRKRKNNCHGNHIEMQ

AAGVGAAGVVVGVGGAVGVG




AMAEMYNRPVEVYQ

GCCSGPGHSKRRRQAPGVGA




YSTGTSAVEPINTFHGIHQNED

VGGGSPEREEVGAGYNSEDE




EPIRVSYHRNIHYNSVVNPNKA

YEAAAARIEAMDPATVEQQE




TIGVGLGLPSFKPGFAEQSLMK

HWFEKALRDKKGFIIKQMKE




NAIKTSEESWIEQQMLEDKKRA

DGACLFRAVADQVYGDQDMH




TDWEATNEAIEEQVARESYLQW

EVVRKHCMDYLMKNADYFSN




LRDQEKQARQVRGPSQPRKASA

YVTEDETTYINRKRKNNCHG




TCSSATAAASSGLEEWTSRSPR

NHIEMQAMAEMYNRPVEVYQ




QRSSASSPEHPELHAELGMKPP

YSTGTSAVEPINTFHGIHQN




SPGTVLALAKPPSPCAPGTSSQ

EDEPIRVSYHRNIHYNSV




FSAGADRATSPLVSLYPALECR






ALIQQMSPSAFGLNDWDDDEIL






ASVLAVSQQEYLDSMKKNKVHR






DPPPDKS







TNAP3_HUMAN
82
MAEQVLPQALYLSNMRKAVKIR
191
MAEQVLPQALYLSNMRKAVK


Tumor

ERTPEDIFKPTNGIIHHFKTMH

IRERTPEDIFKPTNGIIHHF


necrosis factor

RYTLEMERTCQFCPQFREIIHK

KTMHRYTLEMERTCQFCPQF


alpha-induced

ALIDRNIQATLESQKKLNWCRE

REIIHKALIDRNIQATLESQ


protein 3

VRKLVALKTNGDGNCLMHATSQ

KKLNWCREVRKLVALKTNGD




YMWGVQDTDLVLRKALFSTLKE

GNCLMHATSQYMWGVQDTDL




TDTRNFKFRWQLESLKSQEFVE

VLRKALFSTLKETDTRNFKF




TGLCYDTRNWNDEWDNLIKMAS

RWQLESLKSQEFVETGLCYD




TDTPMARSGLQYNSLEEIHIFV

TRNWNDEWDNLIKMASTDTP




LCNILRRPIIVISDKMLRSLES

MARSGLQYNSLEEIHIFVLC




GSNFAPLKVGGIYLPLHWPAQE

NILRRPIIVISDKMLRSLES




CYRYPIVLGYDSHHFVPLVTLK

GSNFAPLKVGGIYLPLHWPA




DSGPEIRAVPLVNRDRGRFEDL

QECYRYPIVLGYDSHHFVPL




KVHELTDPENEMKE






KLLKEYLMVIEIPVQGWDHGTT






HLINAAKLDEANLPKEINLVDD






YFELVQHEYKKWQENSEQGRRE






GHAQNPMEPSVPQLSLMDVKCE






TPNCPFFMSVNTQPLCHECSER






RQKNQNKLPKLNSKPGPEGLPG






MALGASRGEAYEPLAWNPEEST






GGPHSAPPTAPSPELFSETTAM






KCRSPGCPFTLNVQHNGFCERC






HNARQLHASHAPDHTRHLDPGK






CQACLQDVTRTENGICSTCFKR






TTAEASSSLSTSLPPSCHQRSK






SDPSRLVRSPSPHSCHRAGNDA






PAGCLSQAARTPGD






RTGTSKCRKAGCVYFGTPENKG






FCTLCFIEYRENKHFAAASGKV






SPTASRFQNTIPCLGRECGTLG






STMFEGYCQKCFIEAQNQRFHE






AKRTEEQLRSSQRRDVPRTTQS






TSRPKCARASCKNILACRSEEL






CMECQHPNQRMGPGAHRGEPAP






EDPPKQRCRAPACDHEGNAKCN






GYCNECFQFKQMYG







ZRAN1_
83
MSERGIKWACEYCTYENWPSAI
192
MSERGIKWACEYCTYENWPS


HUMAN

KCTMCRAQRPSGTIITEDPFKS

AIKCTMCRAQRPSGTIITED


Ubiquitin

GSSDVGRDWDPSSTEGGSSPLI

PFKSGSSDVGRDWDPSSTEG


thioesterase

CPDSSARPRVKSSYSMENANKW

GSSPLICPDSSARPRVKSSY


ZRANB1

SCHMCTYLNWPRAIRCTQCLSQ

SMENANKWSCHMCTYLNWPR




RRTRSPTESPQSSGSGSRPVAF

AIRCTQCLSQRRTRSPTESP




SVDPCEEYNDRNKLNTRTQHWT

QSSGSGSRPVAFSVDPCEEY




CSVCTYENWAKAKRCVVCDHPR

NDRNKLNTRTQHWTCSVCTY




PNNIEAIELAETEEASSIINEQ

ENWAKAKRCVVCDHPRPNNI




DRARWRGSCSSGNSQRRSPPAT

EAIELAETEEASSIINEQDR




KRDSEVKMDFQRIELAGAVGSK

ARWRGSCSSGNSQRRSPPAT




EELEVDEKKLKQIKNRMKKTDW

KRDSEVKMDFQRIELAGAVG




LFLNACVGVVEGDLAAIEAYKS

SKEELEVDEKKLKQIKNRMK




SGGDIARQLTADEV

KTDWLFLNACVGVVEGDLAA




RLLNRPSAFDVGYTLVHLAIRE

IEAYKSSGGDIARQLTADEV




QRQDMLAILLTEVSQQAAKCIP

RLLNRPSAFDVGYTLVHLAI




AMVCPELTEQIRREIAASLHQR

RFQRQDMLAILLTEVSQQAA




KGDFACYFLTDLVTFTLPADIE

KCIPAMVCPELTEQIRREIA




DLPPTVQEKLEDEVLDRDVQKE

ASLHQRKGDFACYFLTDLVT




LEEESPIINWSLELATRLDSRL

FTLPADIEDLPPTVQEKLED




YALWNRTAGDCLLDSVLQATWG

EVLDRDVQKELEEESPIINW




IYDKDSVLRKALHDSLHDCSHW

SLELATRLDSRLYALWNRTA




FYTRWKDWESWYSQSFGLHESL

GDCLLDSVLQATWGIYDKDS




REEQWQEDWAFILSLASQPGAS

VLRKALHDSLHDCSHWFYTR




LEQTHIFVLAHILRRPIIVYGV

WKDWESWYSQSFGLHESLRE




KYYKSFRGETLGYTRFQGVYLP

EQWQEDWAFILSLASQPGAS




LLWEQSFCWKSPIALGYTRGHF

LEQTHIFVLAHILRRPIIVY




SALVAMENDGYGNR

GVKYYKSFRGETLGYTREQG




GAGANLNTDDDVTITELPLVDS

VYLPLLWEQSFCWKSPIALG




ERKLLHVHELSAQELGNEEQQE

YTRGHFSAL




KLLREWLDCCVTEGGVLVAMQK






SSRRRNHPLVTQMVEKWLDRYR






QIRPCTSLSDGEEDEDDEDE







VCIP1_
84
MSQPPPPPPPLPPPPPPPEAPQ
193
PASGSVSIECTECGQRHEQQ


HUMAN

TPSSLASAAASGGLLKRRDRRI

QLLGVEEVTDPDVVLHNLLR


Deubiquitinating

LSGSCPDPKCQARLFFPASGSV

NALLGVTGAPKKNTELVKVM


protein

SIECTECGQRHEQQQLLGVEEV

GLSNYHCKLLSPILARYGMD


VCIP135

TDPDVVLHNLLRNALLGVTGAP

KQTGRAKLLRDMNQGELEDC




KKNTELVKVMGLSNYHCKLLSP

ALLGDRAFLIEPEHVNTVGY




ILARYGMDKQTGRAKLLRDMNQ

GKDRSGSLLYLHDTLEDIKR




GELFDCALLGDRAFLIEPEHVN

ANKSQECLIPVHVDGDGHCL




TVGYGKDRSGSLLYLHDTLEDI

VHAVSRALVGRELFWHALRE




KRANKSQECLIPVHVDGDGHCL

NLKQHFQQHLARYQALFHDF




VHAVSRALVGRELFWHALRENL

IDAAEWEDIINECDPLFVPP




KQHFQQHLARYQALFHDFIDAA

EGVPLGLRNIHIFGLANVLH




EWEDIINECDPLFVPPEGVPLG

RPIILLDSLSGMRSSGDYSA




LRNIHIFGLANVLH

TFLPGLIPAEKCTGKDGHLN




RPIILLDSLSGMRSSGDYSATF

KPICIAWSSSGRNHYIPL




LPGLIPAEKCTGKDGHLNKPIC






IAWSSSGRNHYIPLVGIKGAAL






PKLPMNLLPKAWGVPQDLIKKY






IKLEEDGGCVIGGDRSLQDKYL






LRLVAAMEEVEMDKHGIHPSLV






ADVHQYFYRRTGVIGVQPEEVT






AAAKKAVMDNRLHKCLLCGALS






ELHVPPEWLAPGGKLYNLAKST






HGQLRTDKNYSFPLNNLVCSYD






SVKDVLVPDYGMSNLTACNWCH






GTSVRKVRGDGSIVYLDGDRTN






SRSTGGKCGCGFKHFWDGKEYD






NLPEAFPITLEWGG






RVVRETVYWFQYESDSSLNSNV






YDVAMKLVTKHFPGEFGSEILV






QKVVHTILHQTAKKNPDDYTPV






NIDGAHAQRVGDVQGQESESQL






PTKIILTGQKTKTLHKEELNMS






KTERTIQQNITEQASVMQKRKT






EKLKQEQKGQPRTVSPSTIRDG






PSSAPATPTKAPYSPTTSKEKK






IRITTNDGRQSMVTLKSSTTFF






ELQESIAREFNIPPYLQCIRYG






FPPKELMPPQAGMEKEPVPLQH






GDRITIEILKSKAEGGQSAAAH






SAHTVKQEDIAVTGKLSSKELQ






EQAEKEMYSLCLLA






TLMGEDVWSYAKGLPHMFQQGG






VFYSIMKKTMGMADGKHCTFPH






LPGKTFVYNASEDRLELCVDAA






GHFPIGPDVEDLVKEAVSQVRA






EATTRSRESSPSHGLLKLGSGG






VVKKKSEQLHNVTAFQGKGHSL






GTASGNPHLDPRARETSVVRKH






NTGTDFSNSSTKTEPSVFTASS






SNSELIRIAPGVVTMRDGRQLD






PDLVEAQRKKLQEMVSSIQASM






DRHLRDQSTEQSPSDLPQRKTE






VVSSSAKSGSLQTGLPESEPLT






GGTENLNTETTDGCVADALGAA






FATRSKAQRGNSVEELEEMDSQ






DAEMTNTTEPMDHS







UCHL3_
85
MEGQRWLPLEANPEVTNQFLKQ
194
QRWLPLEANPEVTNQFLKQL


HUMAN

LGLHPNWQFVDVYGMDPELLSM

GLHPNWQFVDVYGMDPELLS


Ubiquitin

VPRPVCAVLLLFPITEKYEVER

MVPRPVCAVLLLFPITEKYE


carboxyl-

TEEEEKIKSQGQDVTSSVYFMK

VERTEEEEKIKSQGQDVTSS


terminal

QTISNACGTIGLIHAIANNKDK

VYFMKQTISNACGTIGLIHA


hydrolase

MHFESGSTLKKFLEESVSMSPE

IANNKDKMHFESGSTLKKEL


isozyme L3

ERARYLENYDAIRVTHETSAHE

EESVSMSPEERARYLENYDA




GQTEAPSIDEKVDLHFIALVHV

IRVTHETSAHEGQTEAPSID




DGHLYELDGRKPFPINHGETSD

EKVDLHFIALVHVDGHLYEL




ETLLEDAIEVCKKEMERDPDEL

DGRKPFPINHGETSDETLLE




RENAIALSAA

DAIEVCKKEMERDPDELREN






AIALSAA





UCHL1_
86
MQLKPMEINPEMLNKVLSRLGV
86
MQLKPMEINPEMLNKVLSRL


HUMAN

AGQWRFVDVLGLEEESLGSVPA

GVAGQWRFVDVLGLEEESLG


Ubiquitin

PACALLLLFPLTAQHENFRKKQ

SVPAPACALLLLFPLTAQHE


carboxyl-

IEELKGQEVSPKVYFMKQTIGN

NFRKKQIEELKGQEVSPKVY


terminal

SCGTIGLIHAVANNQDKLGFED

FMKQTIGNSCGTIGLIHAVA


hydrolase

GSVLKQFLSETEKMSPEDRAKC

NNQDKLGFEDGSVLKQFLSE


isozyme L1

FEKNEAIQAAHDAVAQEGQCRV

TEKMSPEDRAKCFEKNEAIQ




DDKVNFHFILENNVDGHLYELD

AAHDAVAQEGQCRVDDKVNF




GRMPFPVNHGASSEDTLLKDAA

HFILENNVDGHLYELDGRMP




KVCREFTEREQGEVRESAVALC

FPVNHGASSEDTLLKDAAKV




KAA

CREFTEREQGEVRESAVALC






KAA





UCHL5_
87
MTGNAGEWCLMESDPGVFTELI
195
GEWCLMESDPGVFTELIKGF


HUMAN

KGFGCRGAQVEEIWSLEPENFE

GCRGAQVEEIWSLEPENFEK


Ubiquitin

KLKPVHGLIFLFKWQPGEEPAG

LKPVHGLIFLFKWQPGEEPA


carboxyl-

SVVQDSRLDTIFFAKQVINNAC

GSVVQDSRLDTIFFAKQVIN


terminal

ATQAIVSVLLNCTHQDVHLGET

NACATQAIVSVLLNCTHQDV


hydrolase

LSEFKEFSQSFDAAMKGLALSN

HLGETLSEFKEFSQSEDAAM


isozyme L5

SDVIRQVHNSFARQQMFEEDTK

KGLALSNSDVIRQVHNSFAR




TSAKEEDAFHFVSYVPVNGRLY

QQMFEFDTKTSAKEEDAFHF




ELDGLREGPIDLGACNQDDWIS

VSYVPVNGRLYELDGLREGP




AVRPVIEKRIQKYSEGEIRENL

IDLGACNQDDWISAVRPVIE




MAIVSDRKMIYEQKIAELQRQL

KRIQKYSEGEIRFNLMAIVS




AEEEPMDTDQGNSMLSAIQSEV

DRK




AKNQMLIEEEVQKLKRYKIENI






RRKHNYLPFIMELLKTLAEHQQ






LIPLVEKAKEKQNAKKAQETK







ATX3_HUMAN
88
MESIFHEKQEGSLCAQHCLNNL
196
ESIFHEKQEGSLCAQHCLNN


Ataxin-3

LQGEYFSPVELSSIAHQLDEEE

LLQGEYFSPVELSSIAHQLD




RMRMAEGGVTSEDYRTFLQQPS

EEERMRMAEGGVTSEDYRTE




GNMDDSGFFSIQVISNALKVWG

LQQPSGNMDDSGFFSIQVIS




LELILENSPEYQRLRIDPINER

NALKVWGLELILENSPEYQR




SFICNYKEHWFTVRKLGKQWEN

LRIDPINERSFICNYKEHWE




LNSLLTGPELISDTYLALFLAQ

TVRKLGKQWENLNSLLTGPE




LQQEGYSIFVVKGDLPDCEADQ

LISDTYLALFLAQLQQEGYS




LLQMIRVQQMHRPKLIGEELAQ

IFVVK




LKEQRVHKTDLERVLEANDGSG






MLDEDEEDLQRALALSRQEIDM






EDEEADLRRAIQLSMQGSSRNI






SQDMTQTSGTNLTSEELRKRRE






AYFEKQQQKQQQQGDL






SGQSSHPCERPATSSGALGSDL






GDAMSEEDMLQAAVTMSLETVR






NDLKTEGKK







JOS2_HUMAN
89
MSQAPGAQPSPPTVYHERQRLE
197
PTVYHERQRLELCAVHALNN


Josephin-2

LCAVHALNNVLQQQLFSQEAAD

VLQQQLFSQEAADEICKRLA




EICKRLAPDSRLNPHRSLLGTG

PDSRLNPHRSLLGTGNYDVN




NYDVNVIMAALQGLGLAAVWWD

VIMAALQGLGLAAVWWDRRR




RRRPLSQLALPQVLGLILNLPS

PLSQLALPQVLGLILNLPSP




PVSLGLLSLPLRRRHWVALRQV

VSLGLLSLPLRRRHWVALRQ




DGVYYNLDSKLRAPEALGDEDG

VDGVYYNLDSKLRAPEALGD




VRAFLAAALAQGLCEVLLVVTK

EDGVRAFLAAALAQGLCEVL




EVEEKGSWLRTD

LVV





JOS1_HUMAN
90
MSCVPWKGDKAKSESLELPQAA
198
PQAAPPQIYHEKQRRELCAL


Josephin-1

PPQIYHEKQRRELCALHALNNV

HALNNVFQDSNAFTRDTLQE




FQDSNAFTRDTLQEIFQRLSPN

IFQRLSPNTMVTPHKKSMLG




TMVTPHKKSMLGNGNYDVNVIM

NGNYDVNVIMAALQTKGYEA




AALQTKGYEAVWWDKRRDVGVI

VWWDKRRDVGVIALTNVMGF




ALTNVMGFIMNLPSSLCWGPLK

IMNLPSSLCWGPLKLPLKRQ




LPLKRQHWICVREVGGAYYNLD

HWICVREVGGAYYNLDSKLK




SKLKMPEWIGGESELRKELKHH

MPEWIGGESELRKELKHHLR




LRGKNCELLLVVPEEVEAHQSW

GKNCELLLVV




RTDV







ATX3L_HUMAN
91
MDFIFHEKQEGFLCAQHCLNNL
199
DFIFHEKQEGFLCAQHCLNN


taxin-

LQGEYFSPVELASIAHQLDEEE

LLQGEYFSPVELASIAHQLD


3-like protein

RMRMAEGGVTSEEYLAFLQQPS

EEERMRMAEGGVTSEEYLAF




ENMDDTGFFSIQVISNALKEWG

LQQPSENMDDTGFFSIQVIS




LEIIHENNPEYQKLGIDPINER

NALKFWGLEIIHENNPEYQK




SFICNYKQHWFTIRKFGKHWFN

LGIDPINERSFICNYKQHWF




LNSLLAGPELISDTCLANFLAR

TIRKFGKHWENLNSLLAGPE




LQQQAYSVFVVKGDLPDCEADQ

LISDTCLANFLARLQQQAYS




LLQIISVEEMDTPKLNGKKLVK

VFVVK




QKEHRVYKTVLEKVSEESDESG






TSDQDEEDFQRALELSRQETNR






EDEHLRSTIELSMQGSSGNTSQ






DLPKTSCVTPASEQPKKIKEDY






FEKHQQEQKQQQQQSDLPGHSS






YLHERPTTSSRAIESDLSDDIS






EGTVQAAVDTILEIMRKNLKIK






GEK







MINY3_
92
MSELTKELMELVWGTKSSPGLS
200
CRWTQGFVFSESEGSALEQF


HUMAN

DTIFCRWTQGFVFSESEGSALE

EGGPCAVIAPVQAFLLKKLL


Ubiquitin

QFEGGPCAVIAPVQAFLLKKLL

FSSEKSSWRDCSEEEQKELL


carboxyl-

FSSEKSSWRDCSEEEQKELLCH

CHTLCDILESACCDHSGSYC


terminal

TLCDILESACCDHSGSYCLVSW

LVSWLRGKTTEETASISGSP


hydrolase

LRGKTTEETASISGSPAESSCQ

AESSCQVEHSSALAVEELGE


MINDY-3

VEHSSALAVEELGFERFHALIQ

ERFHALIQKRSFRSLPELKD




KRSFRSLPELKDAVLDQYSMWG

AVLDQYSMWGNKFG




NKFGVLLFLYSVLLTKGIENIK

VLLFLYSVLLTKGIENIKNE




NEIEDASEPLIDPVYGHGSQSL

IEDASEPLIDPVYGHGSQSL




INLLLTGHAVSNVWDGDRECSG

INLLLTGHAVSNVWDGDREC




MKLLGIHEQAAVGELTLMEALR

SGMKLLGIHEQAAVGFLTLM




YCKVGSYLKSPKFPIWIVGSET

EALRYCKVGSYLKSPKFPIW




HLTVFFAKDMALVA

IVGSETHLTVFFAKDMALVA




PEAPSEQARRVFQTYDPEDNGE

PEAPSEQARRVFQTYDPEDN




IPDSLLEDVMKALDLVSDPEYI

GFIPDSLLEDVMKALDLVSD




NLMKNKLDPEGLGIILLGPFLQ

PEYINLMKNKLDPEGLGIIL




EFFPDQGSSGPESFTVYHYNGL

LGPFLQEFFPDQGSSGPESF




KQSNYNEKVMYVEGTAVVMGFE

TVYHYNGLKQSNYNEKVMYV




DPMLQTDDTPIKRCLQTKWPYI

EGTAVVMGFEDPMLQTDDTP




ELLWTTDRSPSLN

IKRCLQTKWPYIELLWTTDR






SPSLN





MINY1_
93
MEYHQPEDPAPGKAGTAEAVIP
201
YCVKWIPWKGEQTPIITQST


HUMAN

ENHEVLAGPDEHPQDTDARDAD

NGPCPLLAIMNILFLQWKVK


Ubiquitin

GEAREREPADQALLPSQCGDNL

LPPQKEVITSDELMAHLGNC


carboxyl-

ESPLPEASSAPPGPTLGTLPEV

LLSIKPQEKSEGLQLNFQQN


terminal

ETIRACSMPQELPQSPRTRQPE

VDDAMTVLPKLATGLDVNVR


hydrolase

PDFYCVKWIPWKGEQTPIITQS

FTGVSDFEYTPECSVEDLLG


MINDY-1

TNGPCPLLAIMNILFLQWKVKL

IPLYHGWLVDPQSPEAVRAV




PPQKEVITSDELMAHLGNCLLS

GKLSYNQLVERIITCKHSSD




IKPQEKSEGLQLNFQQNVDDAM

TNLVTEGLIAEQFLETTAAQ




TVLPKLATGLDVNVRFTGVSDE

LTYHGLCELTAAAKEGELSV




EYTPECSVEDLLGIPLYHGWLV

FFRNNHESTMTKHKSHLYLL




DPQSPEAVRAVGKLSYNQLVER

VTDQGFLQEEQVVWESLHNV




IITCKHSSDTNLVTEGLIAEQF

DGDSCFCDSDFHLSHSLGKG




LETTAAQLTYHGLC

PGAEGGSGSPETQLQVDQDY




ELTAAAKEGELSVFFRNNHEST

LIALSLQQQQPRGPLGLTDL




MTKHKSHLYLLVTDQGELQEEQ

ELAQQLQQEEYQQQQAAQPV




VVWESLHNVDGDSCFCDSDFHL

RMRTRVLSLQGRGATSGRPA




SHSLGKGPGAEGGSGSPETQLQ

GERRQRPKHESDCILL




VDQDYLIALSLQQQQPRGPLGL






TDLELAQQLQQEEYQQQQAAQP






VRMRTRVLSLQGRGATSGRPAG






ERRQRPKHESDCILL







MINY2_
94
MESSPESLQPLEHGVAAGPASG
202
YHIKWIQWKEENTPIITQNE


HUMAN

TGSSQEGLQETRLAAGDGPGVW

NGPCPLLAILNVLLLAWKVK


Ubiquitin

AAETSGGNGLGAAAARRSLPDS

LPPMMEIITAEQLMEYLGDY


carboxyl-

ASPAGSPEVPGPCSSSAGLDLK

MLDAKPKEISEIQRLNYEQN


terminal

DSGLESPAAAEAPLRGQYKVTA

MSDAMAILHKLQTGLDVNVR


hydrolase

SPETAVAGVGHELGTAGDAGAR

FTGVRVFEYTPECIVEDLLD


MINDY-2

PDLAGTCQAELTAAGSEEPSSA

IPLYHGWLVDPQIDDIVKAV




GGLSSSCSDPSPPGESPSLDSL

GNCSYNQLVEKIISCKQSDN




ESFSNLHSFPSSCEENSEEGAE

SELVSEGEVAEQFLNNTATQ




NRVPEEEEGAAVLPGAVPLCKE

LTYHGLCELTSTVQEGELCV




EEGEETAQVLAASKERFPGQSV

FFRNNHFSTMTKYKGQLYLL




YHIKWIQWKEENTPIITQNENG

VTDQGFLTEEKVVWESLHNV




PCPLLAILNVLLLAWKVKLPPM

DGDGNFCDSEFHLRPPSDPE




MEIITAEQLMEYLG

TVYKGQQDQIDQDYLMALSL




DYMLDAKPKEISEIQRLNYEQN

QQEQQSQEINWEQIPEGISD




MSDAMAILHKLQTGLDVNVRFT

LELAKKLQEEEDRRASQYYQ




GVRVFEYTPECIVEDLLDIPLY

EQEQAAAAAAAASTQAQQGQ




HGWLVDPQIDDIVKAVGNCSYN

PAQASPSSGRQSGNSERKRK




QLVEKIISCKQSDNSELVSEGE

EPREKDKEKEKEKNSCVIL




VAEQFLNNTATQLTYHGLCELT






STVQEGELCVFERNNHFSTMTK






YKGQLYLLVTDQGFLTEEKVVW






ESLHNVDGDGNFCDSEFHLRPP






SDPETVYKGQQDQIDQDYLMAL






SLQQEQQSQEINWEQIPEGISD






LELAKKLQEEEDRRASQYYQEQ






EQAAAAAAAASTQAQQGQPAQA






SPSSGRQSGNSERKRKEPREKD






KEKEKEKNSCVIL







MINY4_
95
MDSLFVEEVAASLVREFLSRKG
203
FCCFNEEWKLQSFSFSNTAS


HUMAN

LKKTCVTMDQERPRSDLSINNR

LKYGIVQNKGGPCGVLAAVQ


Probable

NDLRKVLHLEFLYKENKAKENP

GCVLQKLLFEGDSKADCAQG


ubiquitin

LKTSLELITRYFLDHEGNTANN

LQPSDAHRTRCLVLALADIV


carboxyl-

FTQDTPIPALSVPKKNNKVPSR

WRAGGRERAVVALASRTQQF


terminal

CSETTLVNIYDLSDEDAGWRTS

SPTGKYKADGVLETLTLHSL


hydrolase

LSETSKARHDNLDGDVLGNFVS

TCYEDLVTFLQQSIHQFEVG


MINDY-4

SKRPPHKSKPMQTVPGETPVLT

PYGCILLTLSAILSRSTELI




SAWEKIDKLHSEPSLDVKRMGE

RQDFDVPTSHLIGAHGYCTQ




NSRPKSGLIVRGMMSGPIASSP

ELVNLLLTGKAVSNVENDVV




QDSFHRHYLRRSSPSSSSTQPQ

ELDSGDGNITLLRGIAARSD




EESRKVPELFVCTQQDILASSN

IGFLSLFEHYNMCQVGCFLK




SSPSRTSLGQLSELTVERQKTT

TPRFPIWVVCSESHESILES




ASSPPHLPSKRLPP

LQPGLLRDWRTERLEDLYYY




WDRARPRDPSEDTPAVDGSTDT

DGLANQQEQIRLTIDTTQTI




DRMPLKLYLPGGNSRMTQERLE

SEDTDNDLVPPLELCIRTKW




RAFKRQGSQPAPVRKNQLLPSD

KGASVNWNGSDPIL




KVDGELGALRLEDVEDELIREE






VILSPVPSVLKLQTASKPIDLS






VAKEIKTLLFGSSFCCENEEWK






LQSFSFSNTASLKYGIVQNKGG






PCGVLAAVQGCVLQKLLFEGDS






KADCAQGLQPSDAHRTRCLVLA






LADIVWRAGGRERAVVALASRT






QQFSPTGKYKADGVLETLTLHS






LTCYEDLVTFLQQSIHQFEVGP






YGCILLTLSAILSRSTELIRQD






FDVPTSHLIGAHGY






CTQELVNLLLTGKAVSNVENDV






VELDSGDGNITLLRGIAARSDI






GFLSLFEHYNMCQVGCFLKTPR






FPIWVVCSESHFSILFSLQPGL






LRDWRTERLEDLYYYDGLANQQ






EQIRLTIDTTQTISEDTDNDLV






PPLELCIRTKWKGASVNWNGSD






PIL







STABP_HUMAN
96
MSDHGDVSLPPEDRVRALSQLG
204
VVPGRLCPQFLQLASANTAR


STAM-

SAVEVNEDIPPRRYFRSGVEII

GVETCGILCGKLMRNEFTIT


binding

RMASIYSEEGNIEHAFILYNKY

HVLIPKQSAGSDYCNTENEE


protein

ITLFIEKLPKHRDYKSAVIPEK

ELFLIQDQQGLITLGWIHTH




KDTVKKLKEIAFPKAEELKAEL

PTQTAFLSSVDLHTHCSYQM




LKRYTKEYTEYNEEKKKEAEEL

MLPESVAIVCSPKFQETGFF




ARNMAIQQELEKEKQRVAQQKQ

KLTDHGLEEISSCRQKGFHP




QQLEQEQFHAFEEMIRNQELEK

HSKDPPLFCSCSHVTVVDRA




ERLKIVQEFGKVDPGLGGPLVP

VTITDLR




DLEKPSLDVFPTLTVSSIQPSD






CHTTVRPAKPPVVDRSLKPGAL






SNSESIPTIDGLRHVVVPGRLC






PQFLQLASANTARGVETCGILC






GKLMRNEFTITHVL






IPKQSAGSDYCNTENEEELFLI






QDQQGLITLGWIHTHPTQTAFL






SSVDLHTHCSYQMMLPESVAIV






CSPKFQETGFFKLTDHGLEEIS






SCRQKGFHPHSKDPPLFCSCSH






VTVVDRAVTITDLR







MPND_HUMAN
97
MAAPEPLSPAGGAGEEAPEEDE
205
VAVSSNVLFLLDFHSHLTRS


MPN

DEAEAEDPERPNAGAGGGRSGG

EVVGYLGGRWDVNSQMLTVL


domain-

GGSSVSGGGGGGGAGAGGCGGP

RAFPCRSRLGDAETAAAIEE


containing

GGALTRRAVTLRVLLKDALLEP

EIYQSLFLRGLSLVGWYHSH


protein

GAGVLSIYYLGKKFLGDLQPDG

PHSPALPSLQDIDAQMDYQL




RIMWQETGQTENSPSAWATHCK

RLQGSSNGFQPCLALLCSPY




KLVNPAKKSGCGWASVKYKGQK

YSGNPGPESKISPFWVMPPP




LDKYKATWLRLHQLHTPATAAD

EMLLVEFYKGSPDLVRLQEP




ESPASEGEEEELLMEEEEEDVL

WSQEHTYLDKLKISLASRTP




AGVSAEDKSRRPLGKSPSEPAH

KDQSLCHVLEQVCGVLKQGS




PEATTPGKRVDSKIRVPVRYCM






LGSRDLARNPHTLVEVTSFAAI






NKFQPFNVAVSSNVLFLLDFHS






HLTRSEVVGYLGGR






WDVNSQMLTVLRAFPCRSRLGD






AETAAAIEEEIYQSLFLRGLSL






VGWYHSHPHSPALPSLQDIDAQ






MDYQLRLQGSSNGFQPCLALLC






SPYYSGNPGPESKISPFWVMPP






PEMLLVEFYKGSPDLVRLQEPW






SQEHTYLDKLKISLASRTPKDQ






SLCHVLEQVCGVLKQGS







EMC9_HUMAN
98
MGEVEISALAYVKMCLHAARYP
206
ALAYVKMCLHAARYPHAAVN


ER

HAAVNGLFLAPAPRSGECLCLT

GLFLAPAPRSGECLCLTDCV


membrane

DCVPLFHSHLALSVMLEVALNQ

PLFHSHLALSVMLEVALNQV


protein

VDVWGAQAGLVVAGYYHANAAV

DVWGAQAGLVVAGYYHANAA


complex

NDQSPGPLALKIAGRIAEFFPD

VNDQSPGPLALKIAGRIAEF


subunit 9

AVLIMLDNQKLVPQPRVPPVIV

FPDAVLIMLDNQKLVPQPRV




LENQGLRWVPKDKNLVMWRDWE

PPVIVLENQGLRWVPKDKNL




ESRQMVGALLEDRAHQHLVDED

VMWRDWEESRQMVGALLEDR




CHLDDIRQDWTNQRLNTQITQW

AHQHLVDEDCHLDDIRQDWT




VGPTNGNGNA

NQRLNTQITQWVGPTNGNGN






A





PSDE_HUMAN
99
MDRLLRLGGGMPGLGQGPPTDA
207
QVYISSLALLKMLKHGRAGV


26S

PAVDTAEQVYISSLALLKMLKH

PMEVMGLMLGEFVDDYTVRV


proteasome

GRAGVPMEVMGLMLGEFVDDYT

IDVFAMPQSGTGVSVEAVDP


non-ATPase

VRVIDVFAMPQSGTGVSVEAVD

VFQAKMLDMLKQTGRPEMVV


regulatory

PVFQAKMLDMLKQTGRPEMVVG

GWYHSHPGFGCWLSGVDINT


subunit 14

WYHSHPGFGCWLSGVDINTQQS

QQSFEALSERAVAVVVDPIQ




FEALSERAVAVVVDPIQSVKGK

SVKGKVVIDAFRLINANMMV




VVIDAFRLINANMMVLGHEPRQ

LGHEPRQTTSNLGHLNKPSI




TTSNLGHLNKPSIQALIHGLNR

QALIHGLNRHYYSITINYRK




HYYSITINYRKNELEQKMLLNL

NELEQKMLLNLHKKSWMEGL




HKKSWMEGLTLQDYSEHCKHNE

TLQDYSEHCKHNESVVKEML




SVVKEMLELAKNYNKAVEEEDK

ELAKNYNKAVEEEDKMTPEQ




MTPEQLAIKNVGKQDPKRHLEE

LAIKNVGKQDPKRHLEEHVD




HVDVLMTSNIVQCLAAMLDTVV

VLMTSNIVQCLAAMLDTVVE




FK

K





MYSM1_HUMAN
100
MAAEEADVDIEGDVVAAAGAQP
208
QVKVASEALLIMDLHAHVSM


MHistone

GSGENTASVLQKDHYLDSSWRT

AEVIGLLGGRYSEVDKVVEV


H2A

ENGLIPWTLDNTISEENRAVIE

CAAEPCNSLSTGLQCEMDPV


deubiquitinase

KMLLEEEYYLSKKSQPEKVWLD

SQTQASETLAVRGESVIGWY


MYSM1

QKEDDKKYMKSLQKTAKIMVHS

HSHPAFDPNPSLRDIDTQAK




PTKPASYSVKWTIEEKELFEQG

YQSYFSRGGAKFIGMIVSPY




LAKFGRRWTKISKLIGSRTVLQ

NRNNPLPYSQITCLVISEEI




VKSYARQYFKNKVKCGLDKETP

SPDGSYRLPYKFEVQQMLEE




NQKTGHNLQVKNEDKGTKAWTP

PQWGLVFEKTRWIIEKYRLS




SCLRGRADPNLNAVKIEKLSDD

HSSVPMDKIFRRDSDLTCLQ




EEVDITDEVDELSSQTPQKNSS

KLLECMRKTLSKVTNCFMAE




SDLLLDEPNSKMHETNQGEFIT

EFLTEIENLFLSNYKSNQEN




SDSQEALESKSSRGCLQNEKQD

GVTEENCTKELLM




ETLSSSEITLWTEK






QSNGDKKSIELNDQKENELIKN






CNKHDGRGIIVDARQLPSPEPC






EIQKNLNDNEMLFHSCQMVEES






HEEEELKPPEQEIEIDRNIIQE






EEKQAIPEFFEGRQAKTPERYL






KIRNYILDQWEICKPKYLNKTS






VRPGLKNCGDVNCIGRIHTYLE






LIGAINFGCEQAVYNRPQTVDK






VRIRDRKDAVEAYQLAQRLQSM






RTRRRRVRDPWGNWCDAKDLEG






QTFEHLSAEELAKRREEEKGRP






VKSLKVPRPTKSSFDPFQLIPC






NFFSEEKQEPFQVKVASEALLI






MDLHAHVSMAEVIG






LLGGRYSEVDKVVEVCAAEPCN






SLSTGLQCEMDPVSQTQASETL






AVRGFSVIGWYHSHPAFDPNPS






LRDIDTQAKYQSYFSRGGAKFI






GMIVSPYNRNNPLPYSQITCLV






ISEEISPDGSYRLPYKFEVQQM






LEEPQWGLVFEKTRWIIEKYRL






SHSSVPMDKIFRRDSDLTCLQK






LLECMRKTLSKVINCFMAEEFL






TEIENLELSNYKSNQENGVTEE






NCTKELLM







ABRX2_HUMAN
101
MAASISGYTFSAVCFHSANSNA
209
AVCFHSANSNADHEGELLGE


MBRISC

DHEGELLGEVRQEETFSISDSQ

VRQEETFSISDSQISNTEFL


complex

ISNTEFLQVIEIHNHQPCSKLF

QVIEIHNHQPCSKLESFYDY


subunit

SFYDYASKVNEESLDRILKDRR

ASKVNEESLDRILKDRRKKV


Abraxas 2

KKVIGWYRFRRNTQQQMSYREQ

IGWYRFRRNTQQQMSYREQV




VLHKQLTRILGVPDLVELLESF

LHKQLTRIL




ISTANNSTHALEYVLERPNRRY

GVPDLVELLESFISTANNST




NQRISLAIPNLGNTSQQEYKVS

HALEYVLERPNRRYNQRISL




SVPNTSQSYAKVIKEHGTDFED

AIPNLGNTSQQEYKVSSVPN




KDGVMKDIRAIYQVYNALQEKV

TSQSYAKVIKEHGTDFFDKD




QAVCADVEKSERVVESCQAEVN

GVMKDIRAIYQVYNALQEKV




KLRRQITQRKNEKEQERRLQQA

QAVCADVEKSERVVESCQAE




VLSRQMPSESLDPAFSPRMPSS

VNKLRRQITQRKNEKEQERR




GFAAEGRSTLGDAE

LQQAVLSRQMPSESLDPAFS




ASDPPPPYSDFHPNNQESTLSH

PRMPSSGFAAEGRSTLGDAE




SRMERSVEMPRPQAVGSSNYAS

ASDPPPPYSDFHPNNQESTL




TSAGLKYPGSGADLPPPQRAAG

SHSRMERSVEMPRPQAVGSS




DSGEDSDDSDYENLIDPTEPSN

NYASTSAGLKYPGSGADLPP




SEYSHSKDSRPMAHPDEDPRNT

PQRAAGDSGEDSDDSDYENL




QTSQI

IDPTEPSNSEYSHSKDSRPM






AHPDEDPRNTQTSQI





PRP8_HUMAN
102
MAGVFPYRGPGNPVPGPLAPLP
210
FNPRTGQLELKIIHTSVWAG


Pre-mRNA-

DYMSEEKLQEKARKWQQLQAKR

QKRLGQLAKWKTAEEVAALI


processing-

YAEKRKFGFVDAQKEDMPPEHV

RSLPVEEQPKQIIVTRKGML


splicing factor

RKIIRDHGDMTNRKFRHDKRVY

DPLEVHLLDEPNIVIKGSEL


8

LGALKYMPHAVLKLLENMPMPW

QLPFQACLKVEKFGDLILKA




EQIRDVPVLYHITGAISFVNEI

TEPQMVLENLYDDWLKTISS




PWVIEPVYISQWGSMWIMMRRE

YTAFSRLILILRALHVNNDR




KRDRRHFKRMRFPPEDDEEPPL

AKVILKPDKTTITEPHHIWP




DYADNILDVEPLEAIQLELDPE

TLTDEEWIKVEVQLKDLILA




EDAPVLDWFYDHQPLRDSRKYV

DYGKKNNVNVASLTQSEIRD




NGSTYQRWQFTLPMMSTLYRLA

IILGMEISAPSQQRQQIAEI




NQLLTDLVDDNYFYLFDLKAFF

EKQTKEQSQLTATQTRTVNK




TSKALNMAIPGGPKFEPLVRDI

HGDEIITSTTSNYETQTFSS




NLQDEDWNEFNDIN

KTEWRVRAISAANLHLRTNH




KIIIRQPIRTEYKIAFPYLYNN

IYVSSDDIKETGYTYILPKN




LPHHVHLTWYHTPNVVFIKTED

VLKKFICISDLRAQIAGYLY




PDLPAFYFDPLINPISHRHSVK

GVSPPDNPQVKEIRCIVMVP




SQEPLPDDDEEFELPEFVEPFL

QWGTHQTVHLPGQLPQHEYL




KDTPLYTDNTANGIALLWAPRP

KEMEPLGWIHTQPNESPQLS




FNLRSGRTRRALDIPLVKNWYR

PQDVTTHAKIMADNPSWDGE




EHCPAGQPVKVRVSYQKLLKYY

KTIIITCSFTPGSCTLTAYK




VLNALKHRPPKAQKKRYLFRSF

LTPSGYEWGRQNTDKGNNPK




KATKFFQSTKLDWVEVGLQVCR

GYLPSHYERVQMLLSDRFLG




QGYNMLNLLIHRKNLNYLHLDY

FFMVPAQSSWNYNFMGVRHD




NFNLKPVKTLTTKERKKSREGN

PNMKYELQLANPKEFYHEVH




AFHLCREVLRLTKLVVDSHVQY

RPSHFLNFALLQEGEVYSAD




RLGNVDAFQLADGLQYIFAHVG

REDLYA




QLTGMYRYKYKLMR






QIRMCKDLKHLIYYRFNTGPVG






KGPGCGFWAAGWRVWLFFMRGI






TPLLERWLGNLLARQFEGRHSK






GVAKTVTKQRVESHFDLELRAA






VMHDILDMMPEGIKQNKARTIL






QHLSEAWRCWKANIPWKVPGLP






TPIENMILRYVKAKADWWTNTA






HYNRERIRRGATVDKTVCKKNL






GRLTRLYLKAEQERQHNYLKDG






PYITAEEAVAVYTTTVHWLESR






RFSPIPFPPLSYKHDTKLLILA






LERLKEAYSVKSRLNQSQREEL






GLIEQAYDNPHEALSRIKRHLL






TQRAFKEVGIEFMD






LYSHLVPVYDVEPLEKITDAYL






DQYLWYEADKRRLFPPWIKPAD






TEPPPLLVYKWCQGINNLQDVW






ETSEGECNVMLESRFEKMYEKI






DLTLLNRLLRLIVDHNIADYMT






AKNNVVINYKDMNHTNSYGIIR






GLQFASFIVQYYGLVMDLLVLG






LHRASEMAGPPQMPNDFLSFQD






IATEAAHPIRLFCRYIDRIHIF






FRFTADEARDLIQRYLTEHPDP






NNENIVGYNNKKCWPRDARMRL






MKHDVNLGRAVFWDIKNRLPRS






VTTVQWENSFVSVYSKDNPNLL






FNMCGFECRILPKC






RTSYEEFTHKDGVWNLQNEVTK






ERTAQCFLRVDDESMQRFHNRV






RQILMASGSTTFTKIVNKWNTA






LIGLMTYFREAVVNTQELLDLL






VKCENKIQTRIKIGLNSKMPSR






FPPVVFYTPKELGGLGMLSMGH






VLIPQSDLRWSKQTDVGITHER






SGMSHEEDQLIPNLYRYIQPWE






SEFIDSQRVWAEYALKRQEAIA






QNRRLTLEDLEDSWDRGIPRIN






TLFQKDRHTLAYDKGWRVRTDE






KQYQVLKQNPFWWTHQRHDGKL






WNLNNYRTDMIQALGGVEGILE






HTLFKGTYFPTWEG






LEWEKASGFEESMKWKKLTNAQ






RSGLNQIPNRRFTLWWSPTINR






ANVYVGFQVQLDLTGIFMHGKI






PTLKISLIQIFRAHLWQKIHES






IVMDLCQVEDQELDALEIETVQ






KETIHPRKSYKMNSSCADILLE






ASYKWNVSRPSLLADSKDVMDS






TTTQKYWIDIQLRWGDYDSHDI






ERYARAKFLDYTTDNMSIYPSP






TGVLIAIDLAYNLHSAYGNWFP






GSKPLIQQAMAKIMKANPALYV






LRERIRKGLQLYSSEPTEPYLS






SQNYGELFSNQIIWFVDDTNVY






RVTIHKTFEGNLTT






KPINGAIFIFNPRTGQLELKII






HTSVWAGQKRLGQLAKWKTAEE






VAALIRSLPVEEQPKQIIVTRK






GMLDPLEVHLLDFPNIVIKGSE






LQLPFQACLKVEKFGDLILKAT






EPQMVLENLYDDWLKTISSYTA






FSRLILILRALHVNNDRAKVIL






KPDKTTITEPHHIWPTLTDEEW






IKVEVQLKDLILADYGKKNNVN






VASLTQSEIRDIILGMEISAPS






QQRQQIAEIEKQTKEQSQLTAT






QTRTVNKHGDEIITSTTSNYET






QTFSSKTEWRVRAISAANLHLR






TNHIYVSSDDIKET






GYTYILPKNVLKKFICISDLRA






QIAGYLYGVSPPDNPQVKEIRC






IVMVPQWGTHQTVHLPGQLPQH






EYLKEMEPLGWIHTQPNESPQL






SPQDVTTHAKIMADNPSWDGEK






TIIITCSFTPGSCTLTAYKLTP






SGYEWGRQNTDKGNNPKGYLPS






HYERVQMLLSDRFLGFFMVPAQ






SSWNYNFMGVRHDPNMKYELQL






ANPKEFYHEVHRPSHELNFALL






QEGEVYSADREDLYA







NPL4_HUMAN
103
MAESIIIRVQSPDGVKRITATK
211
QPSAITLNRQKYRHVDNIMF


Membrane

RETAATFLKKVAKEFGFQNNGE

ENHTVADRFLDFWRKTGNQH


protein

SVYINRNKTGEITASSNKSLNL

FGYLYGRYTEHKDIPLGIRA


localization

LKIKHGDLLFLFPSSLAGPSSE

EVAAIYEPPQIGTQNSLELL


protein 4

METSVPPGFKVEGAPNVVEDEI

EDPKAEVVDEIAAKLGLRKV


homolog

DQYLSKQDGKIYRSRDPQLCRH

GWIFTDLVSEDTRKGTVRYS




GPLGKCVHCVPLEPFDEDYLNH

RNKDTYFLSSEECITAGDFQ




LEPPVKHMSFHAYIRKLTGGAD

NKHPNMCRLSPDGHFGSKFV




KGKFVALENISCKIKSGCEGHL

TAVATGGPDNQVHFEGYQVS




PWPNGICTKCQPSAITLNRQKY

NQCMALVRDECLLPCKDAPE




RHVDNIMFENHTVADRELDEWR

LGYAKESSSEQYVPDVFYKD




KTGNQHFGYLYGRYTEHKDIPL

VDKFGNEITQLARPLPVEYL




GIRAEVAAIYEPPQIGTQNSLE

IIDITTTFPKDPVYTFSISQ




LLEDPKAEVVDEIA

NPFPIENRDVLGETQDFHSL




AKLGLRKVGWIFTDLVSEDTRK

ATYLSQNTSSVELDTISDFH




GTVRYSRNKDTYFLSSEECITA

LLLFLVTNEVMPLQDSISLL




GDFQNKHPNMCRLSPDGHFGSK

LEAVRTRNEELAQTWKRSEQ




FVTAVATGGPDNQVHFEGYQVS

WATIEQLCSTVGGQLPGLHE




NQCMALVRDECLLPCKDAPELG

YGAVGGSTHTATAAMWACQH




YAKESSSEQYVPDVFYKDVDKF

CTFMNQPGTGHCEMCSLPRT




GNEITQLARPLPVEYLIIDITT






TFPKDPVYTFSISQNPFPIENR






DVLGETQDFHSLATYLSQNTSS






VELDTISDFHLLLFLVTNEVMP






LQDSISLLLEAVRTRNEELAQT






WKRSEQWATIEQLCSTVGGQLP






GLHEYGAVGGSTHTATAAMWAC






QHCTFMNQPGTGHCEMCSLPRT







EMC8_HUMAN
104
MPGVKLTTQAYCKMVLHGAKYP
212
TQAYCKMVLHGAKYPHCAVN


ER

HCAVNGLLVAEKQKPRKEHLPL

GLLVAEKQKPRKEHLPLGGP


membrane

GGPGAHHTLFVDCIPLFHGTLA

GAHHTLFVDCIPLFHGTLAL


protein

LAPMLEVALTLIDSWCKDHSYV

APMLEVALTLIDSWCKDHSY


complex

IAGYYQANERVKDASPNQVAEK

VIAGYYQANERVKDASPNQV


subunit 8

VASRIAEGFSDTALIMVDNTKF

AEKVASRIAEGFSDTALIMV




TMDCVAPTIHVYEHHENRWRCR

DNTKFTMDCVAPTIHVYEHH




DPHHDYCEDWPEAQRISASLLD

ENRWRCRDPHHDYCEDWPEA




SRSYETLVDFDNHLDDIRNDWT

QRISASLLDSRSYETLVDED




NPEINKAVLHLC

NHLDDIRNDWTNPEINKAVL






HLC





ABRX1_
105
MEGESTSAVLSGFVLGALAFQH
213
GFVLGALAFQHLNTDSDTEG


HUMAN

LNTDSDTEGELLGEVKGEAKNS

FLLGEVKGEAKNSITDSQMD


BRCA1-A

ITDSQMDDVEVVYTIDIQKYIP

DVEVVYTIDIQKYIPCYQLF


complex

CYQLFSFYNSSGEVNEQALKKI

SFYNSSGEVNEQALKKILSN


subunit

LSNVKKNVVGWYKERRHSDQIM

VKKNVVGWYKFRRHSDQIMT


Abraxas 1

TFRERLLHKNLQEHFSNQDLVE

FRERLLHKNLQEHFSNQDLV




LLLTPSIITESCSTHRLEHSLY

FLLLTPSIITESCSTHRLEH




KPQKGLFHRVPLVVANLGMSEQ

SLYKPQKGLFHRVPLVVANL




LGYKTVSGSCMSTGFSRAVQTH

GMSEQLGYKTVSGSCMSTGF




SSKFFEEDGSLKEVHKINEMYA

SRAVQTHSSKFFEEDGSLKE




SLQEELKSICKKVEDSEQAVDK

VHKINEMYASLQEELKSICK




LVKDVNRLKREIEKRRGAQIQA

KVEDSEQAVDKLVKDVNRLK




AREKNIQKDPQENIFLCQALRT

REIEKRRGAQIQAAREKNIQ




FFPNSEFLHSCVMS

KDPQENIFLCQALRTFFPNS




LKNRHVSKSSCNYNHHLDVVDN

EFLHSCVMSLKNRHVSKSSC




LTLMVEHTDIPEASPASTPQII

NYNHHLDVVDNLTLMVEHTD




KHKALDLDDRWQFKRSRLLDTQ

IPEASPASTPQIIKHKALDL




DKRSKADTGSSNQDKASKMSSP

DDRWQFKRSRLLDTQDKRSK




ETDEEIEKMKGFGEYSRSPTF

ADTGSSNQDKASKMSSPETD






EEIEKMKGFGEYSRSPTF





STALP_HUMAN
106
MDQPFTVNSLKKLAAMPDHTDV
214
VVLPEDLCHKELQLAESNTV


AMSH-

SLSPEERVRALSKLGCNITISE

RGIETCGILCGKLTHNEFTI


like protease

DITPRRYFRSGVEMERMASVYL

THVIVPKQSAGPDYCDMENV




EEGNLENAFVLYNKFITLFVEK

EELFNVQDQHDLLTLGWIHT




LPNHRDYQQCAVPEKQDIMKKL

HPTQTAFLSSVDLHTHCSYQ




KEIAFPRTDELKNDLLKKYNVE

LMLPEAIAIVCSPKHKDTGI




YQEYLQSKNKYKAEILKKLEHQ

FRLTNAGMLEVSACKKKGFH




RLIEAERKRIAQMRQQQLESEQ

PHTKEPRLFSICKHVLVKDI




FLFFEDQLKKQELARGQMRSQQ

KIIVLDLR




TSGLSEQIDGSALSCFSTHQNN






SLLNVFADQPNKSDATNYASHS






PPVNRALTPAATLSAVQNLVVE






GLRCVVLPEDLCHKELQLAESN






TVRGIETCGILCGK






LTHNEFTITHVIVPKQSAGPDY






CDMENVEELFNVQDQHDLLTLG






WIHTHPTQTAFLSSVDLHTHCS






YQLMLPEAIAIVCSPKHKDTGI






FRLTNAGMLEVSACKKKGFHPH






TKEPRLESICKHVLVKDIKIIV






LDLR







CSN6_HUMAN
107
MAAAAAAAAATNGTGGSSGMEV
215
VALHPLVILNISDHWIRMRS


COP9

DAAVVPSVMACGVTGSVSVALH

QEGRPVQVIGALIGKQEGRN


signalosome

PLVILNISDHWIRMRSQEGRPV

IEVMNSFELLSHTVEEKIII


complex

QVIGALIGKQEGRNIEVMNSFE

DKEYYYTKEEQFKQVFKELE


subunit 6

LLSHTVEEKIIIDKEYYYTKEE

FLGWYTTGGPPDPSDIHVHK




QFKQVFKELEFLGWYTTGGPPD

QVCEIIESPLFLKLNPMTKH




PSDIHVHKQVCEIIESPLFLKL

TDLPVSVFESVIDIINGEAT




NPMTKHTDLPVSVFESVIDIIN

MLFAELTYTLATEEAERIGV




GEATMLFAELTYTLATEEAERI

DHVARMTATGSGENSTVAEH




GVDHVARMTATGSGENSTVAEH

LIAQHSAIKMLHSRVKLILE




LIAQHSAIKMLHSRVKLILEYV

YVKASEAGEVPENHEILREA




KASEAGEVPENHEILREAYALC

YALCHCLPVLSTDKFKTDFY




HCLPVLSTDKFKTDFYDQCNDV

DQCNDVGLMAYLGTITKTCN




GLMAYLGTITKTCNTMNQFVNK

TMNQFVNKFNVLYDRQGIGR




FNVLYDRQGIGRRMRGLFF

RMRGLFF





EIF3F_
108
MATPAVPVSAPPATPTPVPAAA
216
VRLHPVILASIVDSYERRNE


HUMAN

PASVPAPTPAPAAAPVPAAAPA

GAARVIGTLLGTVDKHSVEV


Eukaryotic

SSSDPAAAAAATAAPGQTPASA

TNCFSVPHNESEDEVAVDME


translation

QAPAQTPAPALPGPALPGPFPG

FAKNMYELHKKVSPNELILG


initiation

GRVVRLHPVILASIVDSYERRN

WYATGHDITEHSVLIHEYYS


factor 3

EGAARVIGTLLGTVDKHSVEVT

REAPNPIHLTVDTSLQNGRM


subunit F

NCFSVPHNESEDEVAVDMEFAK

SIKAYVSTLMGVPGRTMGVM




NMYELHKKVSPNELILGWYATG

FTPLTVKYAYYDTERIGVDL




HDITEHSVLIHEYYSREAPNPI

IMKTCFSPNRVIGLSSDLQQ




HLTVDTSLQNGRMSIKAYVSTL

VGGASARIQDALSTVLQYAE




MGVPGRTMGVMFTPLTVKYAYY

DVLSGKVSADNTVGRFLMSL




DTERIGVDLIMKTCFSPNRVIG

VNQVPKIVPDDFETMLNSNI




LSSDLQQVGGASARIQDALSTV

NDLLMVTYLANLTQSQIALN




LQYAEDVLSGKVSADNTVGREL

EKLVNL




MSLVNQVPKIVPDDFETMLNSN






INDLLMVTYLANLTQSQIALNE






KLVNL







PSMD7_HUMAN
109
MPELAVQKVVVHPLVLLSVVDH
217
VVVHPLVLLSVVDHENRIGK


M26S

FNRIGKVGNQKRVVGVLLGSWQ

VGNQKRVVGVLLGSWQKKVL


proteasome

KKVLDVSNSFAVPFDEDDKDDS

DVSNSFAVPFDEDDKDDSVW


non-ATPase

VWFLDHDYLENMYGMFKKVNAR

FLDHDYLENMYGMFKKVNAR


regulatory

ERIVGWYHTGPKLHKNDIAINE

ERIVGWYHTGPKLHKNDIAI


subunit 7

LMKRYCPNSVLVIIDVKPKDLG

NELMKRYCPNSVLVIIDVKP




LPTEAYISVEEVHDDGTPTSKT

KDLGLPTEAYISVEEVHDDG




FEHVTSEIGAEEAEEVGVEHLL

TPTSKTFEHVTSEIGAEEAE




RDIKDTTVGTLSQRITNQVHGL

EVGVEHLLRDIKDTTVGTLS




KGLNSKLLDIRSYLEKVATGKL

QRITNQVHGLKGLNSKLLDI




PINHQIIYQLQDVENLLPDVSL

RSYLEKVATGKLPINHQIIY




QEFVKAFYLKTNDQMVVVYLAS

QLQDVFNLLPDVSLQEFVKA




LIRSVVALHNLINNKIANRDAE

FYLKTNDQMVVVYLASLIRS




KKEGQEKEESKKDRKEDKEKDK

VVALHNLINNKIANRDAEKK




DKEKSDVKKEEKKEKK

EGQEKEESKKDRKEDKEKDK






DKEKSDVKKEEKKEKK





EIF3H_HUMAN
110
MASRKEGTGSTATSSSSTAGAA
218
VQIDGLVVLKIIKHYQEEGQ


AN

GKGKGKGGSGDSAVKQVQIDGL

GTEVVQGVLLGLVVEDRLEI


Eukaryotic

VVLKIIKHYQEEGQGTEVVQGV

TNCFPFPQHTEDDADEDEVQ


translation

LLGLVVEDRLEITNCFPFPQHT

YQMEMMRSLRHVNIDHLHVG


initiation

EDDADFDEVQYQMEMMRSLRHV

WYQSTYYGSFVTRALLDSQF


factor 3

NIDHLHVGWYQSTYYGSFVTRA

SYQHAIEESVVLIYDPIKTA


subunit H

LLDSQFSYQHAIEESVVLIYDP

QGSLSLKAYRLTPKLMEVCK




IKTAQGSLSLKAYRLTPKLMEV

EKDESPEALKKANITFEYME




CKEKDESPEALKKANITFEYME

EEVPIVIKNSHLINVLMWEL




EEVPIVIKNSHLINVLMWELEK

EKKSAVADKHELLSLASSNH




KSAVADKHELLSLASSNHLG

LGKNLQLLMDRVDEMSQDIV




KNLQLLMDRVDEMSQDIVKYNT

KYNTYMRNTSKQQQQKHQYQ




YMRNTSKQQQQKHQYQQRRQQE

QRRQQENMQRQSRGEPPLPE




NMQRQSRGEPPLPEEDLSKLFK

EDLSKLFKPPQPPARMDSLL




PPQPPARMDSLLIAGQINTYCQ

IAGQINTYCQNIKEFTAQNL




NIKEFTAQNLGKLFMAQALQEY

GKLEMAQALQEYNN




NN







CSN5_HUMAN
111
MAASGSGMAQKTWELANNMQEA
219
YCKISALALLKMVMHARSGG


COP9

QSIDEIYKYDKKQQQEILAAKP

NLEVMGLMLGKVDGETMIIM


signalosome

WTKDHHYFKYCKISALALLKMV

DSFALPVEGTETRVNAQAAA


complex

MHARSGGNLEVMGLMLGKVDGE

YEYMAAYIENAKQVGRLENA


subunit 5

TMIIMDSFALPVEGTETRVNAQ

IGWYHSHPGYGCWLSGIDVS




AAAYEYMAAYIENAKQVGRLEN

TQMLNQQFQEPFVAVVIDPT




AIGWYHSHPGYGCWLSGIDVST

RTISAGKVNLGAFRTYPKGY




QMLNQQFQEPFVAVVIDPTRTI

KPPDEGPSEYQTIPLNKIED




SAGKVNLGAFRTYPKGYKPPDE

FGVHCKQYYALEVSYFKSSL




GPSEYQTIPLNKIEDFGVHCKQ

DRKLLELLWNKYWVNTLSSS




YYALEVSYFKSSLDRKLLELLW

SLLTNADYTTGQVEDLSEKL




NKYWVNTLSSSSLLTNADYTTG

EQSEAQLGRGSFMLGLETHD




QVFDLSEKLEQSEAQLGRGSFM

RKSEDKLAKATRDSCKTTIE




LGLETHDRKSEDKLAKATRDSC

AIHGLMSQVIKDKLENQINI




KTTIEAIHGLMSQVIKDKLENQ

S




INIS







BRCC3_HUMAN
112
MAVQVVQAVQAVHLESDAFLVC
220
VHLESDAFLVCLNHALSTEK


MLys-63-

LNHALSTEKEEVMGLCIGELND

EEVMGLCIGELNDDTRSDSK


specific

DTRSDSKFAYTGTEMRTVAEKV

FAYTGTEMRTVAEKVDAVRI


deubiquitinase

DAVRIVHIHSVIILRRSDKRKD

VHIHSVIILRRSDKRKDRVE


BRCC36

RVEISPEQLSAASTEAERLAEL

ISPEQLSAASTEAERLAELT




TGRPMRVVGWYHSHPHITVWPS

GRPMRVVGWYHSHPHITVWP




HVDVRTQAMYQMMDQGFVGLIF

SHVDVRTQAMYQMMDQGFVG




SCFIEDKNTKTGRVLYTCFQSI

LIFSCFIEDKNTKTGRVLYT




QAQKSSESLHGPRDFWSSSQHI

CFQSIQAQKSSESLHGPRDE




SIEGQKEEERYERIEIPIHIVP

WSSSQHISIEGQKEEERYER




HVTIGKVCLESAVELPKILCQE

IEIPIHIVPHVTIGKVCLES




EQDAYRRIHSLTHLDSVTKIHN

AVELPKILCQEEQDAYRRIH




GSVFTKNLCSQMSAVSGPLLQW

SLTHLDSVTKIHNGSVETKN




LEDRLEQNQQHLQELQQEKEEL

LCSQMSAVSGPLLQWLEDRL




MQELSSLE

EQNQQHLQELQQEKEELMQE






LSSLE









5.3.2 Targeting Domain

In some embodiments, the targeting domain comprises a targeting moiety that specifically binds to a target membrane protein. In some embodiments, the targeting moiety comprises an antibody (or antigen binding fragment thereof). In some embodiments, the antibody is a full-length antibody, a single chain variable fragment (scFv), a (scFv)2, a scFv-Fc, a Fab, a Fab′, a (Fab′)2, a F(v), a single domain antibody, a single chain antibody, a VHH, or a (VHH)2. In some embodiments the targeting moiety comprises a VHH. In some embodiments the targeting moiety comprises a (VHH)2.


In some embodiments, the targeting moiety specifically binds to a wild type target membrane protein. In some embodiments, the targeting moiety specifically binds to a wild type target membrane protein, but does not specifically binds to a variant of the target membrane protein associated with a genetic disease. In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target membrane protein. In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target membrane protein that is associated with a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds to a naturally occurring variant of a target membrane protein that is a cause of a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target membrane protein that is a loss of a function variant. In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target membrane protein that is a loss of a function variant associated with a genetic disease (e.g., a genetic disease described herein). In some embodiments, the targeting moiety specifically binds a naturally occurring variant of a target membrane protein that is a loss of a function variant that causes a genetic disease (e.g., a genetic disease described herein).


5.3.2.1 Exemplary Target Membrane Proteins

In some embodiments, targeting moiety specifically binds a target membrane protein (e.g., a membrane protein described herein). Exemplary target membrane proteins include, but are not limited to, glutamate receptor ionotropic NMDA 2B (GRIN2B), cystic fibrosis transmembrane conductance regulator (CFTR), sodium channel protein type 1 subunit alpha (SCN1A), copper-transporting ATPase 2 (ATP7B), potassium voltage-gated channel subfamily KQT member 2 (KCNQ2), sodium channel protein type 2 subunit alpha (SCN2A), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), sodium channel protein type 8 subunit alpha (SCN8A), proline-rich transmembrane protein 2 (PRRT2), glutamate receptor ionotropic, NMDA 2A (GRIN2A), sodium- and chloride-dependent GABA transporter 1 (SLC6A1), usherin (USH2A), sodium/potassium-transporting ATPase subunit alpha-2 (ATP1A2), sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3), sodium channel protein type 9 subunit alpha (SCN9A), protocadherin-19 (PCDH19), gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), tuberin (TSC2), hamartin (TSC1), potassium voltage-gated channel subfamily KQT member 3 (KCNQ3), dystrophin (DMD), rhodopsin (RHO), protein jagged-1 (JAG1), inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), sugar transporter SWEET1 (SLC50A1), transmembrane protein 258 (TMEM258), and follicle-stimulating hormone receptor (FSHR).


In some embodiments, the target membrane protein is GRIN2B. In some embodiments, the target membrane protein is CFTR. In some embodiments, the target membrane protein is SCN1A. In some embodiments, the target membrane protein is ATP7B. In some embodiments, the target membrane protein is KCNQ2. In some embodiments, the target membrane protein is SCN2A. In some embodiments, the target membrane protein is CACNA1A. In some embodiments, the target membrane protein is SLC2A1. In some embodiments, the target membrane protein is SCN8A. In some embodiments, the target membrane protein is PRRT2. In some embodiments, the target membrane protein is GRIN2A. In some embodiments, the target membrane protein is SLC6A1. In some embodiments, the target membrane protein is USH2A. In some embodiments, the target membrane protein is ATP1A2. In some embodiments, the target membrane protein is ATP1A3. In some embodiments, the target membrane protein is SCN9A. In some embodiments, the target membrane protein is PCDH19. In some embodiments, the target membrane protein is GABRB3. In some embodiments, the target membrane protein is TSC2. In some embodiments, the target membrane protein is TSC1. In some embodiments, the target membrane protein is KCNQ3. In some embodiments, the target membrane protein is DMD. In some embodiments, the target membrane protein is RHO. In some embodiments, the target membrane protein is JAG1. In some embodiments, the target membrane protein is ITPR1. In some embodiments, the target membrane protein is sugar transporter SWEET1 (SLC50A1). In some embodiments, the target membrane protein is transmembrane protein 258 (TMEM258). In some embodiments, the target membrane protein is follicle-stimulating hormone receptor (FSHR).


In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 221-245. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 221. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 222. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 223. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 224. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 225. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 226. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 227. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 228. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 229. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 230. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 240. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 241. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 242. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 243. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 244. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 245. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 294. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 295. In some embodiments, the target membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 296.


Table 2 below, provides the wild type amino acid sequence of exemplary proteins to target for deubiquitination utilizing the fusion proteins described herein.









TABLE 2







The amino acid sequence of exemplary membrane proteins to


target for deubiquitination utilizing the fusion proteins


described herein and exemplary disease associations











Disease
SEQ ID



Description
Associations
NO
WT Amino Acid Sequence





Solute carrier
GLUT1
221
MEPSSKKLTGRLMLAVGGAVLGSLQFGYNTGVINA


family 2,
Deficiency

PQKVIEEFYNQTWVHRYGESILPTTLTTLWSLSVA


facilitated
Syndrome

IFSVGGMIGSFSVGLFVNRFGRRNSMLMMNLLAFV


glucose


SAVLMGFSKLGKSFEMLILGRFIIGVYCGLTTGFV


transporter


PMYVGEVSPTALRGALGTLHQLGIVVGILIAQVEG


member 1


LDSIMGNKDLWPLLLSIIFIPALLQCIVLPFCPES


(SLC2A1)


PRFLLINRNEENRAKSVLKKLRGTADVTHDLQEMK





EESRQMMREKKVTILELFRSPAYRQPILIAVVLQL





SQQLSGINAVFYYSTSIFEKAGVQQPVYATIGSGI





VNTAFTVVSLFVVERAGRRTLHLIGLAGMAGCAIL





MTIALALLEQLPWMSYLSIVAIFGFVAFFEVGPGP





IPWFIVAELFSQGPRPAAIAVAGESNWTSNFIVGM





CFQYVEQLCGPYVFIIFTVLLVLFFIFTYFKVPET





KGRTFDEIASGFRQGGASQSDKTPEELFHPLGADS





QV





Proline-rich
PRRT2
222
MAASSSEISEMKGVEESPKVPGEGPGHSEAETGPP


transmembrane
Dyskinesia &

QVLAGVPDQPEAPQPGPNTTAAPVDSGPKAGLAPE


protein 2
Epilepsy;

TTETPAGASETAQATDLSLSPGGESKANCSPEDPC


(PRRT2)
Episodic

QETVSKPEVSKEATADQGSRLESAAPPEPAPEPAP



kinesigenic

QPDPRPDSQPTPKPALQPELPTQEDPTPEILSESV



dyskinesia 1

GEKQENGAVVPLQAGDGEEGPAPEPHSPPSKKSPP





ANGAPPRVLQQLVEEDRMRRAHSGHPGSPRGSLSR





HPSSQLAGPGVEGGEGTQKPRDYIILAILSCFCPM





WPVNIVAFAYAVMSRNSLQQGDVDGAQRLGRVAKL





LSIVALVGGVLIIIASCVINLGVYK





Usherin
Usher
223

MNCPVLSLGSGFLFQVIEMLIFAYFASISLTESRG



(USH2A)
syndrome, type

LFPRLENVGAFKKVSIVPTQAVCGLPDRSTFCHSS


Signal
2A

AAAESIQFCTQRFCIQDCPYRSSHPTYTALESAGL


Sequence


SSCITPDKNDLHPNAHSNSASFIFGNHKSCFSSPP


Underlined


SPKLMASFTLAVWLKPEQQGVMCVIEKTVDGQIVE





KLTISEKETMFYYRTVNGLQPPIKVMTLGRILVKK





WIHLSVQVHQTKISFFINGVEKDHTPENARTLSGS





ITDFASGTVQIGQSLNGLEQFVGRMQDERLYQVAL





TNREILEVESGDLLRLHAQSHCRCPGSHPRVHPLA





QRYCIPNDAGDTADNRVSRLNPEAHPLSFVNDNDV





GTSWVSNVFTNITQLNQGVTISVDLENGQYQVFYI





IIQFFSPQPTEIRIQRKKENSLDWEDWQYFARNCG





AFGMKNNGDLEKPDSVNCLQLSNFTPYSRGNVTFS





ILTPGPNYRPGYNNFYNTPSLQEFVKATQIRFHFH





GQYYTTETAVNLRHRYYAVDEITISGRCOCHGHAD





NCDTTSQPYRCLCSQESFTEGLHCDRCLPLYNDKP





FRQGDQVYAFNCKPCQCNSHSKSCHYNISVDPFPF





EHFRGGGGVCDDCEHNTTGRNCELCKDYFFRQVGA





DPSAIDVCKPCDCDTVGTRNGSILCDQIGGQCNCK





RHVSGRQCNQCQNGFYNLQELDPDGCSPCNCNTSG





TVDGDITCHQNSGQCKCKANVIGLRCDHCNFGEKF





LRSFNDVGCEPCQCNLHGSVNKFCNPHSGQCECKK





EAKGLQCDTCRENFYGLDVTNCKACDCDTAGSLPG





TVCNAKTGQCICKPNVEGRQCNKCLEGNFYLRQNN





SFLCLPCNCDKTGTINGSLLCNKSTGQCPCKLGVT





GLRCNQCEPHRYNLTIDNFQHCQMCECDSLGTLPG





TICDPISGQCLCVPNRQGRRCNQCQPGFYISPGNA





TGCLPCSCHTTGAVNHICNSLTGQCVCQDASIAGO





RCDQCKDHYFGFDPQTGRCQPCNCHLSGALNETCH





LVTGQCFCKQFVTGSKCDACVPSASHLDVNNLLGC





SKTPFQQPPPRGQVQSSSAINLSWSPPDSPNAHWL





TYSLLRDGFEIYTTEDQYPYSIQYFLDTDLLPYTK





YSYYIETTNVHGSTRSVAVTYKTKPGVPEGNLTLS





YIIPIGSDSVTLTWTTLSNQSGPIEKYILSCAPLA





GGQPCVSYEGHETSATIWNLVPFAKYDESVQACTS





GGCLHSLPITVITAQAPPQRLSPPKMQKISSTELH





VEWSPPAELNGIIIRYELYMRRLRSTKETTSEESR





VFQSSGWLSPHSFVESANENALKPPQTMTTITGLE





PYTKYEFRVLAVNMAGSVSSAWVSERTGESAPVEM





IPPSVEPLSSYSLNISWEKPADNVTRGKVVGYDIN





MLSEQSPQQSIPMAFSQLLHTAKSQELSYTVEGLK





PYRIYEFTITLCNSVGCVTSASGAGQTLAAAPAQL





RPPLVKGINSTTIHLRWFPPEELNGPSPIYQLERR





ESSLPALMTTMMKGIRFIGNGYCKFPSSTHPVNTD





FTGIKASFRTKVPEGLIVFAASPGNQEEYFALQLK





KGRLYFLFDPQGSPVEVTTTNDHGKQYSDGKWHEI





IAIRHQAFGQITLDGIYTGSSAILNGSTVIGDNTG





VELGGLPRSYTILRKDPEIIQKGFVGCLKDVHEMK





NYNPSAIWEPLDWQSSEEQINVYNSWEGCPASLNE





GAQFLGAGFLELHPYMFHGGMNFEISEKFRTDQLN





GLLLFVYNKDGPDFLAMELKSGILTFRLNTSLAFT





QVDLLLGLSYCNGKWNKVIIKKEGSFISASVNGLM





KHASESGDQPLVVNSPVYVGGIPQELLNSYQHLCL





EQGFGGCMKDVKFTRGAVVNLASVSSGAVRVNLDG





CLSTDSAVNCRGNDSILVYQGKEQSVYEGGLQPFT





EYLYRVIASHEGGSVYSDWSRGRTTGAAPQSVPTP





SRVRSLNGYSIEVTWDEPVVRGVIEKYILKAYSED





STRPPRMPSASAEFVNTSNLTGILTGLLPFKNYAV





TLTACTLAGCTESSHALNISTPQEAPQEVOPPVAK





SLPSSLLLSWNPPKKANGIITQYCLYMDGRLIYSG





SEENYIVTDLAVFTPHQFLLSACTHVGCTNSSWVL





LYTAQLPPEHVDSPVLTVLDSRTIHIQWKQPRKIS





GILERYVLYMSNHTHDFTIWSVIYNSTELFQDHML





QYVLPGNKYLIKLGACTGGGCTVSEASEALTDEDI





PEGVPAPKAHSYSPDSFNVSWTEPEYPNGVITSYG





LYLDGILIHNSSELSYRAYGFAPWSLHSFRVQACT





AKGCALGPLVENRTLEAPPEGTVNVFVKTQGSRKA





HVRWEAPFRPNGLLTHSVLFTGIFYVDPVGNNYTL





LNVTKVMYSGEETNLWVLIDGLVPFTNYTVQVNIS





NSQGSLITDPITIAMPPGAPDGVLPPRLSSATPTS





LQVVWSTPARNNAPGSPRYQLQMRSGDSTHGELEL





FSNPSASLSYEVSDLQPYTEYMERLVASNGFGSAH





SSWIPEMTAEDKPGPVVPPILLDVKSRMMLVTWQH





PRKSNGVITHYNIYLHGRLYLRTPGNVTNCTVMHL





HPYTAYKFQVEACTSKGCSLSPESQTVWTLPGAPE





GIPSPELFSDTPTSVIISWQPPTHPNGLVENETIE





RRVKGKEEVTTLVTLPRSHSMRFIDKTSALSPWTK





YEYRVLMSTLHGGTNSSAWVEVTTRPSRPAGVQPP





VVTVLEPDAVQVTWKPPLIQNGDILSYEIHMPDPH





ITLTNVTSAVLSQKVTHLIPFTNYSVTIVACSGGN





GYLGGCTESLPTYVTTHPTVPQNVGPLSVIPLSES





YVVISWOPPSKPNGPNLRYELLRRKIQQPLASNPP





EDLNRWHNIYSGTQWLYEDKGLSRFTTYEYMLFVH





NSVGFTPSREVTVTTLAGLPERGANLTASVLNHTA





IDVRWAKPTVQDLQGEVEYYTLFWSSATSNDSLKI





LPDVNSHVIGHLKPNTEYWIFISVENGVHSINSAG





LHATTCDGEPQGMLPPEVVIINSTAVRVIWTSPSN





PNGVVTEYSIYVNNKLYKTGMNVPGSFILRDLSPF





TIYDIQVEVCTIYACVKSNGTQITTVEDTPSDIPT





PTIRGITSRSLQIDWVSPRKPNGIILGYDLLWKTW





YPCAKTQKLVQDQSDELCKAVRCQKPESICGHICY





SSEAKVCCNGVLYNPKPGHRCCEEKYIPFVLNSTG





VCCGGRIQEAQPNHQCCSGYYARILPGEVCCPDEQ





HNRVSVGIGDSCCGRMPYSTSGNQICCAGRLHDGH





GQKCCGRQIVSNDLECCGGEEGVVYNRLPGMFCCG





QDYVNMSDTICCSASSGESKAHIKKNDPVPVKCCE





TELIPKSQKCCNGVGYNPLKYVCSDKISTGMMMKE





TKECRILCPASMEATEHCGRCDENFTSHICTVIRG





SHNSTGKASIEEMCSSAEETIHTGSVNTYSYTDVN





LKPYMTYEYRISAWNSYGRGLSKAVRARTKEDVPQ





GVSPPTWTKIDNLEDTIVLNWRKPIQSNGPIIYYI





LLRNGIERFRGTSLSFSDKEGIQPFQEYSYQLKAC





TVAGCATSSKVVAATTQGVPESILPPSITALSAVA





LHLSWSVPEKSNGVIKEYQIRQVGKGLIHTDTTDR





RQHTVTGLQPYTNYSFTLTACTSAGCTSSEPFLGQ





TLQAAPEGVWVTPRHIIINSTTVELYWSLPEKPNG





LVSQYQLSRNGNLLFLGGSEEQNFTDKNLEPNSRY





TYKLEVKTGGGSSASDDYIVQTPMSTPEEIYPPYN





ITVIGPYSIFVAWIPPGILIPEIPVEYNVLLNDGS





VTPLAFSVGHHQSTLLENLTPFTQYEIRIQACONG





SCGVSSRMFVKTPEAAPMDLNSPVLKALGSACIEI





KWMPPEKPNGIIINYFIYRRPAGIEEESVLFVWSE





GALEFMDEGDTLRPFTLYEYRVRACNSKGSVESLW





SLTQTLEAPPQDEPAPWAQATSAHSVLLNWTKPES





PNGIISHYRVVYQERPDDPTFNSPTVHAFTVKGTS





HQAHLYGLEPFTTYRIGVVAANHAGEILSPWTLIQ





TLESSPSGLRNFIVEQKENGRALLLQWSEPMRING





VIKTYNIFSDGFLEYSGLNRQFLFRRLDPFTLYTL





TLEACTRAGCAHSAPQPLWTDEAPPDSQLAPTVHS





VKSTSVELSWSEPVNPNGKIIRYEVIRRCFEGKAW





GNQTIQADEKIVFTEYNTERNTEMYNDTGLQPWTQ





CEYKIYTWNSAGHTCSSWNVVRTLQAPPEGLSPPV





ISYVSMNPQKLLISWIPPEQSNGIIQSYRLORNEM





LYPFSFDPVTFNYTDEELLPFSTYSYALQACTSGG





CSTSKPTSITTLEAAPSEVSPPDLWAVSATQMNVC





WSPPTVQNGKITKYLVRYDNKESLAGQGLCLLVSH





LQPYSQYNFSLVACTNGGCTASVSKSAWTMEALPE





NMDSPTLQVTGSESIEITWKPPRNPNGQIRSYELR





RDGTIVYTGLETRYRDFTLTPGVEYSYTVTASNSQ





GGILSPLVKDRTSPSAPSGMEPPKLQARGPQEILV





NWDPPVRTNGDIINYTLFIRELFERETKIIHINTT





HNSFGMQSYIVNQLKPFHRYEIRIQACTTLGCASS





DWTFIQTPEIAPLMQPPPHLEVQMAPGGFQPTVSL





LWTGPLQPNGKVLYYELYRRQIATQPRKSNPVLIY





NGSSTSFIDSELLPFTEYEYQVWAVNSAGKAPSSW





TWCRTGPAPPEGLRAPTFHVISSTQAVVNISAPGK





PNGIVSLYRLESSSAHGAETVLSEGMATQQTLHGL





QAFTNYSIGVEACTCFNCCSKGPTAELRTHPAPPS





GLSSPQIGTLASRTASFRWSPPMFPNGVIHSYELQ





FHVACPPDSALPCTPSQIETKYTGLGQKASLGGLQ





PYTTYKLRVVAHNEVGSTASEWISFTTQKELPQYR





APFSVDSNLSVVCVNWSDTFLLNGQLKEYVLTDGG





RRVYSGLDTTLYIPRTADKTFFFQVICTTDEGSVK





TPLIQYDTSTGLGLVLTTPGKKKGSRSKSTEFYSE





LWFIVLMAMLGLILLAIFLSLILQRKIHKEPYIRE





RPPLVPLQKRMSPLNVYPPGENHMGLADTKIPRSG





TPVSIRSNRSACVLRIPSQNQTSLTYSQGSLHRSV





SQLMDIQDKKVLMDNSLWEAIMGHNSGLYVDEEDL





MNAIKDESSVTKERTTFTDTHL





Protocadherin-
PCDH19
224

MESLLLPVLLLLAILWTQAAALINLKYSVEEEQRA



19
Encephalopathy;

GTVIANVAKDAREAGFALDPRQASAFRVVSNSAPH


(PCDH19)
Early Infantile

LVDINPSSGLLVTKQKIDRDLLCRQSPKCIISLEV


Signal
Epileptic

MSSSMEICVIKVEIKDLNDNAPSFPAAQIELEISE


Sequence
Encephalopathy

AASPGTRIPLDSAYDPDSGSFGVQTYELTPNELFG


Underlined
9

LEIKTRGDGSRFAELVVEKSLDRETQSHYSFRITA





LDGGDPPRLGTVGLSIKVTDSNDNNPVFSESTYAV





SVPENSPPNTPVIRLNASDPDEGINGQVVYSFYGY





VNDRTRELFQIDPHSGLVTVTGALDYEEGHVYELD





VQAKDLGPNSIPAHCKVTVSVLDTNDNPPVINLLS





VNSELVEVSESAPPGYVIALVRVSDRDSGLNGRVQ





CRLLGNVPFRLQEYESFSTILVDGRLDREQHDQYN





LTIQARDGGVPMLQSAKSFTVLITDENDNHPHESK





PYYQVIVOENNTPGAYLLSVSARDPDLGLNGSVSY





QIVPSQVRDMPVFTYVSINPNSGDIYALRSENHEQ





TKAFEFKVLAKDGGLPSLQSNATVRVIILDVNDNT





PVITAPPLINGTAEVYIPRNSGIGYLVTVVKAEDY





DEGENGRVTYDMTEGDRGFFEIDQVNGEVRTTRTF





GESSKSSYELIVVAHDHGKTSLSASALVLIYLSPA





LDAQESMGSVNLSLIFIIALGSIAGILFVTMIFVA





IKCKRDNKEIRTYNCSNCLTITCLLGCFIKGQNSK





CLHCISVSPISEEQDKKTEEKVSLRGKRIAEYSYG





HQKKSSKKKKISKNDIRLVPRDVEETDKMNVVSCS





SLTSSLNYFDYHQQTLPLGCRRSESTELNVENQNT





RNTSANHIYHHSFNSQGPQQPDLIINGVPLPETEN





YSFDSNYVNSRAHLIKSSSTFKDLEGNSLKDSGHE





ESDQTDSEHDVQRSLYCDTAVNDVLNTSVTSMGSQ





MPDHDQNEGFHCREECRILGHSDRCWMPRNPMPIR





SKSPEHVRNIIALSIEATAADVEAYDDCGPTKRTF





ATFGKDVSDHPAEERPTLKGKRTVDVTICSPKVNS





VIREAGNGCEAISPVTSPLHLKSSLPTKPSVSYTI





ALAPPARDLEQYVNNVNNGPTRPSEAEPRGADSEK





VMHEVSPILKEGRNKESPGVKRLKDIVL





Tuberin
Tuberous
225
MAKPTSKDSGLKEKFKILLGLGTPRPNPRSAEGKQ


(TSC2)
sclerosis-2

TEFIITAEILRELSMECGLNNRIRMIGQICEVAKT





KKFEEHAVEALWKAVADLLQPERPLEARHAVLALL





KAIVQGQGERLGVLRALFFKVIKDYPSNEDLHERL





EVFKALTDNGRHITYLEEELADFVLQWMDVGLSSE





FLLVLVNLVKENSCYLDEYIARMVQMICLLCVRTA





SSVDIEVSLQVLDAVVCYNCLPAESLPLFIVTLCR





TINVKELCEPCWKLMRNLLGTHLGHSAIYNMCHLM





EDRAYMEDAPLLRGAVFFVGMALWGAHRLYSLRNS





PTSVLPSFYQAMACPNEVVSYEIVLSITRLIKKYR





KELQVVAWDILLNIIERLLQQLQTLDSPELRTIVH





DLLTTVEELCDQNEFHGSQERYFELVERCADQRPE





SSLLNLISYRAQSIHPAKDGWIQNLQALMERFERS





ESRGAVRIKVLDVLSFVLLINRQFYEEELINSVVI





SQLSHIPEDKDHQVRKLATQLLVDLAEGCHTHHEN





SLLDIIEKVMARSLSPPPELEERDVAAYSASLEDV





KTAVLGLLVILQTKLYTLPASHATRVYEMLVSHIQ





LHYKHSYTLPIASSIRLQAFDELLLLRADSLHRLG





LPNKDGVVRFSPYCVCDYMEPERGSEKKTSGPLSP





PTGPPGPAPAGPAVRLGSVPYSLLERVLLQCLKQE





SDWKVLKLVLGRLPESLRYKVLIFTSPCSVDQLCS





ALCSMLSGPKTLERLRGAPEGESRTDLHLAVVPVL





TALISYHNYLDKTKQREMVYCLEQGLIHRCASQCV





VALSICSVEMPDIIIKALPVLVVKLTHISATASMA





VPLLEFLSTLARLPHLYRNFAAEQYASVFAISLPY





TNPSKENQYIVCLAHHVIAMWFIRCRLPERKDEVP





FITKGLRSNVLLSFDDTPEKDSFRARSTSLNERPK





SLRIARPPKQGLNNSPPVKEFKESSAAEAFRCRSI





SVSEHVVRSRIQTSLTSASLGSADENSVAQADDSL





KNLHLELTETCLDMMARYVESNFTAVPKRSPVGEF





LLAGGRTKTWLVGNKLVTVTTSVGTGTRSLLGLDS





GELQSGPESSSSPGVHVRQTKEAPAKLESQAGQQV





SRGARDRVRSMSGGHGLRVGALDVPASQFLGSATS





PGPRTAPAAKPEKASAGTRVPVQEKTNLAAYVPLL





TQGWAEILVRRPTGNTSWLMSLENPLSPFSSDINN





MPLQELSNALMAAERFKEHRDTALYKSLSVPAAST





AKPPPLPRSNTVASFSSLYQSSCQGQLHRSVSWAD





SAVVMEEGSPGEVPVLVEPPGLEDVEAALGMDRRT





DAYSRSSSVSSQEEKSLHAEELVGRGIPIERVVSS





EGGRPSVDLSFQPSQPLSKSSSSPELQTLQDILGD





PGDKADVGRLSPEVKARSQSGTLDGESAAWSASGE





DSRGQPEGPLPSSSPRSPSGLRPRGYTISDSAPSR





RGKRVERDALKSRATASNAEKVPGINPSFVFLQLY





HSPFFGDESNKPILLPNESQSFERSVOLLDQIPSY





DTHKIAVLYVGEGQSNSELAILSNEHGSYRYTEFL





TGLGRLIELKDCQPDKVYLGGLDVCGEDGQFTYCW





HDDIMQAVFHIATLMPTKDVDKHRCDKKRHLGNDE





VSIVYNDSGEDFKLGTIKGQFNFVHVIVTPLDYEC





NLVSLQCRKDMEGLVDTSVAKIVSDRNLPFVARQM





ALHANMASQVHHSRSNPTDIYPSKWIARLRHIKRL





RQRICEEAAYSNPSLPLVHPPSHSKAPAQTPAEPT





PGYEVGQRKRLISSVEDFTEFV





Hamartin
Tuberous
226
MAQQANVGELLAMLDSPMLGVRDDVTAVEKENLNS


(TSC1)
sclerosis-1

DRGPMLVNTLVDYYLETSSQPALHILTTLQEPHDK





HLLDRINEYVGKAATRLSILSLLGHVIRLQPSWKH





KLSQAPLLPSLLKCLKMDTDVVVLTTGVLVLITML





PMIPQSGKQHLLDFFDIFGRLSSWCLKKPGHVAEV





YLVHLHASVYALFHRLYGMYPCNFVSFLRSHYSMK





ENLETFEEVVKPMMEHVRIHPELVTGSKDHELDPR





RWKRLETHDVVIECAKISLDPTEASYEDGYSVSHQ





ISARFPHRSADVTTSPYADTQNSYGCATSTPYSTS





RLMLLNMPGQLPQTLSSPSTRLITEPPQATLWSPS





MVCGMTTPPTSPGNVPPDLSHPYSKVEGTTAGGKG





TPLGTPATSPPPAPLCHSDDYVHISLPQATVTPPR





KEERMDSARPCLHRQHHLLNDRGSEEPPGSKGSVT





LSDLPGELGDLASEEDSIEKDKEEAAISRELSEIT





TAEAEPVVPRGGFDSPFYRDSLPGSQRKTHSAASS





SQGASVNPEPLHSSLDKLGPDTPKQAFTPIDLPCG





SADESPAGDRECQTSLETSIFTPSPCKIPPPTRVG





FGSGQPPPYDHLFEVALPKTAHHFVIRKTEELLKK





AKGNTEEDGVPSTSPMEVLDRLIQQGADAHSKELN





KLPLPSKSVDWTHEGGSPPSDEIRTLRDQLLLLHN





QLLYERFKRQQHALRNRRLLRKVIKAAALEEHNAA





MKDQLKLQEKDIQMWKVSLQKEQARYNQLQEQRDT





MVTKLHSQIRQLQHDREEFYNQSQELQTKLEDCRN





MIAELRIELKKANNKVCHTELLLSQVSQKLSNSES





VQQQMEFLNROLLVLGEVNELYLEQLQNKHSDTTK





EVEMMKAAYRKELEKNRSHVLQQTORLDTSQKRIL





ELESHLAKKDHLLLEQKKYLEDVKLQARGQLQAAE





SRYEAQKRITQVFELEILDLYGRLEKDGLLKKLEE





EKAEAAEAAEERLDCCNDGCSDSMVGHNEEASGHN





GETKTPRPSSARGSSGSRGGGGSSSSSSELSTPEK





PPHQRAGPFSSRWETTMGEASASIPTTVGSLPSSK





SFLGMKARELFRNKSESQCDEDGMTSSLSESLKTE





LGKDLGVEAKIPLNLDGPHPSPPTPDSVGQLHIMD





YNETHHEHS





Dystrophin
Becker
227
MLWWEEVEDCYEREDVQKKTFTKWVNAQFSKFGKQ


(DMD)
Muscular

HIENLFSDLQDGRRLLDLLEGLTGQKLPKEKGSTR



Dystrophy

VHALNNVNKALRVLQNNNVDLVNIGSTDIVDGNHK





LTLGLIWNIILHWQVKNVMKNIMAGLQQTNSEKIL





LSWVRQSTRNYPQVNVINFTTSWSDGLALNALIHS





HRPDLFDWNSVVCQQSATORLEHAFNIARYQLGIE





KLLDPEDVDTTYPDKKSILMYITSLFQVLPQQVSI





EAIQEVEMLPRPPKVTKEEHFQLHHQMHYSQQITV





SLAQGYERTSSPKPRFKSYAYTQAAYVTTSDPTRS





PFPSQHLEAPEDKSFGSSLMESEVNLDRYQTALEE





VLSWLLSAEDTLQAQGEISNDVEVVKDQFHTHEGY





MMDLTAHQGRVGNILQLGSKLIGTGKLSEDEETEV





QEQMNLLNSRWECLRVASMEKQSNLHRVLMDLQNQ





KLKELNDWLTKTEERTRKMEEEPLGPDLEDLKRQV





QQHKVLQEDLEQEQVRVNSLTHMVVVVDESSGDHA





TAALEEQLKVLGDRWANICRWTEDRWVLLQDILLK





WQRLTEEQCLFSAWLSEKEDAVNKIHTTGFKDQNE





MLSSLQKLAVLKADLEKKKQSMGKLYSLKQDLLST





LKNKSVTQKTEAWLDNFARCWDNLVQKLEKSTAQI





SQAVTTTQPSLTQTTVMETVTTVTTREQILVKHAQ





EELPPPPPQKKRQITVDSEIRKRLDVDITELHSWI





TRSEAVLQSPEFAIFRKEGNFSDLKEKVNAIEREK





AEKFRKLQDASRSAQALVEQMVNEGVNADSIKQAS





EQLNSRWIEFCOLLSERLNWLEYQNNIIAFYNQLQ





QLEQMTTTAENWLKIQPTTPSEPTAIKSQLKICKD





EVNRLSDLQPQIERLKIQSIALKEKGQGPMELDAD





FVAFTNHFKQVESDVQAREKELQTIFDTLPPMRYQ





ETMSAIRTWVQQSETKLSIPQLSVTDYEIMEQRLG





ELQALQSSLQEQQSGLYYLSTTVKEMSKKAPSEIS





RKYQSEFEEIEGRWKKLSSQLVEHCQKLEEQMNKL





RKIQNHIQTLKKWMAEVDVELKEEWPALGDSEILK





KQLKQCRLLVSDIQTIQPSLNSVNEGGQKIKNEAE





PEFASRLETELKELNTQWDHMCQQVYARKEALKGG





LEKTVSLQKDLSEMHEWMTQAEEEYLERDFEYKTP





DELQKAVEEMKRAKEEAQQKEAKVKLLTESVNSVI





AQAPPVAQEALKKELETLTTNYQWLCTRLNGKCKT





LEEVWACWHELLSYLEKANKWLNEVEFKLKTTENI





PGGAEEISEVLDSLENLMRHSEDNPNQIRILAQTL





TDGGVMDELINEELETENSRWRELHEEAVRRQKLL





EQSIQSAQETEKSLHLIQESLTFIDKQLAAYIADK





VDAAQMPQEAQKIQSDLTSHEISLEEMKKHNQGKE





AAQRVLSQIDVAQKKLQDVSMKERLFQKPANFEQR





LQESKMILDEVKMHLPALETKSVEQEVVQSQLNHC





VNLYKSLSEVKSEVEMVIKTGRQIVQKKQTENPKE





LDERVTALKLHYNELGAKVTERKQQLEKCLKLSRK





MRKEMNVLTEWLAATDMELTKRSAVEGMPSNLDSE





VAWGKATQKEIEKQKVHLKSITEVGEALKTVLGKK





ETLVEDKLSLLNSNWIAVTSRAEEWLNLLLEYQKH





METFDQNVDHITKWIIQADTLLDESEKKKPQQKED





VLKRLKAELNDIRPKVDSTRDQAANLMANRGDHCR





KLVEPQISELNHRFAAISHRIKTGKASIPLKELEQ





FNSDIQKLLEPLEAEIQQGVNLKEEDENKDMNEDN





EGTVKELLQRGDNLQQRITDERKREEIKIKQQLLQ





TKHNALKDLRSQRRKKALEISHOWYQYKRQADDLL





KCLDDIEKKLASLPEPRDERKIKEIDRELQKKKEE





LNAVRRQAEGLSEDGAAMAVEPTQIQLSKRWREIE





SKFAQFRRLNFAQIHTVREETMMVMTEDMPLEISY





VPSTYLTEITHVSQALLEVEQLLNAPDLCAKDFED





LFKQEESLKNIKDSLQQSSGRIDIIHSKKTAALQS





ATPVERVKLQEALSQLDFQWEKVNKMYKDRQGRED





RSVEKWRRFHYDIKIFNQWLTEAEQFLRKTQIPEN





WEHAKYKWYLKELQDGIGQRQTVVRTLNATGEEII





QQSSKTDASILQEKLGSLNLRWQEVCKQLSDRKKR





LEEQKNILSEFQRDLNEFVLWLEEADNIASIPLEP





GKEQQLKEKLEQVKLLVEELPLRQGILKQLNETGG





PVLVSAPISPEEQDKLENKLKQTNLQWIKVSRALP





EKQGEIEAQIKDLGQLEKKLEDLEEQLNHLLLWLS





PIRNQLEIYNQPNQEGPEDVKETEIAVQAKQPDVE





EILSKGQHLYKEKPATQPVKRKLEDLSSEWKAVNR





LLQELRAKQPDLAPGLTTIGASPTQTVTLVTQPVV





TKETAISKLEMPSSLMLEVPALADENRAWTELTDW





LSLLDQVIKSQRVMVGDLEDINEMIIKQKATMQDL





EQRRPQLEELITAAQNLKNKTSNQEARTIITDRIE





RIQNQWDEVQEHLQNRRQQLNEMLKDSTQWLEAKE





EAEQVLGQARAKLESWKEGPYTVDAIQKKITETKQ





LAKDLRQWQTNVDVANDLALKLLRDYSADDTRKVH





MITENINASWRSIHKRVSEREAALEETHRLLQQFP





LDLEKFLAWLTEAETTANVLQDATRKERLLEDSKG





VKELMKQWQDLQGEIEAHTDVYHNLDENSQKILRS





LEGSDDAVLLQRRLDNMNFKWSELRKKSLNIRSHL





EASSDQWKRLHLSLQELLVWLQLKDDELSRQAPIG





GDFPAVQKONDVHRAFKRELKTKEPVIMSTLETVR





IFLTEQPLEGLEKLYQEPRELPPEERAQNVTRLLR





KQAEEVNTEWEKLNLHSADWORKIDETLERLQELQ





EATDELDLKLRQAEVIKGSWQPVGDLLIDSLQDHL





EKVKALRGEIAPLKENVSHVNDLARQLTTLGIQLS





PYNLSTLEDLNTRWKLLQVAVEDRVRQLHEAHRDE





GPASQHELSTSVQGPWERAISPNKVPYYINHETQT





TCWDHPKMTELYQSLADLNNVRESAYRTAMKLRRL





QKALCLDLLSLSAACDALDQHNLKQNDQPMDILQI





INCLTTIYDRLEQEHNNLVNVPLCVDMCLNWLLNV





YDTGRTGRIRVLSEKTGIISLCKAHLEDKYRYLFK





QVASSTGFCDQRRLGLLLHDSIQIPRQLGEVASFG





GSNIEPSVRSCFQFANNKPEIEAALFLDWMRLEPQ





SMVWLPVLHRVAAAETAKHQAKCNICKECPIIGER





YRSLKHFNYDICQSCFFSGRVAKGHKMHYPMVEYC





TPTTSGEDVRDFAKVLKNKERTKRYFAKHPRMGYL





PVQTVLEGDNMETPVTLINFWPVDSAPASSPQLSH





DDTHSRIEHYASRLAEMENSNGSYLNDSISPNESI





DDEHLLIQHYCQSLNQDSPLSQPRSPAQILISLES





EERGELERILADLEEENRNLQAEYDRLKQQHEHKG





LSPLPSPPEMMPTSPQSPRDAELIAEAKLLRQHKG





RLEARMQILEDHNKQLESQLHRLROLLEQPQAEAK





VNGTTVSSPSTSLORSDSSQPMLLRVVGSQTSDSM





GEEDLLSPPQDTSTGLEEVMEQLNNSFPSSRGRNT





PGKPMREDTM





Glutamate
GRIN2B-
228

MKPRAECCSPKFWLVLAVLAVSGSRARSQKSPPSI



receptor
Related

GIAVILVGTSDEVAIKDAHEKDDFHHLSVVPRVEL


ionotropic,
Disorder;

VAMNETDPKSIITRICDLMSDRKIQGVVFADDTDQ


NMDA 2B
Epileptic

EAIAQILDFISAQTLTPILGIHGGSSMIMADKDES


(GRIN2B)
encephalopathy,

SMFFQFGPSIEQQASVMLNIMEEYDWYIFSIVTTY


Signal
early infantile,

FPGYQDFVNKIRSTIENSFVGWELEEVLLLDMSLD


Sequence
27

DGDSKIQNQLKKLQSPIILLYCTKEEATYIFEVAN


Underlined


SVGLTGYGYTWIVPSLVAGDTDTVPAEFPTGLISV





SYDEWDYGLPARVRDGIAIITTAASDMLSEHSFIP





EPKSSCYNTHEKRIYQSNMLNRYLINVTFEGRNLS





FSEDGYQMHPKLVIILLNKERKWERVGKWKDKSLQ





MKYYVWPRMCPETEEQEDDHLSIVTLEEAPFVIVE





SVDPLSGTCMRNTVPCQKRIVTENKTDEEPGYIKK





CCKGFCIDILKKISKSVKFTYDLYLVTNGKHGKKI





NGTWNGMIGEVVMKRAYMAVGSLTINEERSEVVDE





SVPFIETGISVMVSRSNGTVSPSAFLEPFSADVWV





MMFVMLLIVSAVAVFVFEYFSPVGYNRCLADGREP





GGPSFTIGKAIWLLWGLVENNSVPVQNPKGTTSKI





MVSVWAFFAVIFLASYTANLAAFMIQEEYVDQVSG





LSDKKFQRPNDESPPFRFGTVPNGSTERNIRNNYA





EMHAYMGKFNQRGVDDALLSLKTGKLDAFIYDAAV





LNYMAGRDEGCKLVTIGSGKVFASTGYGIAIQKDS





GWKRQVDLAILQLEGDGEMEELEALWLTGICHNEK





NEVMSSQLDIDNMAGVFYMLGAAMALSLITFICEH





LFYWQFRHCFMGVCSGKPGMVFSISRGIYSCIHGV





AIEERQSVMNSPTATMNNTHSNILRLLRTAKNMAN





LSGVNGSPQSALDFIRRESSVYDISEHRRSFTHSD





CKSYNNPPCEENLESDYISEVERTFGNLQLKDSNV





YQDHYHHHHRPHSIGSASSIDGLYDCDNPPETTOS





RSISKKPLDIGLPSSKHSQLSDLYGKESFKSDRYS





GHDDLIRSDVSDISTHTVTYGNIEGNAAKRRKQQY





KDSLKKRPASAKSRREFDEIELAYRRRPPRSPDHK





RYFRDKEGLRDFYLDQFRTKENSPHWEHVDLTDIY





KERSDDFKRDSVSGGGPCTNRSHIKHGTGDKHGVV





SGVPAPWEKNLTNVEWEDRSGGNFCRSCPSKLHNY





STTVTGQNSGRQACIRCEACKKAGNLYDISEDNSL





QELDQPAAPVAVTSNASTTKYPQSPTNSKAQKKNR





NKLRRQHSYDTFVDLQKEEAALAPRSVSLKDKGRF





MDGSPYAHMFEMSAGESTFANNKSSVPTAGHHHHN





NPGGGYMLSKSLYPDRVTQNPFIPTFGDDQCLLHG





SKSYFFRQPTVAGASKARPDFRALVTNKPVVSALH





GAVPARFQKDICIGNQSNPCVPNNKNPRAFNGSSN





GHVYEKLSSIESDV





Cystic fibrosis
Cystic fibrosis
229
MQRSPLEKASVVSKLFFSWTRPILRKGYRORLELS


transmembrane


DIYQIPSVDSADNLSEKLEREWDRELASKKNPKLI


conductance


NALRRCFFWREMFYGIFLYLGEVTKAVQPLLLGRI


regulator


IASYDPDNKEERSIAIYLGIGLCLLFIVRTLLLHP


(CFTR)


AIFGLHHIGMQMRIAMESLIYKKTLKLSSRVLDKI





SIGQLVSLLSNNLNKFDEGLALAHEVWIAPLQVAL





LMGLIWELLQASAFCGLGFLIVLALFQAGLGRMMM





KYRDQRAGKISERLVITSEMIENIQSVKAYCWEEA





MEKMIENLRQTELKLTRKAAYVRYFNSSAFFFSGE





FVVELSVLPYALIKGIILRKIFTTISFCIVLRMAV





TRQFPWAVQTWYDSLGAINKIQDFLOKQEYKTLEY





NLTTTEVVMENVTAFWEEGFGELFEKAKQNNNNRK





TSNGDDSLFFSNFSLLGTPVLKDINFKIERGQLLA





VAGSTGAGKTSLLMVIMGELEPSEGKIKHSGRISF





CSQFSWIMPGTIKENIIFGVSYDEYRYRSVIKACQ





LEEDISKFAEKDNIVLGEGGITLSGGQRARISLAR





AVYKDADLYLLDSPFGYLDVLTEKEIFESCVCKLM





ANKTRILVTSKMEHLKKADKILILHEGSSYFYGTE





SELONLQPDFSSKLMGCDSFDQESAERRNSILTET





LHRFSLEGDAPVSWTETKKQSFKQTGEFGEKRKNS





ILNPINSIRKESIVQKTPLQMNGIEEDSDEPLERR





LSLVPDSEQGEAILPRISVISTGPTLQARRRQSVL





NLMTHSVNQGQNIHRKTTASTRKVSLAPQANLTEL





DIYSRRLSQETGLEISEEINEEDLKECFEDDMESI





PAVTTWNTYLRYITVHKSLIFVLIWCLVIFLAEVA





ASLVVLWLLGNTPLQDKGNSTHSRNNSYAVIITST





SSYYVFYIYVGVADTLLAMGFFRGLPLVHTLITVS





KILHHKMLHSVLQAPMSTLNTLKAGGILNRFSKDI





AILDDLLPLTIEDFIQLLLIVIGAIAVVAVLQPYI





FVATVPVIVAFIMLRAYFLOTSQQLKOLESEGRSP





IFTHLVTSLKGLWTLRAFGRQPYFETLFHKALNLH





TANWFLYLSTLRWFQMRIEMIFVIFFIAVTFISIL





TTGEGEGRVGIILTLAMNIMSTLQWAVNSSIDVDS





LMRSVSRVFKFIDMPTEGKPTKSTKPYKNGQLSKV





MIIENSHVKKDDIWPSGGQMTVKDLTAKYTEGGNA





ILENISFSISPGQRVGLLGRTGSGKSTLLSAFLRL





LNTEGEIQIDGVSWDSITLQQWRKAFGVIPQKVFI





FSGTFRKNLDPYEQWSDQEIWKVADEVGLRSVIEQ





FPGKLDFVLVDGGCVLSHGHKQLMCLARSVLSKAK





ILLLDEPSAHLDPVTYQIIRRTLKQAFADCTVILC





EHRIEAMLECQQFLVIEENKVRQYDSIQKLLNERS





LFRQAISPSDRVKLEPHRNSSKCKSKPQIAALKEE





TEEEVQDTRL





Sodium
Dravet
230
MEQTVLVPPGPDSENFFTRESLAAIERRIAEEKAK


channel protein
syndrome

NPKPDKKDDDENGPKPNSDLEAGKNLPFIYGDIPP


type 1 subunit


EMVSEPLEDLDPYYINKKTFIVLNKGKAIFRESAT


alpha (SCN1A)


SALYILTPENPLRKIAIKILVHSLESMLIMCTILT





NCVFMTMSNPPDWTKNVEYTFTGIYTFESLIKIIA





RGFCLEDFTFLRDPWNWLDFTVITFAYVTEFVDLG





NVSALRTFRVLRALKTISVIPGLKTIVGALIQSVK





KLSDVMILTVFCLSVFALIGLQLEMGNLRNKCIQW





PPTNASLEEHSIEKNITVNYNGTLINETVFEEDWK





SYIQDSRYHYFLEGELDALLCGNSSDAGQCPEGYM





CVKAGRNPNYGYTSFDTFSWAFLSLERLMTQDEWE





NLYQLTLRAAGKTYMIFFVLVIFLGSFYLINLILA





VVAMAYEEQNQATLEEAEQKEAEFQQMIEQLKKQQ





EAAQQAATATASEHSREPSAAGRLSDSSSEASKLS





SKSAKERRNRRKKRKQKEQSGGEEKDEDEFQKSES





EDSIRRKGFRESIEGNRLTYEKRYSSPHQSLLSIR





GSLFSPRRNSRTSLFSFRGRAKDVGSENDFADDEH





STFEDNESRRDSLFVPRRHGERRNSNLSQTSRSSR





MLAVFPANGKMHSTVDCNGVVSLVGGPSVPTSPVG





QLLPEVIIDKPATDDNGTTTETEMRKRRSSSFHVS





MDFLEDPSQRQRAMSIASILTNTVEELEESROKCP





PCWYKFSNIFLIWDCSPYWLKVKHVVNLVVMDPFV





DLAITICIVLNTLFMAMEHYPMTDHENNVLTVGNL





VFTGIFTAEMELKIIAMDPYYYFQEGWNIEDGFIV





TLSLVELGLANVEGLSVLRSERLLRVEKLAKSWPT





LNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQ





LFGKSYKDCVCKIASDCQLPRWHMNDFFHSFLIVE





RVLCGEWIETMWDCMEVAGQAMCLTVFMMVMVIGN





LVVLNLFLALLLSSFSADNLAATDDDNEMNNLQIA





VDRMHKGVAYVKRKIYEFIQQSFIRKQKILDEIKP





LDDLNNKKDSCMSNHTAEIGKDLDYLKDVNGTTSG





IGTGSSVEKYIIDESDYMSFINNPSLTVTVPIAVG





ESDFENLNTEDESSESDLEESKEKLNESSSSSEGS





TVDIGAPVEEQPVVEPEETLEPEACFTEGCVQRFK





CCQINVEEGRGKQWWNLRRTCFRIVEHNWFETFIV





FMILLSSGALAFEDIYIDQRKTIKTMLEYADKVET





YIFILEMLLKWVAYGYQTYFTNAWCWLDFLIVDVS





LVSLTANALGYSELGAIKSLRTLRALRPLRALSRE





EGMRVVVNALLGAIPSIMNVLLVCLIFWLIFSIMG





VNLFAGKFYHCINTTTGDREDIEDVNNHTDCLKLI





ERNETARWKNVKVNFDNVGFGYLSLLQVATFKGWM





DIMYAAVDSRNVELQPKYEESLYMYLYFVIFIIFG





SFFTLNLFIGVIIDNFNQQKKKFGGQDIEMTEEQK





KYYNAMKKLGSKKPQKPIPRPGNKFQGMVFDFVTR





QVFDISIMILICLNMVTMMVETDDQSEYVTTILSR





INLVFIVLFTGECVLKLISLRHYYFTIGWNIFDFV





VVILSIVGMFLAELIEKYFVSPTLERVIRLARIGR





ILRLIKGAKGIRTLLFALMMSLPALENIGLLLFLV





MFIYAIFGMSNFAYVKREVGIDDMENFETEGNSMI





CLFQITTSAGWDGLLAPILNSKPPDCDPNKVNPGS





SVKGDCGNPSVGIFFFVSYIIISELVVVNMYIAVI





LENESVATEESAEPLSEDDFEMFYEVWEKEDPDAT





QFMEFEKLSQFAAALEPPLNLPQPNKLQLIAMDLP





MVSGDRIHCLDILFAFTKRVLGESGEMDALRIQME





ERFMASNPSKVSYQPITTTLKRKQEEVSAVIIQRA





YRRHLLKRTVKQASFTYNKNKIKGGANLLIKEDMI





IDRINENSITEKTDLTMSTAACPPSYDRVTKPIVE





KHEQEGKDEKAKGK





Copper-
Wilson disease
231
MPEQERQITAREGASRKILSKLSLPTRAWEPAMKK


transporting


SFAFDNVGYEGGLDGLGPSSQVATSTVRILGMTCQ


ATPase 2


SCVKSIEDRISNLKGIISMKVSLEQGSATVKYVPS


(ATP7B)


VVCLQQVCHQIGDMGFEASIAEGKAASWPSRSLPA





QEAVVKLRVEGMTCQSCVSSIEGKVRKLQGVVRVK





VSLSNQEAVITYQPYLIQPEDLRDHVNDMGFEAAI





KSKVAPLSLGPIDIERLQSTNPKRPLSSANQNENN





SETLGHQGSHVVTLQLRIDGMHCKSCVLNIEENIG





QLLGVQSIQVSLENKTAQVKYDPSCTSPVALQRAI





EALPPGNFKVSLPDGAEGSGTDHRSSSSHSPGSPP





RNQVQGTCSTTLIAIAGMTCASCVHSIEGMISQLE





GVQQISVSLAEGTATVLYNPSVISPEELRAAIEDM





GFEASVVSESCSTNPLGNHSAGNSMVQTTDGTPTS





VQEVAPHTGRLPANHAPDILAKSPQSTRAVAPQKC





FLQIKGMTCASCVSNIERNLQKEAGVLSVLVALMA





GKAEIKYDPEVIQPLEIAQFIQDLGFEAAVMEDYA





GSDGNIELTITGMTCASCVHNIESKLTRINGITYA





SVALATSKALVKEDPEIIGPRDIIKIIEEIGFHAS





LAQRNPNAHHLDHKMEIKQWKKSFLCSLVFGIPVM





ALMIYMLIPSNEPHQSMVLDHNIIPGLSILNLIFF





ILCTFVQLLGGWYFYVQAYKSLRHRSANMDVLIVL





ATSIAYVYSLVILVVAVAEKAERSPVTFEDTPPML





FVFIALGRWLEHLAKSKTSEALAKLMSLQATEATV





VTLGEDNLIIREEQVPMELVQRGDIVKVVPGGKEP





VDGKVLEGNTMADESLITGEAMPVTKKPGSTVIAG





SINAHGSVLIKATHVGNDTTLAQIVKLVEEAQMSK





APIQQLADRESGYFVPFIIIMSTLTLVVWIVIGFI





DFGVVQRYFPNPNKHISQTEVIIRFAFQTSITVLC





IACPCSLGLATPTAVMVGTGVAAQNGILIKGGKPL





EMAHKIKTVMFDKTGTITHGVPRVMRVLLLGDVAT





LPLRKVLAVVGTAEASSEHPLGVAVTKYCKEELGT





ETLGYCTDFQAVPGCGIGCKVSNVEGILAHSERPL





SAPASHLNEAGSLPAEKDAVPQTFSVLIGNREWLR





RNGLTISSDVSDAMTDHEMKGQTAILVAIDGVLCG





MIAIADAVKQEAALAVHTLQSMGVDVVLITGDNRK





TARAIATQVGINKVFAEVLPSHKVAKVQELONKGK





KVAMVGDGVNDSPALAQADMGVAIGTGTDVAIEAA





DVVLIRNDLLDVVASIHLSKRTVRRIRINLVLALI





YNLVGIPIAAGVEMPIGIVLQPWMGSAAMAASSVS





VVLSSLQLKCYKKPDLERYEAQAHGHMKPLTASQV





SVHIGMDDRWRDSPRATPWDQVSYVSQVSLSSLTS





DKPSRHSAAADDDGDKWSLLLNGRDEEQYI





Potassium
KCNQ2-Related
232
MVQKSRNGGVYPGPSGEKKLKVGFVGLDPGAPDST


voltage-gated
Disorders

RDGALLIAGSEAPKRGSILSKPRAGGAGAGKPPKR


channel
(Epileptic

NAFYRKLONFLYNVLERPRGWAFIYHAYVELLVES


subfamily KQT
Encephalopathy)

CLVLSVESTIKEYEKSSEGALYILEIVTIVVEGVE


member 2


YFVRIWAAGCCCRYRGWRGRLKFARKPFCVIDIMV


(KCNQ2)


LIASIAVLAAGSQGNVFATSALRSLRELQILRMIR





MDRRGGTWKLLGSVVYAHSKELVTAWYIGELCLIL





ASFLVYLAEKGENDHEDTYADALWWGLITLTTIGY





GDKYPQTWNGRLLAATFTLIGVSFFALPAGILGSG





FALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATN





LSRTDLHSTWQYYERTVTVPMYSSQTQTYGASRLI





PPLNQLELLRNLKSKSGLAFRKDPPPEPSPSKGSP





CRGPLCGCCPGRSSQKVSLKDRVESSPRGVAAKGK





GSPQAQTVRRSPSADQSLEDSPSKVPKSWSFGDRS





RARQAFRIKGAASRONSEEASLPGEDIVDDKSCPC





EFVTEDLTPGLKVSIRAVCVMRFLVSKRKFKESLR





PYDVMDVIEQYSAGHLDMLSRIKSLQSRVDQIVGR





GPAITDKDRTKGPAEAELPEDPSMMGRLGKVEKQV





LSMEKKLDELVNIYMQRMGIPPTETEAYFGAKEPE





PAPPYHSPEDSREHVDRHGCIVKIVRSSSSTGQKN





FSAPPAAPPVQCPPSTSWQPQSHPRQGHGTSPVGD





HGSLVRIPPPPAHERSLSAYGGGNRASMEFLRQED





TPGCRPPEGNLRDSDTSISIPSVDHEELERSFSGF





SISQSKENLDALNSCYAAVAPCAKVRPYIAEGESD





TDSDLCTPCGPPPRSATGEGPFGDVGWAGPRK





Sodium
SCN2A-Related
233
MAQSVLVPPGPDSFRFFTRESLAAIEQRIAEEKAK


channel protein
Disorders;

RPKQERKDEDDENGPKPNSDLEAGKSLPFIYGDIP


type 2 subunit
Epileptic

PEMVSVPLEDLDPYYINKKTFIVLNKGKAISRESA


alpha (SCN2A)
encephalopathy,

TPALYILTPENPIRKLAIKILVHSLENMLIMCTIL



early infantile,

TNCVFMTMSNPPDWTKNVEYTFTGIYTFESLIKIL



11

ARGFCLEDETFLRDPWNWLDFTVITFAYVTEFVDL





GNVSALRTERVLRALKTISVIPGLKTIVGALIQSV





KKLSDVMILTVFCLSVFALIGLQLEMGNLRNKCLQ





WPPDNSSFEINITSFENNSLDGNGTTENRTVSIEN





WDEYIEDKSHFYFLEGQNDALLCGNSSDAGQCPEG





YICVKAGRNPNYGYTSFDTESWAFLSLERLMTQDE





WENLYQLTLRAAGKTYMIFFVLVIFLGSFYLINLI





LAVVAMAYEEQNQATLEEAEQKEAEFQQMLEQLKK





QQEEAQAAAAAASAESRDFSGAGGIGVFSESSSVA





SKLSSKSEKELKNRRKKKKQKEQSGEEEKNDRVRK





SESEDSIRRKGFRESLEGSRLTYEKRFSSPHQSLL





SIRGSLFSPRRNSRASLESFRGRAKDIGSENDFAD





DEHSTFEDNDSRRDSLFVPHRHGERRHSNVSQASR





ASRVLPILPMNGKMHSAVDCNGVVSLVGGPSTLTS





AGQLLPEGTTTETEIRKRRSSSYHVSMDLLEDPTS





RQRAMSIASILTNTMEELEESRQKCPPCWYKFANM





CLIWDCCKPWLKVKHLVNLVVMDPFVDLAITICIV





LNTLFMAMEHYPMTEQFSSVLSVGNLVETGIFTAE





MFLKIIAMDPYYYFQEGWNIFDGFIVSLSLMELGL





ANVEGLSVLRSFRLLRVFKLAKSWPTLNMLIKIIG





NSVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKEC





VCKISNDCELPRWHMHDFFHSFLIVERVLCGEWIE





TMWDCMEVAGQTMCLTVFMMVMVIGNLVVLNLFLA





LLLSSESSDNLAATDDDNEMNNLQIAVGRMQKGID





FVKRKIREFIQKAFVRKQKALDEIKPLEDLNNKKD





SCISNHTTIEIGKDLNYLKDGNGTTSGIGSSVEKY





VVDESDYMSFINNPSLTVTVPIAVGESDFENLNTE





EFSSESDMEESKEKLNATSSSEGSTVDIGAPAEGE





QPEVEPEESLEPEACFTEDCVRKFKCCQISIEEGK





GKLWWNLRKTCYKIVEHNWFETFIVEMILLSSGAL





AFEDIYIEQRKTIKTMLEYADKVFTYIFILEMLLK





WVAYGFQVYFTNAWCWLDFLIVDVSLVSLTANALG





YSELGAIKSLRTLRALRPLRALSRFEGMRVVVNAL





LGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFYH





CINYTTGEMFDVSVVNNYSECKALIESNQTARWKN





VKVNFDNVGLGYLSLLQVATFKGWMDIMYAAVDSR





NVELQPKYEDNLYMYLYFVIFIIFGSFFTLNLFIG





VIIDNENQQKKKFGGQDIEMTEEQKKYYNAMKKLG





SKKPQKPIPRPANKFQGMVFDFVTKQVEDISIMIL





ICLNMVTMMVETDDQSQEMTNILYWINLVFIVLET





GECVLKLISLRYYYFTIGWNIFDFVVVILSIVGME





LAELIEKYFVSPTLERVIRLARIGRILRLIKGAKG





IRTLLFALMMSLPALFNIGLLLFLVMFIYAIFGMS





NFAYVKREVGIDDMENFETEGNSMICLFQITTSAG





WDGLLAPILNSGPPDCDPDKDHPGSSVKGDCGNPS





VGIFFFVSYIIISELVVVNMYIAVILENFSVATEE





SAEPLSEDDFEMFYEVWEKFDPDATQFIEFAKLSD





FADALDPPLLIAKPNKVQLIAMDLPMVSGDRIHCL





DILFAFTKRVLGESGEMDALRIQMEERFMASNPSK





VSYEPITTTLKRKQEEVSAIIIQRAYRRYLLKQKV





KKVSSIYKKDKGKECDGTPIKEDTLIDKLNENSTP





EKTDMTPSTTSPPSYDSVTKPEKEKFEKDKSEKED





KGKDIRESKK





Voltage-
CACNA1A-
234
MARFGDEMPARYGGGGSGAAAGVVVGSGGGRGAGG


dependent P/Q-
Related

SRQGGQPGAQRMYKQSMAQRARTMALYNPIPVRON


type calcium
Disorders;

CLTVNRSLFLESEDNVVRKYAKKITEWPPFEYMIL


channel subunit
Episodic ataxia,

ATIIANCIVLALEQHLPDDDKTPMSERLDDTEPYF


alpha-1A
type 2

IGIFCFEAGIKIIALGFAFHKGSYLRNGWNVMDEV


(CACNA1A)


VVLTGILATVGTEFDLRTLRAVRVLRPLKLVSGIP





SLQVVLKSIMKAMIPLLQIGLLLFFAILIFAIIGL





EFYMGKFHTTCFEEGTDDIQGESPAPCGTEEPART





CPNGTKCOPYWEGPNNGITQFDNILFAVLTVFQCI





TMEGWTDLLYNSNDASGNTWNWLYFIPLIIIGSFF





MLNLVLGVLSGEFAKERERVENRRAFLKLRRQQQI





ERELNGYMEWISKAEEVILAEDETDGEQRHPEDAL





RRTTIKKSKTDLLNPEEAEDQLADIASVGSPFARA





SIKSAKLENSTFFHKKERRMRFYIRRMVKTQAFYW





TVLSLVALNTLCVAIVHYNQPEWLSDFLYYAEFIF





LGLFMSEMFIKMYGLGTRPYFHSSENCEDCGVIIG





SIFEVIWAVIKPGTSFGISVLRALRLLRIFKVTKY





WASLRNLVVSLLNSMKSIISLLELLFLFIVVFALL





GMQLFGGQFNFDEGTPPTNEDTFPAAIMTVFQILT





GEDWNEVMYDGIKSQGGVQGGMVESIYFIVLTLFG





NYTLLNVELAIAVDNLANAQELTKDEQEEEEAANQ





KLALQKAKEVAEVSPLSAANMSIAVKEQQKNOKPA





KSVWEQRTSEMRKONLLASREALYNEMDPDERWKA





AYTRHLRPDMKTHLDRPLVVDPQENRNNNTNKSRA





AEPTVDORLGQQRAEDELRKQARYHDRARDPSGSA





GLDARRPWAGSQEAELSREGPYGRESDHHAREGSL





EQPGFWEGEAERGKAGDPHRRHVHRQGGSRESRSG





SPRTGADGEHRRHRAHRRPGEEGPEDKAERRARHR





EGSRPARGGEGEGEGPDGGERRRRHRHGAPATYEG





DARREDKERRHRRRKENQGSGVPVSGPNLSTTRPI





QQDLGRQDPPLAEDIDNMKNNKLATAESAAPHGSL





GHAGLPQSPAKMGNSTDPGPMLAIPAMATNPQNAA





SRRTPNNPGNPSNPGPPKTPENSLIVINPSGTQTN





SAKTARKPDHTTVDIPPACPPPLNHTVVQVNKNAN





PDPLPKKEEEKKEEEEDDRGEDGPKPMPPYSSMFI





LSTTNPLRRLCHYILNLRYFEMCILMVIAMSSIAL





AAEDPVQPNAPRNNVLRYFDYVFTGVFTFEMVIKM





IDLGLVLHQGAYFRDLWNILDFIVVSGALVAFAFT





GNSKGKDINTIKSLRVLRVLRPLKTIKRLPKLKAV





FDCVVNSLKNVFNILIVYMLFMFIFAVVAVQLEKG





KFFHCTDESKEFEKDCRGKYLLYEKNEVKARDREW





KKYEFHYDNVLWALLTLFTVSTGEGWPQVLKHSVD





ATFENQGPSPGYRMEMSIFYVVYFVVFPFFFVNIF





VALIIITFQEQGDKMMEEYSLEKNERACIDFAISA





KPLTRHMPQNKQSFQYRMWQFVVSPPFEYTIMAMI





ALNTIVLMMKFYGASVAYENALRVENIVETSLESL





ECVLKVMAFGILNYFRDAWNIFDFVTVLGSITDIL





VTEFGNNFINLSFLRLFRAARLIKLLRQGYTIRIL





LWTFVQSFKALPYVCLLIAMLFFIYAIIGMQVEGN





IGIDVEDEDSDEDEFQITEHNNERTFFQALMLLER





SATGEAWHNIMLSCLSGKPCDKNSGILTRECGNEF





AYFYFVSFIFLCSFLMLNLFVAVIMDNFEYLTRDS





SILGPHHLDEYVRVWAEYDPAAWGRMPYLDMYQML





RHMSPPLGLGKKCPARVAYKRLLRMDLPVADDNTV





HFNSTLMALIRTALDIKIAKGGADKQQMDAELRKE





MMAIWPNLSQKTLDLLVTPHKSTDLTVGKIYAAMM





IMEYYRQSKAKKLQAMREEQDRTPLMFQRMEPPSP





TQEGGPGQNALPSTQLDPGGALMAHESGLKESPSW





VTQRAQEMFQKTGTWSPEQGPPTDMPNSQPNSQSV





EMREMGRDGYSDSEHYLPMEGQGRAASMPRLPAEN





QRRRGRPRGNNLSTISDTSPMKRSASVLGPKARRL





DDYSLERVPPEENQRHHQRRRDRSHRASERSLGRY





TDVDTGLGTDLSMTTQSGDLPSKERDQERGRPKDR





KHRQHHHHHHHHHHPPPPDKDRYAQERPDHGRARA





RDQRWSRSPSEGREHMAHRQGSSSVSGSPAPSTSG





TSTPRRGRRQLPQTPSTPRPHVSYSPVIRKAGGSG





PPQQQQQQQQQQQQQAVARPGRAATSGPRRYPGPT





AEPLAGDRPPTGGHSSGRSPRMERRVPGPARSESP





RACRHGGARWPASGPHVSEGPPGPRHHGYYRGSDY





DEADGPGSGGGEEAMAGAYDAPPPVRHASSGATGR





SPRTPRASGPACASPSRHGRRLPNGYYPAHGLARP





RGPGSRKGLHEPYSESDDDWC





Sodium
SCN8A-Related
235
MAARLLAPPGPDSFKPFTPESLANIERRIAESKLK


channel protein
Disorders;

KPPKADGSHREDDEDSKPKPNSDLEAGKSLPFIYG


type 8 subunit
Epileptic

DIPQGLVAVPLEDFDPYYLTQKTFVVLNRGKTLER


alpha (SCN8A)
encephalopathy,

FSATPALYILSPENLIRRIAIKILIHSVFSMIIMC



early infantile,

TILTNCVEMTFSNPPDWSKNVEYTFTGIYTFESLV



13

KIIARGFCIDGFTFLRDPWNWLDESVIMMAYITEF





VNLGNVSALRTFRVLRALKTISVIPGLKTIVGALI





QSVKKLSDVMILTVFCLSVFALIGLQLEMGNLRNK





CVVWPINFNESYLENGTKGEDWEEYINNKTNFYTV





PGMLEPLLCGNSSDAGQCPEGYQCMKAGRNPNYGY





TSFDTESWAFLALFRLMTQDYWENLYQLTLRAAGK





TYMIFFVLVIFVGSFYLVNLILAVVAMAYEEQNQA





TLEEAEQKEAEFKAMLEQLKKQQEEAQAAAMATSA





GTVSEDAIEEEGEEGGGSPRSSSEISKLSSKSAKE





RRNRRKKRKQKELSEGEEKGDPEKVEKSESEDGMR





RKAFRLPDNRIGRKESIMNQSLLSIPGSPELSRHN





SKSSIFSFRGPGRERDPGSENEFADDEHSTVEESE





GRRDSLFIPIRARERRSSYSGYSGYSQGSRSSRIF





PSLRRSVKRNSTVDCNGVVSLIGGPGSHIGGRLLP





EATTEVEIKKKGPGSLLVSMDQLASYGRKDRINSI





MSVVTNTLVEELEESQRKCPPCWYKFANTFLIWEC





HPYWIKLKEIVNLIVMDPFVDLAITICIVLNTLFM





AMEHHPMTPQFEHVLAVGNLVETGIFTAEMELKLI





AMDPYYYFQEGWNIFDGFIVSLSLMELSLADVEGL





SVLRSFRLLRVFKLAKSWPTLNMLIKIIGNSVGAL





GNLTLVLAIIVFIFAVVGMQLFGKSYKECVCKINQ





DCELPRWHMHDFFHSFLIVERVLCGEWIETMWDCM





EVAGQAMCLIVFMMVMVIGNLVVLNLFLALLLSSE





SADNLAATDDDGEMNNLQISVIRIKKGVAWTKLKV





HAFMQAHFKOREADEVKPLDELYEKKANCIANHTG





ADIHRNGDFQKNGNGTTSGIGSSVEKYIIDEDHMS





FINNPNLTVRVPIAVGESDFENLNTEDVSSESDPE





GSKDKLDDTSSSEGSTIDIKPEVEEVPVEQPEEYL





DPDACFTEGCVQRFKCCQVNIEEGLGKSWWILRKT





CFLIVEHNWFETFIIFMILLSSGALAFEDIYIEQR





KTIRTILEYADKVETYIFILEMLLKWTAYGFVKFF





TNAWCWLDELIVAVSLVSLIANALGYSELGAIKSL





RTLRALRPLRALSRFEGMRVVVNALVGAIPSIMNV





LLVCLIFWLIFSIMGVNLFAGKYHYCFNETSEIRE





EIEDVNNKTECEKLMEGNNTEIRWKNVKINEDNVG





AGYLALLQVATFKGWMDIMYAAVDSRKPDEQPKYE





DNIYMYIYFVIFIIFGSFFTLNLFIGVIIDNENQQ





KKKFGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIP





RPLNKIQGIVFDFVTQQAFDIVIMMLICLNMVTMM





VETDTQSKQMENILYWINLVFVIFFTCECVLKMFA





LRHYYFTIGWNIFDFVVVILSIVGMFLADIIEKYF





VSPTLERVIRLARIGRILRLIKGAKGIRTLLFALM





MSLPALFNIGLLLFLVMFIFSIFGMSNFAYVKHEA





GIDDMENFETEGNSMICLFQITTSAGWDGLLLPIL





NRPPDCSLDKEHPGSGFKGDCGNPSVGIFFFVSYI





IISFLIVVNMYIAIILENFSVATEESADPLSEDDE





ETFYEIWEKFDPDATQFIEYCKLADFADALEHPLR





VPKPNTIELIAMDLPMVSGDRIHCLDILFAFTKRV





LGDSGELDILRQQMEERFVASNPSKVSYEPITTTL





RRKQEEVSAVVLQRAYRGHLARRGFICKKTTSNKL





ENGGTHREKKESTPSTASLPSYDSVTKPEKEKQQR





AEEGRRERAKRQKEVRESKC





Glutamate
GRIN2A-
236

MGRVGYWTLLVLPALLVWRGPAPSAAAEKGPPALN



receptor
Related

IAVMLGHSHDVTERELRTLWGPEQAAGLPLDVNVV


ionotropic,
Disorder;

ALLMNRTDPKSLITHVCDLMSGARIHGLVFGDDTD


NMDA 2A
Epilepsy, focal,

QEAVAQMLDFISSHTFVPILGIHGGASMIMADKDP


(GRIN2A)
with speech

TSTFFQFGASIQQQATVMLKIMQDYDWHVESLVTT


Signal
disorder and

IFPGYREFISFVKTTVDNSFVGWDMQNVITLDTSF


Sequence
with or without

EDAKTQVQLKKIHSSVILLYCSKDEAVLILSEARS


Underlined
mental

LGLTGYDFFWIVPSLVSGNTELIPKEFPSGLISVS



retardation

YDDWDYSLEARVRDGIGILTTAASSMLEKESYIPE





AKASCYGQMERPEVPMHTLHPFMVNVTWDGKDLSF





TEEGYQVHPRLVVIVLNKDREWEKVGKWENHTLSL





RHAVWPRYKSFSDCEPDDNHLSIVTLEEAPFVIVE





DIDPLTETCVRNTVPCRKFVKINNSTNEGMNVKKC





CKGFCIDILKKLSRTVKFTYDLYLVTNGKHGKKVN





NVWNGMIGEVVYQRAVMAVGSLTINEERSEVVDES





VPFVETGISVMVSRSNGTVSPSAFLEPESASVWVM





MFVMLLIVSAIAVFVFEYFSPVGYNRNLAKGKAPH





GPSFTIGKAIWLLWGLVENNSVPVQNPKGTTSKIM





VSVWAFFAVIFLASYTANLAAFMIQEEFVDQVTGL





SDKKFORPHDYSPPFRFGTVPNGSTERNIRNNYPY





MHQYMTKFNQKGVEDALVSLKTGKLDAFIYDAAVL





NYKAGRDEGCKLVTIGSGYIFATTGYGIALQKGSP





WKRQIDLALLQFVGDGEMEELETLWLTGICHNEKN





EVMSSQLDIDNMAGVFYMLAAAMALSLITFIWEHL





FYWKLRFCFTGVCSDRPGLLESISRGIYSCIHGVH





IEEKKKSPDFNLTGSQSNMLKLLRSAKNISSMSNM





NSSRMDSPKRAADFIQRGSLIMDMVSDKGNLMYSD





NRSFQGKESIFGDNMNELQTFVANRQKDNLNNYVE





QGQHPLTLNESNPNTVEVAVSTESKANSRPRQLWK





KSVDSIRQDSLSQNPVSQRDEATAENRTHSLKSPR





YLPEEMAHSDISETSNRATCHREPDNSKNHKTKDN





FKRSVASKYPKDCSEVERTYLKTKSSSPRDKIYTI





DGEKEPGFHLDPPQFVENVTLPENVDEPDPYQDPS





ENFRKGDSTLPMNRNPLHNEEGLSNNDQYKLYSKH





FTLKDKGSPHSETSERYRQNSTHCRSCLSNMPTYS





GHFTMRSPFKCDACLRMGNLYDIDEDQMLQETGNP





ATGEQVYQQDWAQNNALQLQKNKLRISRQHSYDNI





VDKPRELDLSRPSRSISLKDRERLLEGNFYGSLES





VPSSKLSGKKSSLFPQGLEDSKRSKSLLPDHTSDN





PFLHSHRDDQRLVIGRCPSDPYKHSLPSQAVNDSY





LRSSLRSTASYCSRDSRGHNDVYISEHVMPYAANK





NNMYSTPRVLNSCSNRRVYKKMPSIESDV





Sodium- and
SLC6A1-
237
MATNGSKVADGQISTEVSEAPVANDKPKTLVVKVQ


chloride-
Related

KKAADLPDRDTWKGREDFLMSCVGYAIGLGNVWRF


dependent
Disorder;

PYLCGKNGGGAFLIPYFLTLIFAGVPLELLECSLG


GABA
Myoclonic-

QYTSIGGLGVWKLAPMFKGVGLAAAVLSFWLNIYY


transporter 1
atonic epilepsy

IVIISWAIYYLYNSFTTTLPWKQCDNPWNTDRCES


(SLC6A1)


NYSMVNTTNMTSAVVEFWERNMHQMTDGLDKPGQI





RWPLAITLAIAWILVYFCIWKGVGWTGKVVYFSAT





YPYIMLIILFFRGVTLPGAKEGILFYITPNERKLS





DSEVWLDAATQIFFSYGLGLGSLIALGSYNSFHNN





VYRDSIIVCCINSCTSMFAGFVIFSIVGEMAHVTK





RSIADVAASGPGLAFLAYPEAVTQLPISPLWAILF





FSMLLMLGIDSQFCTVEGFITALVDEYPRLLRNRR





ELFIAAVCIISYLIGLSNITQGGIYVEKLFDYYSA





SGMSLLFLVFFECVSISWFYGVNRFYDNIQEMVGS





RPCIWWKLCWSFFTPIIVAGVFIFSAVQMTPLTMG





NYVFPKWGQGVGWLMALSSMVLIPGYMAYMELTLK





GSLKQRIQVMVQPSEDIVRPENGPEQPQAGSSTSK





EAYI





Sodium/
Alternating
238

MGRGAGREYSPAATTAENGGGKKKQKEKELDELKK



potassium-
hemiplegia of

EVAMDDHKLSLDELGRKYQVDLSKGLTNORAQDVL


transporting
childhood

ARDGPNALTPPPTTPEWVKFCRQLEGGESILLWIG


ATPase


AILCFLAYGIQAAMEDEPSNDNLYLGVVLAAVVIV


subunit alpha-2


TGCFSYYQEAKSSKIMDSFKNMVPQQALVIREGEK


(ATP1A2)


MQINAEEVVVGDLVEVKGGDRVPADLRIISSHGCK


Signal


VDNSSLTGESEPQTRSPEFTHENPLETRNICFEST


Sequence


NCVEGTARGIVIATGDRTVMGRIATLASGLEVGRT


Underlined


PIAMEIEHFIQLITGVAVELGVSFFVLSLILGYSW





LEAVIFLIGIIVANVPEGLLATVTVCLTLTAKRMA





RKNCLVKNLEAVETLGSTSTICSDKTGTLTQNRMT





VAHMWFDNQIHEADTTEDQSGATFDKRSPTWTALS





RIAGLCNRAVFKAGQENISVSKRDTAGDASESALL





KCIELSCGSVRKMRDRNPKVAEIPENSTNKYQLSI





HEREDSPQSHVLVMKGAPERILDRCSTILVQGKEI





PLDKEMQDAFQNAYMELGGLGERVLGFCQLNLPSG





KFPRGFKFDTDELNFPTEKLCFVGLMSMIDPPRAA





VPDAVGKCRSAGIKVIMVTGDHPITAKAIAKGVGI





ISEGNETVEDIAARLNIPMSQVNPREAKACVVHGS





DLKDMTSEQLDEILKNHTEIVFARTSPQQKLIIVE





GCQRQGAIVAVTGDGVNDSPALKKADIGIAMGISG





SDVSKQAADMILLDDNFASIVTGVEEGRLIEDNLK





KSIAYTLTSNIPEITPELLFIIANIPLPLGTVTIL





CIDLGTDMVPAISLAYEAAESDIMKRQPRNSQTDK





LVNERLISMAYGQIGMIQALGGFFTYFVILAENGE





LPSRLLGIRLDWDDRTMNDLEDSYGQEWTYEQRKV





VEFTCHTAFFASIVVVQWADLIICKTRRNSVFQQG





MKNKILIFGLLEETALAAFLSYCPGMGVALRMYPL





KVTWWFCAFPYSLLIFIYDEVRKLILRRYPGGWVE





KETYY





Sodium/
Alternating
239
MGDKKDDKDSPKKNKGKERRDLDDLKKEVAMTEHK


potassium-
hemiplegia of

MSVEEVCRKYNTDCVQGLTHSKAQEILARDGPNAL


transporting
childhood 2

TPPPTTPEWVKFCRQLEGGESILLWIGAILCFLAY


ATPase


GIQAGTEDDPSGDNLYLGIVLAAVVIITGCESYYQ


subunit alpha-3


EAKSSKIMESFKNMVPQQALVIREGEKMQVNAEEV


(ATP1A3)


VVGDLVEIKGGDRVPADLRIISAHGCKVDNSSLTG





ESEPQTRSPDCTHDNPLETRNITFFSTNCVEGTAR





GVVVATGDRTVMGRIATLASGLEVGKTPIAIEIEH





FIQLITGVAVELGVSFFILSLILGYTWLEAVIFLI





GIIVANVPEGLLATVTVCLTLTAKRMARKNCLVKN





LEAVETLGSTSTICSDKTGTLTQNRMTVAHMWEDN





QIHEADTTEDQSGTSFDKSSHTWVALSHIAGLCNR





AVFKGGQDNIPVLKRDVAGDASESALLKCIELSSG





SVKLMRERNKKVAEIPENSTNKYQLSIHETEDPND





NRYLLVMKGAPERILDRCSTILLQGKEQPLDEEMK





EAFQNAYLELGGLGERVLGFCHYYLPEEQFPKGFA





FDCDDVNFTTDNLCFVGLMSMIDPPRAAVPDAVGK





CRSAGIKVIMVTGDHPITAKAIAKGVGIISEGNET





VEDIAARLNIPVSQVNPRDAKACVIHGTDLKDETS





EQIDEILQNHTEIVFARTSPQQKLIIVEGCQRQGA





IVAVTGDGVNDSPALKKADIGVAMGIAGSDVSKQA





ADMILLDDNFASIVTGVEEGRLIFDNLKKSIAYTL





TSNIPEITPELLFIMANIPLPLGTITILCIDLGTD





MVPAISLAYEAAESDIMKRQPRNPRTDKLVNERLI





SMAYGQIGMIQALGGFFSYFVILAENGELPGNLVG





IRLNWDDRTVNDLEDSYGQQWTYEQRKVVEFTCHT





AFFVSIVVVQWADLIICKTRRNSVFQQGMKNKILI





FGLFEETALAAFLSYCPGMDVALRMYPLKPSWWFC





AFPYSFLIFVYDEIRKLILRRNPGGWVEKETYY





Sodium
SCN9A
240
MAMLPPPGPQSFVHFTKQSLALIEQRIAERKSKEP


channel protein
Epilepsy;

KEEKKDDDEEAPKPSSDLEAGKQLPFIYGDIPPGM


type 9 subunit
Epilepsy,

VSEPLEDLDPYYADKKTFIVLNKGKTIFRENATPA


alpha
generalized,

LYMLSPFSPLRRISIKILVHSLFSMLIMCTILTNC


(SCN9A)
with febrile

IFMTMNNPPDWTKNVEYTFTGIYTFESLVKILARG



seizures plus,

FCVGEFTFLRDPWNWLDFVVIVFAYLTEFVNLGNV



type 7

SALRTFRVLRALKTISVIPGLKTIVGALIQSVKKL





SDVMILTVFCLSVFALIGLQLFMGNLKHKCERNSL





ENNETLESIMNTLESEEDERKYFYYLEGSKDALLC





GFSTDSGQCPEGYTCVKIGRNPDYGYTSEDTESWA





FLALFRLMTQDYWENLYQQTLRAAGKTYMIFFVVV





IFLGSFYLINLILAVVAMAYEEQNQANIEEAKQKE





LEFQQMLDRLKKEQEEAEAIAAAAAEYTSIRRSRI





MGLSESSSETSKLSSKSAKERRNRRKKKNQKKLSS





GEEKGDAEKLSKSESEDSIRRKSFHLGVEGHRRAH





EKRLSTPNQSPLSIRGSLFSARRSSRTSLFSFKGR





GRDIGSETEFADDEHSIFGDNESRRGSLFVPHRPQ





ERRSSNISQASRSPPMLPVNGKMHSAVDCNGVVSL





VDGRSALMLPNGQLLPEVIIDKATSDDSGTTNQIH





KKRRCSSYLLSEDMLNDPNLRQRAMSRASILTNTV





EELEESRQKCPPWWYRFAHKFLIWNCSPYWIKFKK





CIYFIVMDPFVDLAITICIVLNTLFMAMEHHPMTE





EFKNVLAIGNLVFTGIFAAEMVLKLIAMDPYEYFQ





VGWNIFDSLIVTLSLVELFLADVEGLSVLRSERLL





RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAI





IVFIFAVVGMQLFGKSYKECVCKINDDCTLPRWHM





NDFFHSFLIVERVLCGEWIETMWDCMEVAGQAMCL





IVYMMVMVIGNLVVLNLFLALLLSSESSDNLTAIE





EDPDANNLQIAVTRIKKGINYVKQTLREFILKAFS





KKPKISREIRQAEDLNTKKENYISNHTLAEMSKGH





NFLKEKDKISGFGSSVDKHLMEDSDGQSFIHNPSL





TVTVPIAPGESDLENMNAEELSSDSDSEYSKVRLN





RSSSSECSTVDNPLPGEGEEAEAEPMNSDEPEACE





TDGCVWRESCCQVNIESGKGKIWWNIRKTCYKIVE





HSWFESFIVLMILLSSGALAFEDIYIERKKTIKII





LEYADKIFTYIFILEMLLKWIAYGYKTYFTNAWCW





LDFLIVDVSLVTLVANTLGYSDLGPIKSLRTLRAL





RPLRALSRFEGMRVVVNALIGAIPSIMNVLLVCLI





FWLIFSIMGVNLFAGKFYECINTTDGSREPASQVP





NRSECFALMNVSQNVRWKNLKVNFDNVGLGYLSLL





QVATFKGWTIIMYAAVDSVNVDKQPKYEYSLYMYI





YFVVFIIFGSFFTLNLFIGVIIDNENQQKKKLGGQ





DIFMTEEQKKYYNAMKKLGSKKPQKPIPRPGNKIQ





GCIFDLVTNQAFDISIMVLICLNMVTMMVEKEGQS





QHMTEVLYWINVVFIILFTGECVLKLISLRHYYFT





VGWNIFDFVVVIISIVGMFLADLIETYFVSPTLER





VIRLARIGRILRLVKGAKGIRTLLFALMMSLPALF





NIGLLLFLVMFIYAIFGMSNFAYVKKEDGINDMEN





FETFGNSMICLFQITTSAGWDGLLAPILNSKPPDC





DPKKVHPGSSVEGDCGNPSVGIFYFVSYIIISELV





VVNMYIAVILENFSVATEESTEPLSEDDFEMFYEV





WEKFDPDATQFIEFSKLSDFAAALDPPLLIAKPNK





VQLIAMDLPMVSGDRIHCLDILFAFTKRVLGESGE





MDSLRSQMEERFMSANPSKVSYEPITTTLKRKQED





VSATVIQRAYRRYRLRQNVKNISSIYIKDGDRDDD





LLNKKDMAFDNVNENSSPEKTDATSSTTSPPSYDS





VTKPDKEKYEQDRTEKEDKGKDSKESKK





Gamma-
GABRB3
241

MWGLAGGRLFGIFSAPVLVAVVCCAQSVNDPGNMS



aminobutyric
Associated

FVKETVDKLLKGYDIRLRPDFGGPPVCVGMNIDIA


acid receptor
Epilepsy

SIDMVSEVNMDYTLTMYFQQYWRDKRLAYSGIPLN


subunit beta-3


LTLDNRVADQLWVPDTYFLNDKKSFVHGVTVKNRM


(GABRB3)


IRLHPDGTVLYGLRITTTAACMMDLRRYPLDEQNC


Signal


TLEIESYGYTTDDIEFYWRGGDKAVTGVERIELPQ


Sequence


FSIVEHRLVSRNVVFATGAYPRLSLSERLKRNIGY


Underlined


FILQTYMPSILITILSWVSFWINYDASAARVALGI





TTVLTMTTINTHLRETLPKIPYVKAIDMYLMGCFV





FVFLALLEYAFVNYIFFGRGPQRQKKLAEKTAKAK





NDRSKSESNRVDAHGNILLTSLEVHNEMNEVSGGI





GDTRNSAISFDNSGIQYRKQSMPREGHGRELGDRS





LPHKKTHLRRRSSQLKIKIPDLTDVNAIDRWSRIV





FPFTFSLENLVYWLYYVN





Potassium
Heterotetramer-
242
MGLKARRAAGAAGGGGDGGGGGGGAANPAGGDAAA


voltage-gated
izes with KCNQ2

AGDEERKVGLAPGDVEQVTLALGAGADKDGTLLLE


channel
KCNQ2-Related

GGGRDEGQRRTPQGIGLLAKTPLSRPVKRNNAKYR


subfamily KQT
Disorders

RIQTLIYDALERPRGWALLYHALVFLIVLGCLILA


member 3
(Epileptic

VLTTFKEYETVSGDWLLLLETFAIFIFGAEFALRI


(KCNQ3)
Encephalopathy)

WAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASV





PVVAVGNQGNVLATSLRSLRFLQILRMLRMDRRGG





TWKLLGSAICAHSKELITAWYIGELTLILSSELVY





LVEKDVPEVDAQGEEMKEEFETYADALWWGLITLA





TIGYGDKTPKTWEGRLIAATFSLIGVSFFALPAGI





LGSGLALKVQEQHRQKHFEKRRKPAAELIQAAWRY





YATNPNRIDLVATWRFYESVVSFPFFRKEQLEAAS





SQKLGLLDRVRLSNPRGSNTKGKLFTPLNVDAIEE





SPSKEPKPVGLNNKERFRTAFRMKAYAFWQSSEDA





GTGDPMAEDRGYGNDEPIEDMIPTLKAAIRAVRIL





QFRLYKKKFKETLRPYDVKDVIEQYSAGHLDMLSR





IKYLQTRIDMIFTPGPPSTPKHKKSQKGSAFTFPS





QQSPRNEPYVARPSTSEIEDQSMMGKFVKVERQVQ





DMGKKLDFLVDMHMQHMERLQVQVTEYYPTKGTSS





PAEAEKKEDNRYSDLKTIICNYSETGPPEPPYSFH





QVTIDKVSPYGFFAHDPVNLPRGGPSSGKVQATPP





SSATTYVERPTVLPILTLLDSRVSCHSQADLQGPY





SDRISPRQRRSITRDSDTPLSLMSVNHEELERSPS





GFSISQDRDDYVFGPNGGSSWMREKRYLAEGETDT





DTDPFTPSGSMPLSSTGDGISDSVWTPSNKPI





Rhodopsin
Autosomal
243
MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPW


(RHO)
Dominant RP

QFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRT





PLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVE





GPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVC





KPMSNERFGENHAIMGVAFTWVMALACAAPPLAGW





SRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVV





HFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQK





AEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQG





SNEGPIEMTIPAFFAKSAAIYNPVIYIMMNKQFRN





CMLTTICCGKNPLGDDEASATVSKTETSQVAPA





Protein jagged-
Alagille
244

MRSPRTRGRSGRPLSLLLALLCALRAKVCGASGQF



1 (JAG1)
syndrome 1

ELEILSMQNVNGELQNGNCCGGARNPGDRKCTRDE


Signal Peptide


CDTYFKVCLKEYQSRVTAGGPCSFGSGSTPVIGGN


Underlined


TFNLKASRGNDRNRIVLPESFAWPRSYTLLVEAWD





SSNDTVQPDSIIEKASHSGMINPSRQWQTLKQNTG





VAHFEYQIRVTCDDYYYGFGCNKFCRPRDDFFGHY





ACDQNGNKTCMEGWMGPECNRAICRQGCSPKHGSC





KLPGDCRCQYGWQGLYCDKCIPHPGCVHGICNEPW





QCLCETNWGGQLCDKDLNYCGTHQPCLNGGTCSNT





GPDKYQCSCPEGYSGPNCEIAEHACLSDPCHNRGS





CKETSLGFECECSPGWTGPTCSTNIDDCSPNNCSH





GGTCQDLVNGFKCVCPPQWTGKTCQLDANECEAKP





CVNAKSCKNLIASYYCDCLPGWMGQNCDININDCL





GQCQNDASCRDLVNGYRCICPPGYAGDHCERDIDE





CASNPCLNGGHCQNEINRFQCLCPTGFSGNLCQLD





IDYCEPNPCQNGAQCYNRASDYFCKCPEDYEGKNC





SHLKDHCRTTPCEVIDSCTVAMASNDTPEGVRYIS





SNVCGPHGKCKSQSGGKFTCDCNKGFTGTYCHENI





NDCESNPCRNGGTCIDGVNSYKCICSDGWEGAYCE





TNINDCSQNPCHNGGTCRDLVNDFYCDCKNGWKGK





TCHSRDSQCDEATCNNGGTCYDEGDAFKCMCPGGW





EGTTCNIARNSSCLPNPCHNGGTCVVNGESFTCVC





KEGWEGPICAQNTNDCSPHPCYNSGTCVDGDNWYR





CECAPGFAGPDCRININECQSSPCAFGATCVDEIN





GYRCVCPPGHSGAKCQEVSGRPCITMGSVIPDGAK





WDDDCNTCQCLNGRIACSKVWCGPRPCLLHKGHSE





CPSGQSCIPILDDQCFVHPCTGVGECRSSSLQPVK





TKCTSDSYYQDNCANITFTENKEMMSPGLTTEHIC





SELRNLNILKNVSAEYSIYIACEPSPSANNEIHVA





ISAEDIRDDGNPIKEITDKIIDLVSKRDGNSSLIA





AVAEVRVQRRPLKNRTDFLVPLLSSVLTVAWICCL





VTAFYWCLRKRRKPGSHTHSASEDNTTNNVREQLN





QIKNPIEKHGANTVPIKDYENKNSKMSKIRTHNSE





VEEDDMDKHQQKARFAKQPAYTLVDREEKPPNGTP





TKHPNWTNKQDNRDLESAQSLNRMEYIV





Inositol 1,4,5-
Gillespie
245
MSDKMSSFLHIGDICSLYAEGSTNGFISTLGLVDD


trisphosphate
Syndrome

RCVVQPETGDLNNPPKKERDCLFKLCPMNRYSAQK


receptor type 1


QFWKAAKPGANSTTDAVLLNKLHHAADLEKKQNET


(ITPR1)


ENRKLLGTVIQYGNVIQLLHLKSNKYLTVNKRLPA





LLEKNAMRVTLDEAGNEGSWFYIQPFYKLRSIGDS





VVIGDKVVLNPVNAGQPLHASSHQLVDNPGCNEVN





SVNCNTSWKIVLFMKWSDNKDDILKGGDVVRLFHA





EQEKFLTCDEHRKKQHVFLRTTGRQSATSATSSKA





LWEVEVVQHDPCRGGAGYWNSLFRFKHLATGHYLA





AEVDPDFEEECLEFQPSVDPDQDASRSRLRNAQEK





MVYSLVSVPEGNDISSIFELDPTTLRGGDSLVPRN





SYVRLRHLCTNTWVHSTNIPIDKEEEKPVMLKIGT





SPVKEDKEAFAIVPVSPAEVRDLDFANDASKVLGS





IAGKLEKGTITQNERRSVTKLLEDLVYFVTGGINS





GQDVLEVVFSKPNRERQKLMREQNILKQIFKLLQA





PFTDCGDGPMLRLEELGDQRHAPFRHICRLCYRVL





RHSQQDYRKNQEYIAKQFGFMQKQIGYDVLAEDTI





TALLHNNRKLLEKHITAAEIDTEVSLVRKNREPRE





LDYLSDLCVSMNKSIPVTQELICKAVLNPTNADIL





IETKLVLSRFEFEGVSSTGENALEAGEDEEEVWLE





WRDSNKEIRSKSVRELAQDAKEGQKEDRDVLSYYR





YQLNLFARMCLDRQYLAINEISGOLDVDLILRCMS





DENLPYDLRASFCRLMLHMHVDRDPQEQVTPVKYA





RLWSEIPSEIAIDDYDSSGASKDEIKERFAQTMEF





VEEYLRDVVCQRFPFSDKEKNKLTFEVVNLARNLI





YFGFYNFSDLLRLTKILLAILDCVHVTTIFPISKM





AKGEENKGNNDVEKLKSSNVMRSIHGVGELMTQVV





LRGGGFLPMTPMAAAPEGNVKQAEPEKEDIMVMDT





KLKIIEILQFILNVRLDYRISCLLCIFKREFDESN





SQTSETSSGNSSQEGPSNVPGALDFEHIEEQAEGI





FGGSEENTPLDLDDHGGRTFLRVLLHLTMHDYPPL





VSGALQLLFRHFSQRQEVLQAFKQVQLLVTSQDVD





NYKQIKQDLDQLRSIVEKSELWVYKGQGPDETMDG





ASGENEHKKTEEGNNKPQKHESTSSYNYRVVKEIL





IRLSKLCVQESASVRKSRKQQQRLLRNMGAHAVVL





ELLQIPYEKAEDTKMQEIMRLAHEFLONFCAGNQQ





NQALLHKHINLFLNPGILEAVTMQHIFMNNFQLCS





EINERVVQHFVHCIETHGRNVQYIKFLQTIVKAEG





KFIKKCQDMVMAELVNSGEDVLVFYNDRASFQTLI





QMMRSERDRMDENSPLMYHIHLVELLAVCTEGKNV





YTEIKCNSLLPLDDIVRVVTHEDCIPEVKIAYINE





LNHCYVDTEVEMKEIYTSNHMWKLFENFLVDICRA





CNNTSDRKHADSILEKYVTEIVMSIVTTFFSSPES





DQSTTLQTRQPVFVQLLQGVFRVYHCNWLMPSQKA





SVESCIRVLSDVAKSRAIAIPVDLDSQVNNLELKS





HSIVQKTAMNWRLSARNAARRDSVLAASRDYRNII





ERLQDIVSALEDRLRPLVQAELSVLVDVLHRPELL





FPENTDARRKCESGGFICKLIKHTKQLLEENEEKL





CIKVLQTLREMMTKDRGYGEKLISIDELDNAELPP





APDSENATEELEPSPPLRQLEDHKRGEALRQVLVN





RYYGNVRPSGRRESLTSFGNGPLSAGGPGKPGGGG





GGSGSSSMSRGEMSLAEVQCHLDKEGASNLVIDLI





MNASSDRVFHESILLAIALLEGGNTTIQHSFFCRL





TEDKKSEKFFKVFYDRMKVAQQEIKATVTVNTSDL





GNKKKDDEVDRDAPSRKKAKEPTTQITEEVRDQLL





EASAATRKAFTTFRREADPDDHYQPGEGTQATADK





AKDDLEMSAVITIMQPILRFLQLLCENHNRDLQNE





LRCQNNKTNYNLVCETLQFLDCICGSTTGGLGLLG





LYINEKNVALINQTLESLTEYCQGPCHENONCIAT





HESNGIDIITALILNDINPLGKKRMDLVLELKNNA





SKLLLAIMESRHDSENAERILYNMRPKELVEVIKK





AYMQGEVEFEDGENGEDGAASPRNVGHNIYILAHQ





LARHNKELQSMLKPGGQVDGDEALEFYAKHTAQIE





IVRLDRTMEQIVFPVPSICEFLTKESKLRIYYTTE





RDEQGSKINDFFLRSEDLENEMNWQKKLRAQPVLY





WCARNMSFWSSISENLAVLMNLLVAFFYPFKGVRG





GTLEPHWSGLLWTAMLISLAIVIALPKPHGIRALI





ASTILRLIFSVGLQPTLELLGAFNVCNKIIFLMSE





VGNCGTFTRGYRAMVLDVEFLYHLLYLVICAMGLE





VHEFFYSLLLEDLVYREETLLNVIKSVTRNGRSII





LTAVLALILVYLFSIVGYLFFKDDFILEVDRLPNE





TAVPETGESLASEFLESDVCRVESGENCSSPAPRE





ELVPAEETEQDKEHTCETLLMCIVTVLSHGLRSGG





GVGDVLRKPSKEEPLFAARVIYDLLFFFMVIIIVL





NLIFGVIIDTFADLRSEKQKKEEILKTTCFICGLE





RDKFDNKTVTFEEHIKEEHNMWHYLCFIVLVKVKD





STEYTGPESYVAEMIKERNLDWFPRMRAMSLVSSD





SEGEQNELRNLQEKLESTMKLVTNLSGQLSELKDQ





MTEQRKQKQRIGLLGHPPHMNVNPQQPA





Sugar

294
MEAGGFLDSLIYGACVVFTLGMFSAGLSDLRHMRM


transporter


TRSVDNVQFLPFLTTEVNNLGWLSYGALKGDGILI


SWEET1


VVNTVGAALQTLYILAYLHYCPRKRVVLLQTATLL


(SLC50A1)


GVLLLGYGYFWLLVPNPEARLQQLGLFCSVETISM





YLSPLADLAKVIQTKSTQCLSYPLTIATLLTSASW





CLYGFRLRDPYIMVSNFPGIVTSFIRFWLFWKYPQ





EQDRNYWLLQT





Transmembrane

295
MELEAMSRYTSPVNPAVFPHLTVVLLAIGMFFTAW


protein 258


FFVYEVTSTKYTRDIYKELLISLVASLEMGFGVLE


(TMEM258)


LLLWVGIYV





Follicle-
Ovarian
296

MALLLVSLLAFLSLGSGCHHRICHCSNRVFLCQES



stimulating
dysgenesis 1

KVTEIPSDLPRNAIELRFVLTKLRVIQKGAFSGFG


hormone
(ODG1)

DLEKIEISQNDVLEVIEADVESNLPKLHEIRIEKA


receptor


NNLLYINPEAFQNLPNLQYLLISNTGIKHLPDVHK


(FSHR)


IHSLQKVLLDIQDNINIHTIERNSFVGLSFESVIL


Signal


WLNKNGIQEIHNCAFNGTQLDELNLSDNNNLEELP


Sequence


NDVFHGASGPVILDISRTRIHSLPSYGLENLKKLR


Underlined


ARSTYNLKKLPTLEKLVALMEASLTYPSHCCAFAN





WRRQISELHPICNKSILRQEVDYMTQARGORSSLA





EDNESSYSRGFDMTYTEFDYDLCNEVVDVTCSPKP





DAFNPCEDIMGYNILRVLIWFISILAITGNIIVLV





ILTTSQYKLTVPRELMCNLAFADLCIGIYLLLIAS





VDIHTKSQYHNYAIDWQTGAGCDAAGFFTVFASEL





SVYTLTAITLERWHTITHAMQLDCKVQLRHAASVM





VMGWIFAFAAALFPIFGISSYMKVSICLPMDIDSP





LSQLYVMSLLVLNVLAFVVICGCYIHIYLTVRNPN





IVSSSSDTRIAKRMAMLIFTDELCMAPISFFAISA





SLKVPLITVSKAKILLVLFHPINSCANPFLYAIFT





KNFRRDFFILLSKCGCYEMQAQIYRTETSSTVHNT





HPRNGHCSSAPRVTNGSTYILVPLSHLAQN









5.3.3 Orientation and Linkers

In some embodiments, the effector domain is N-terminal of the targeting domain in the fusion protein. In some embodiments, the targeting domain is N-terminal of the effector domain in the fusion protein. In some embodiments, the effector domain is operably connected (directly or indirectly) to the C terminus of the targeting domain. In some embodiments, the effector domain is operably connected (directly or indirectly) to the N terminus of the targeting domain. In some embodiments, the effector domain is directly operably connected to the C terminus of the targeting domain. In some embodiments, the effector domain is directly operably connected to the N terminus of the targeting domain.


In some embodiments, the effector domain is indirectly operably connected to the C terminus of the targeting domain. In some embodiments, the effector domain is indirectly operably connected to the N terminus of the targeting domain. One or more amino acid sequences comprising e.g., a linker, or encoding one or more polypeptides may be positioned between the effector moiety and the targeting moiety. In some embodiments, the effector domain is indirectly operably connected to the C terminus of the targeting domain through a peptide linker. In some embodiments, the effector domain is indirectly operably connected to the N terminus of the targeting domain through a peptide linker.


Each component of the fusion protein described herein can be directly linked to the other to indirectly linked to the other via a peptide linker.


Any suitable peptide linker known in the art can be used that enables the effector domain and the targeting domain to bind their respective antigens. In some embodiments, the linker is one or any combination of a cleavable linker, a non-cleavable linker, a peptide linker, a flexible linker, a rigid linker, a helical linker, or a non-helical linker. In some embodiments, the linker is a peptide linker. In some embodiments, the linker is a peptide linker that comprises glycine or serine, or both glycine and serine amino acid residues. In some embodiments, the peptide linker comprises from about 1-20, 1-15, 1-10, 1-5, 5-20, 5-15, 5-10, or 15-20 amino acids. In some embodiments, the peptide linker comprises from or from about 2-25, 5-25, 10-25, 15-25, 20-25, 2-20, 5-20, 10-20, 15-20, 2-15, 5-15, 10-15, 2-10, or 5-10 amino acids. In some embodiments, the linker is a peptide linker that consists of glycine or serine, or both glycine and serine amino acid residues. In some embodiments, the peptide linker consists of from or from about 2-25, 5-25, 10-25, 15-25, 20-25, 2-20, 5-20, 10-20, 15-20, 2-15, 5-15, 10-15, 2-10, or 5-10 amino acids. In some embodiments, the peptide linker comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 amino acid residues. In some embodiments, the linker is at least 11 amino acids in length. In some embodiments, the linker is at least 15 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 amino acid residues in length.


In some embodiments, the linker is a glycine/serine linker, e.g., a peptide linker substantially consisting of the amino acids glycine and serine. In some embodiments, the linker is a glycine/serine/proline linker, e.g., a peptide linker substantially consisting of the amino acids glycine, serine, and proline.


In some embodiments, the amino acid sequence of the linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition). In some embodiments, the amino acid sequence of the linker consists of the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition).


In some embodiments, the amino acid sequence of the linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-288 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition). In some embodiments, the amino acid sequence of the linker consists of the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-306 comprising 1, 2, or 3 amino acid modifications (e.g., a substitution, deletion, or addition).


The amino acid sequence of exemplary linkers for use in any one or more of the fusion proteins described herein is provided in Table 3 below.









TABLE 3







Amino Acid Sequence of Exemplary Linkers









SEQ


Amino Acid Sequence
ID NO





GGGGSGGGGSGGGGSGGGGSGGGGS
297





GGGGSGGGGSGGGGSGGGGS
298





GGGGSGGGGSGGGGS
299





GGGGSGGGGS
300





GGGGS
301





SGGGGSGGGGSGGGGS
302





SGGGGSGGGGSGGGG
303





SGGGGSGGGG
304





SGGGG
305





GGSGG
306





AHFKISGEKRPSTDPGKKAKNPKKKKKKDP
307





AHRAKKMSKTHA
308





ASPEYVNLPINGNG
309





CTKRPRW
310





DKAKRVSRNKSEKKRR
311





EELRLKEELLKGIYA
312





EEQLRRRKNSRLNNTG
313





EVLKVIRTGKRKKKAWKRMVTKVC
314





HHHHHHHHHHHHQPH
315





HKKKHPDASVNFSEFSK
316





HKRTKKNLS
317





IINGRKLKLKKSRRRSSQTSNNSFTSRRS
318





KAEQERRK
319





KEKRKRREELFIEQKKRK
320





KKGKDEWFSRGKKP
321





KKGPSVQKRKKTNLS
322





KKKTVINDLLHYKKEK
323





KKNGGKGKNKPSAKIKK
324





KKPKWDDFKKKKK
325





KKRKKDNLS
326





KKRRKRRRK
327





KKRRRRARK
328





KKSKRGR
329





KKSRKRGS
330





KKSTALSRELGKIMRRR
331





KKSYQDPEIIAHSRPRK
332





KKTGKNRKLKSKRVKTR
333





KKVSIAGQSGKLWRWKR
334





KKYENVVIKRSPRKRGRPRK
335





KNKKRK
336





KPKKKR
337





KRAMKDDSHGNSTSPKRRK
338





KRANSNLVAAYEKAKKK
339





KRASEDTTSGSPPKKSSAGPKR
340





KRFKRRWMVRKMKTKK
341





KRGLNSSFETSPKKVK
342





KRGNSSIGPNDLSKRKQRKK
343





KRIHSVSLSQSQIDPSKKVKRAK
344





KRKGKLKNKGSKRKK
345





KRRRRRRREKRKR
346





KRSNDRTYSPEEEKQRRA
347





KRTVATNGDASGAHRAKKMSK
348





KRVYNKGEDEQEHLPKGKKR
349





KSGKAPRRRAVSMDNSNK
350





KVNFLDMSLDDIIIYKELE
351





KVQHRIAKKTTRRRR
352





LSPSLSPL
353





MDSLLMNRRKFLYQFKNVRWAKGRRETYLC
354





MPQNEYIELHRKRYGYRLDYHEKKRKKESREAHERSKKAKK
355


MIGLKAKLYHK






MVQLRPRASR
356





NNKLLAKRRKGGASPKDDPMDDIK
357





NYKRPMDGTYGPPAKRHEGE
358





PDTKRAKLDSSETTMVKKK
359





PEKRTKI
360





PGGRGKKK
361





PGKMDKGEHRQERRDRPY
362





PKKGDKYDKTD
363





PKKKSRK
364





PKKNKPE
365





PKKRAKV
366





PKPKKLKVE
367





PKRGRGR
368





PKRRLVDDA
369





PKRRRTY
370





PLEKRR
371





PLRKAKR
372





PPAKRKCIF
373





PPARRRRL
374





PPKKKRKV
375





PPNKRMKVKH
376





PPRIYPQLPSAPT
377





PQRSPFPKSSVKR
378





PRPRKVPR
379





PRRRVQRKR
380





PRRVRLK
381





PSRKRPR
382





PSSKKRKV
383





PTKKRVK
384





QRPGPYDRP
385





RGKGGKGLGKGGAKRHRK
386





RKAGKGGGGHKTTKKRSAKDEKVP
387





RKIKLKRAK
388





RKIKRKRAK
389





RKKEAPGPREELRSRGR
390





RKKRKGK
391





RKKRRQRRR
392





RKKSIPLSIKNLKRKHKRKKNKITR
393





RKLVKPKNTKMKTKLRTNPY
394





RKRLILSDKGQLDWKK
395





RKRLKSK
396





RKRRVRDNM
397





RKRSPKDKKEKDLDGAGKRRKT
398





RKRTPRVDGQTGENDMNKRRRK
399





RLPVRRRRRR
400





RLRFRKPKSK
401





RQQRKR
402





RRDLNSSFETSPKKVK
403





RRDRAKLR
404





RRGDGRRR
405





RRGRKRKAEKQ
406





RRKKRR
407





RRKRSKSEDMDSVESKRRR
408





RRKRSR
409





RRPKGKTLQKRKPK
410





RRRGFERFGPDNMGRKRK
411





RRRGKNKVAAQNCRK
412





RRRKRRNLS
413





RRRQKQKGGASRRR
414





RRRREGPRARRRR
415





RRTIRLKLVYDKCDRSCKIQKKNRNKCQYCRFHKCLSVGMS
416


HNAIREGRMPRSEKAKLKAE






RRVPQRKEVSRCRKCRK
417





RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP
418





RVVKLRIAP
419





RVVRRR
420





SKRKTKISRKTR
421





SYVKTVPNRTRTYIKL
422





TGKNEAKKRKIA
423





TLSPASSPSSVSCPVIPASTDESPGSALNI
424









5.3.3.1 Conditional Constructs

Also described herein are constructs that comprise a targeting domain (e.g., a VHH, (VHH)2) bound to an effector domain (e.g., an effector domain that comprises a catalytic domain of an deubiquitinase, or an effector domain that comprises a deubiquitinase). In some embodiments, the association of the targeting domain and the effector domain is mediated by binding of a first agent (e.g., a small molecule, protein, or peptide) attached to the targeting domain and a second agent (e.g., a small, molecule, protein, or peptide) attached to the effector domain. For example, in one embodiment, the targeting domain may be attached to a first agent that specifically binds to a second agent that is attached to the effector domain. In some embodiments, specific binding of the first agent to the second agent is mediated by addition of a third agent (e.g., a small molecule).


For example, a conditional construct includes an KBP/FRB-based dimerization switch, e.g., as described in US20170081411 (the entire contents of which are incorporated by reference herein), can be utilized herein. FKBP12 (FKBP or FK506 binding protein) is an abundant cytoplasmic protein that serves as the initial intracellular target for the natural product immunosuppressive drug, rapamycin. Rapamycin binds to FKBP and to the large PI3K homolog FRAP (RAFT, mTOR), thereby acting to dimerize these molecules. In some embodiments, an FKBP/FRAP based switch, also referred to herein as an FKBP/FRB based switch, can utilize a heterodimerization molecule, e.g., rapamycin or a rapamycin analog. FRB is a 93 amino acid portion of FRAP, that is sufficient for binding the FKBP-rapamycin complex (Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 92: 4947-51), the entire contents of which is incorporated by reference herein. For example, the targeting domain can be attached to FKBP and the effector domain attached to FRB. Thereby, the association of the targeting domain and the effector domain is mediated by rapamycin and only takes place in the presence of rapamycin.


Exemplary conditional activation systems that can be used here include, but are not limited to those described in US20170081411; Lajoie M J, et al. Designed protein logic to target cells with precise combinations of surface antigens. Science. 2020 Sep. 25; 369(6511):1637-1643. doi: 10.1126/science.aba6527. Epub 2020 Aug. 20. PMID: 32820060; Farrants H, et al. Chemogenetic Control of Nanobodies. Nat Methods. 2020 March; 17(3):279-282. doi: 10.1038/s41592-020-0746-7. Epub 2020 Feb. 17. PMID: 32066961; and US20170081411, the entire contents of each of which is incorporated by reference herein for all purposes.


5.3.4 Exemplary Fusion Proteins

Exemplary fusion proteins of the present disclosure include, but are not limited to, those described below. In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a cysteine protease deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a metalloprotease deubiquitinase, or a functional fragment or functional variant thereof; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR1.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is selected from the group consisting of USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, USP46, BAP1, UCHL1, UCHL3, UCHL5, ATXN3 ATXN3L, OTUB1, OTUB2 MINDY1, MINDY2, MINDY3, MINDY4, or ZUP1; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase is described in Table 1; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain is described in Table 1; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220 or 293; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 1-112; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-245 or 294-296.


In one embodiment, the fusion protein comprises an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof, wherein the catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 113-220 or 293; and a targeting domain comprising a targeting moiety that specifically binds a membrane protein, wherein the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOS: 221-245 or 294-296.


5.3.4.1 Additional Exemplary Embodiments

Additional exemplary embodiments of fusion proteins described herein are provided below, which should not be construed as limiting.


Embodiment 1. A fusion protein comprising: (a) an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination, wherein the human deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112, and a targeting moiety comprising a VHH, (VHH)2, or scFv that specifically binds to a membrane protein.


Embodiment 2. A fusion protein comprising an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293, and a targeting moiety comprising a VHH, (VHH)2, or scFv that specifically binds to a membrane protein.


Embodiment 3. A fusion protein comprising an effector moiety comprising a functional fragment of a human deubiquitinase that is capable of mediating deubiquitination that comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293, and a targeting moiety comprising a VHH, (VHH)2, or scFv that specifically binds to a membrane protein.


Embodiment 4. The fusion protein of any one of Embodiments 1-3, wherein said targeting moiety is a VHH or (VHH)2.


Embodiment 5. The fusion protein of any one of Embodiments 1-4, wherein said membrane protein is GRIN2B, CFTR, SCN1A, ATP7B, KCNQ2, SCN2A, CACNA1A, SLC2A1, SCN8A, PRRT2, GRIN2A, SLC6A1, USH2A, ATP1A2, ATP1A3, SCN9A, PCDH19, GABRB3, TSC2, TSC1, KCNQ3, DMD, RHO, JAG1, ITPR1, SLC50A1, TMEM258, or FSHR.


Embodiment 6. The fusion protein of any one of Embodiments 1-3, wherein the membrane protein is SCN1A, GRIN2B, SLC50A1, TMEM258, or FSHR.


5.3.5 Methods of Making Fusion Proteins

Fusion proteins described herein can be made by any conventional technique known in the art, for example, recombinant techniques or chemical synthesis (e.g., solid phase peptide synthesis). In some embodiments, the fusion protein is made through recombinant expression in a cell (e.g., a eukaryotic cell, e.g., a mammalian cell). Briefly, the fusion protein can be made by synthesizing the DNA encoding the fusion protein and cloning the DNA into any suitable expression vector. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator and/or one or more enhancer elements, so that the DNA sequence encoding the fusion protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. Heterologous leader sequences can be added to the coding sequence that causes the secretion of the expressed polypeptide from the host organism. Other regulatory sequences may also be desirable which allow for regulation of expression of the protein sequences relative to the growth of the host cell. Such regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.


The expression vector may then be used to transform an appropriate host cell. A number of mammalian cell lines are known in the art and include immortalized cell lines available from the American Type Culture Collection (ATCC), such as, but not limited to, Chinese hamster ovary (CHO) cells, CHO-suspension cells (CHO-S), HeLa cells, HEK293, baby hamster kidney (BHK) cells, monkey kidney cells (COS), VERO, HepG2, MadinDarby bovine kidney (MDBK) cells, NOS, U2OS, A549, HT1080, CAD, P19, NIH3T3, L929, N2a, MCF-7, Y79, SO-Rb50, DUKX-X11, and J558L.


Depending on the expression system and host selected, the fusion protein is produced by growing host cells transformed by an expression vector described above under conditions whereby the fusion protein is expressed. The fusion protein is then isolated from the host cells and purified. If the expression system secretes the fusion protein into growth media, the fusion protein can be purified directly from the media. If the fusion protein is not secreted, it is isolated from cell lysates. The selection of the appropriate growth conditions and recovery methods are within the skill of the art. Once purified, the amino acid sequences of the fusion proteins can be determined, i.e., by repetitive cycles of Edman degradation, followed by amino acid analysis by HPLC. Other methods of amino acid sequencing are also known in the art. Once purified, the functionality of the fusion protein can be assessed, e.g., as described herein, e.g., utilizing a bifunctional ELISA.


As described above, functionality of the fusion protein can be tested by any method known in the art. Each functionality can be measured in a separate assay. For example, binding of the targeting domain to the target protein can be measure using an enzyme linked immunosorbent assay (ELISA). Catalytic activity of the effector domain can be measured using any standard deubiquitinase activity assay known in the art. For example, BioVision Deubiquitinase Activity Assay Kit (Fluorometric) Catalog #K485-100 according to the manufacturer's instructions. The deubiquitinase activity of a fusion protein described herein can be measured for example by using a fluorescent deubiquitinase substrate to detect deubiquitinase activity upon cleavage of the fluorescent substrate. The deubiquitinase activity can also be measured according to the materials and methods set forth in the Examples provided herein.


5.4 Nucleic Acids, Host Cells, Vectors, and Viral Particles

In one aspect, provided herein are nucleic acid molecules encoding a fusion protein described herein. In some embodiments, the nucleic acid molecule is a DNA molecule. In some embodiments, the nucleic acid molecule is an RNA molecule. In some embodiments, the nucleic acid molecule contains at least one modified nucleic acid (e.g., that increases stability of the nucleic acid molecule), e.g., phosphorothioate, N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C).


In one aspect, provided herein is a host cell (or population of host cells) comprising a nucleic acid encoding a fusion protein described herein. In some embodiments, the nucleic acid is incorporated into the genome of the host cell. In some embodiments, the nucleic acid is not incorporated into the genome of the host cell. In some embodiments, the nucleic acid is present in the cell episomally. In some embodiments, the host cell is a human cell. In some embodiments, the host cell is a mammalian cell. In some embodiments, the host cell is a mouse, rat, hamster, guinea pig, cat, dog, or human cell. In some embodiments, the host cell is modified in vitro, ex vivo, or in vivo.


The nucleic acid can be introduced into the host cell by any suitable method known in the art (e.g., as described herein). For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, or a coxsackie virus delivery system) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression with the host cell. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the host cell. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the host cell. In some embodiments, the virus replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, a nucleic acid (DNA or RNA) is delivered to the host cell using a non-viral vector (e.g., a plasmid) encoding the fusion protein. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the host cell. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the host cell. Exemplary non-viral transfection methods known in the art include, but are not limited to, direct delivery of DNA such as by ex vivo transfection, by injection (e.g., microinjection), electroporation, liposome mediated transfection, receptor-mediated transfection, microprojectile bombardment, by agitation with silicon carbide fibers Through the application of techniques such as these cells may be stably or transiently transfected with a nucleic acid encoding a fusion protein described herein to express the encoded fusion protein.


In one aspect, provided herein are vectors comprising a nucleic acid encoding a fusion protein described herein (e.g., a nucleic acid described herein). In some embodiments, the vector is a viral vector. Exemplary viral vectors include, but are not limited to, retroviral vectors, adenoviral vectors, adeno associated viral vectors, herpes viral vectors, lentiviral vectors, pox viral vectors, vaccinia viral vectors, vesicular stomatitis viral vectors, polio viral vectors, Newcastle's Disease viral vectors, Epstein-Barr viral vectors, influenza viral vectors, reovirus vectors, myxoma viral vectors, maraba viral vectors, rhabdoviral vectors, and coxsackie viral vectors. In some embodiments, the vector is a non-viral vector. In some embodiments, the non-viral vector is a plasmid.


In one aspect, provided herein is a viral particle (or population of viral particles) that comprise a nucleic acid encoding a fusion protein described herein (e.g., a nucleic acid described herein). In some embodiments, the viral particle is an RNA virus. In some embodiments, the viral particle is a DNA virus. In some embodiments, the viral particle comprises a double stranded genome. In some embodiments, the viral particle comprises a single stranded genome. Exemplary viral particles include, but are not limited to, a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, or a coxsackie.


5.5 Pharmaceutical Compositions

In one aspect, provided herein are pharmaceutical compositions comprising 1) a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein; and 2) at least one pharmaceutically acceptable carrier, excipient, stabilizer buffer, diluent, surfactant, preservative and/or adjuvant, etc (see, e.g., Remington's Pharmaceutical Sciences (1990) Mack Publishing Co., Easton, PA). A person of ordinary skill in the art can select suitable excipient for inclusion in the pharmaceutical composition. For example, the formulation of the pharmaceutical composition may differ based on the route of administration (e.g., intravenous, subcutaneous, etc.), and/or the active molecule contained within the pharmaceutical composition (e.g., a viral particle, a non-viral vector, a nucleic acid not contained within a vector).


Acceptable carriers, excipients, or stabilizers are preferably nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, or other organic acids; antioxidants including ascorbic acid or methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; or m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, or other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™ PLURONICS™ or polyethylene glycol (PEG).


In one embodiment, the present disclosure provides a pharmaceutical composition comprising a fusion protein described herein for use as a medicament. In another embodiment, the disclosure provides a pharmaceutical composition for use in a method for the treatment of cancer. In some embodiments, pharmaceutical compositions comprise a fusion protein disclosed herein, and optionally one or more additional prophylactic or therapeutic agents, in a pharmaceutically acceptable carrier.


A pharmaceutical composition may be formulated for any route of administration to a subject. Specific examples of routes of administration include parenteral administration (e.g., intravenous, subcutaneous, intramuscular). In some embodiments, the pharmaceutical composition is formulated for intravenous administration. In some embodiments, the pharmaceutical composition is formulated for subcutaneous administration. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions. The injectables can contain one or more excipients. Exemplary excipients include, for example, water, saline, dextrose, glycerol or ethanol. In addition, if desired, the pharmaceutical compositions to be administered can also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, or other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate or cyclodextrins.


In some embodiments, the pharmaceutical composition is formulated for intravenous administration. Suitable carriers for intravenous administration include physiological saline or phosphate buffered saline (PBS), or solutions containing thickening or solubilizing agents, such as glucose, polyethylene glycol, or polypropylene glycol or mixtures thereof.


The compositions to be used for in vivo administration can be sterile. This is readily accomplished by filtration through, e.g., sterile filtration membranes.


Pharmaceutically acceptable carriers used in the parenteral preparations described herein include for example, aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents or other pharmaceutically acceptable substances. Examples of aqueous vehicles, which can be incorporated in one or more of the formulations described herein, include sodium chloride injection, Ringer's injection, isotonic dextrose injection, sterile water injection, dextrose or lactated Ringer's injection. Nonaqueous parenteral vehicles, which can be incorporated in one or more of the formulations described herein, include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil or peanut oil. Antimicrobial agents in bacteriostatic or fungistatic concentrations can be added to the parenteral preparations described herein and packaged in multiple-dose containers, which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride or benzethonium chloride. Isotonic agents, which can be incorporated in one or more of the formulations described herein, include sodium chloride or dextrose. Buffers, which can be incorporated in one or more of the formulations described herein, include phosphate or citrate. Antioxidants, which can be incorporated in one or more of the formulations described herein, include sodium bisulfate. Local anesthetics, which can be incorporated in one or more of the formulations described herein, include procaine hydrochloride. Suspending and dispersing agents, which can be incorporated in one or more of the formulations described herein, include sodium carboxymethylcelluose, hydroxypropyl methylcellulose or polyvinylpyrrolidone. Emulsifying agents, which can be incorporated in one or more of the formulations described herein, include Polysorbate 80 (TWEEN® 80). A sequestering or chelating agent of metal ions, which can be incorporated in one or more of the formulations described herein, is EDTA. Pharmaceutical carriers, which can be incorporated in one or more of the formulations described herein, also include ethyl alcohol, polyethylene glycol or propylene glycol for water miscible vehicles; or sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.


The precise dose to be employed in a pharmaceutical composition will also depend on the route of administration, and the seriousness of the condition caused by it, and should be decided according to the judgment of the practitioner and each subject's circumstances. For example, effective doses may also vary depending upon means of administration, target site, physiological state of the subject (including age, body weight, and health), other medications administered, or whether therapy is prophylactic or therapeutic. Therapeutic dosages are preferably titrated to optimize safety and efficacy.


5.6 Methods of Therapeutic Use

In one aspect, provided herein are methods of treating a disease in a subject by administering to the subject having the disease a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein.


The fusion protein can be delivered to host cells via any method known in the art. For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, an enadenotucirev or a coxsackie) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression within a population of cells of a subject. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the population of cells of the subject. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the population of cells of the subject. In some embodiments, the virus is replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, the fusion protein is administered to the subject. In some embodiments, a nucleic acid (DNA or RNA) is administered to the subject. In some embodiments, the nucleic acid (DNA or RNA) is complexed within a carrier (e.g., a nanoparticle, a liposome, a microsphere). In some embodiments, a nucleic acid (DNA or RNA) within a non-viral vector (e.g., a plasmid) encoding the fusion protein is administered to the subject.


5.6.1 Administration

The fusion protein can be delivered to host cells via any method known in the art. For example, a viral delivery system (e.g., a retrovirus, an adenovirus, an adeno associated virus, a herpes virus, a lentivirus, a pox virus, a vaccinia virus, a vesicular stomatitis virus, a polio virus, a Newcastle's Disease virus, an Epstein-Barr virus, an influenza virus, a reoviruses, a myxoma virus, a maraba virus, a rhabdovirus, an enadenotucirev or a coxsackie) can be utilized to deliver a nucleic acid (e.g., DNA or RNA molecule) encoding the fusion protein for expression within a population of cells of a subject. In some embodiments, the nucleic acid encoding the fusion protein is present episomally within the population of cells of the subject. In some embodiments, the nucleic acid encoding the fusion protein is incorporated into the genome of the population of cells of the subject. In some embodiments, the virus is replication competent. In some embodiments, the virus is replication deficient.


In some embodiments, the fusion protein is administered to the subject. In some embodiments, a nucleic acid (DNA or RNA) is administered to the subject. In some embodiments, the nucleic acid (DNA or RNA) is complexed within a carrier (e.g., a nanoparticle, a liposome, a microsphere). In some embodiments, a nucleic acid (DNA or RNA) within a non-viral vector (e.g., a plasmid) encoding the fusion protein is administered to the subject.


In some embodiment, the fusion protein is administered parenterally. In some embodiments, the fusion protein is administered via intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural or intrasternal injection or infusion. In some embodiments, the fusion protein is intravenously administered. In some embodiments, the fusion protein is subcutaneously administered. In some embodiments, the fusion protein is administered via a non-parenteral route, or orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.


In some embodiments, the methods disclosed herein are used in place of standard of care therapies. In certain embodiments, a standard of care therapy is used in combination with any method disclosed herein. In some embodiments, the methods disclosed herein are used after standard of care therapy has failed. In some embodiments, the fusion protein is co-administered, administered prior to, or administered after, an additional therapeutic agent. In some embodiments, the disease is a genetic disease.


5.6.2 Exemplary Genetic Diseases

In some embodiments, the disease is a genetic disease. In some embodiments, the genetic disease is associated with decreased expression of a functional target membrane protein. In some embodiments, the genetic disease is associated with decreased stability of a functional target membrane protein. In some embodiments, the genetic disease is associated with increased ubiquitination of a target membrane protein. In some embodiments, the genetic disease is associated with increased ubiquitination and degradation of a target membrane protein. In some embodiments, the genetic disease is a haploinsufficiency disease.


In some embodiments, the disease is an epileptic encephalopathy. In some embodiments, the epileptic encephalopathy is an early infantile epileptic encephalopathy. In some embodiments, the early infantile epileptic encephalopathy is selected from the group consisting of early infantile epileptic encephalopathy type 9, early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, and early infantile epileptic encephalopathy type 27. In some embodiments, the disease is an episodic ataxia. In some embodiments, the disease is episodic ataxia type 2. In some embodiments, the disease is an episodic kinesigenic dyskinesia. In some embodiments, the disease is episodic kinesigenic dyskinesia type 1. In some embodiments, the disease is epilepsy. In some embodiments, the epilepsy is focal, with speech disorder and with or without mental retardation; myoclonic-atonic epilepsy; epilepsy type 7; or GABRB3 associated epilepsy. In some embodiments, the disease is tuberous sclerosis. In some embodiments, the disease is tuberous sclerosis type 1 or tuberous sclerosis type 2. In some embodiments, the disease is KCNQ2 encephalopathy.


In some embodiments, the disease is selected from the group consisting of early a GRIN2B-Related Disorder, a SCN2A-Related Disorder, a SCN8A-Related Disorder, SLC6A1-Related Disorder, a PRRT2 Dyskinesia & Epilepsy, a GRIN2A-Related Disorder, a CACNA1A-Related Disorder, a SCN9A Epilepsy, a PCDH19 Encephalopathy, KCNQ2 encephalopathy, infantile epileptic encephalopathy type 9, early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, epilepsy (e.g., focal, with speech disorder and with or without mental retardation), myoclonic-atonic epilepsy, Usher syndrome type 2A, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy; tuberous sclerosis type 2; tuberous sclerosis type 1, KCNQ2-Related Disorders (Epileptic Encephalopathy), Becker Muscular Dystrophy, Autosomal Dominant RP, Alagille syndrome 1, Gillespie Syndrome, and Ovarian dysgenesis 1 (ODG1).


In some embodiments, the target membrane protein is GRIN2B, and the disease is a GRIN2B related disorder (e.g., an epileptic encephalopathy). In some embodiments, the target membrane protein is GRIN2B, and the disease is an early infantile epileptic encephalopathy. In some embodiments, the target membrane protein is GRIN2B, and the disease is early infantile epileptic encephalopathy type 27. In some embodiments, the target membrane protein is CFTR, and the disease is cystic fibrosis. In some embodiments, the target membrane protein is SCN1A, and the disease is Dravet syndrome. In some embodiments, the target membrane protein is ATP7B, and the disease is Wilson disease. In some embodiments, the target membrane protein is CACNA1A, and the disease is a CACA1A related disorder. In some embodiments, the target membrane protein is CACNA1A, and the disease is episodic ataxia type 2. In some embodiments, the target membrane protein is KCNQ2, and the disease is an KCNQ2 encephalopathy. In some embodiments, the target membrane protein is KCNQ2, and the disease is an epileptic encephalopathy. In some embodiments, the target membrane protein is SCN2A, and the disease is a SCN2A related disorder (e.g., an epileptic encephalopathy). In some embodiments, the target membrane protein is SCN2A, and the disease is early infantile epileptic encephalopathy type 11. In some embodiments, the target membrane protein is SLC2A1, and the disease is GLUT1 deficiency syndrome. In some embodiments, the target membrane protein is SCN8A, and the disease is a SCN8A related disorder (e.g., an epileptic encephalopathy). In some embodiments, the target membrane protein is SCN8A, and the disease is an epileptic encephalopathy. In some embodiments, the target membrane protein is SCN8A, and the disease is early infantile epileptic encephalopathy type 13. In some embodiments, the target membrane protein is PRRT2, and the disease is a PRRPT2 dyskinesia and/or epilepsy. In some embodiments, the target membrane protein is PRRT2, and the disease is an episodic kinesigenic dyskinesia type. In some embodiments, the target membrane protein is PRRT2, and the disease is episodic kinesigenic dyskinesia type 1. In some embodiments, the target membrane protein is GRIN2A, and the disease is a GRIN2A related disorder. In some embodiments, the target membrane protein is GRIN2A, and the disease is epilepsy. In some embodiments, the target membrane protein is GRIN2A, and the disease is focal epilepsy. In some embodiments, the target membrane protein is GRIN2A, and the disease is focal epilepsy with speech disorder and with or without mental retardation. In some embodiments, the target membrane protein is SLC6A1, and the disease is a SLC6A1 related disorder. In some embodiments, the target membrane protein is SLC6A1, and the disease is epilepsy. In some embodiments, the target membrane protein is SLC6A1, and the disease is myoclonic-atonic epilepsy. In some embodiments, the target membrane protein is USH2A, and the disease is Usher syndrome. In some embodiments, the target membrane protein is USH2A, and the disease is Usher syndrome type 2A. In some embodiments, the target membrane protein is ATP1A2, and the disease is alternating hemiplegia of childhood. In some embodiments, the target membrane protein is ATP1A2, and the disease is alternating hemiplegia of childhood type 1. In some embodiments, the target membrane protein is ATP1A3, and the disease is alternating hemiplegia of childhood. In some embodiments, the target membrane protein is ATP1A3, and the disease is alternating hemiplegia of childhood type 2. In some embodiments, the target membrane protein is SCN9A, and the disease an SCN9A epilepsy. In some embodiments, the target membrane protein is SCN9A1, and the disease an SCN9A epilepsy. In some embodiments, the target membrane protein is SCN9A1, and the disease is epilepsy. In some embodiments, the target membrane protein is SCN9A1, and the disease is epilepsy type 7. In some embodiments, the target membrane protein is PCDH19, and the disease is PCDH19 encephalopathy. In some embodiments, the target membrane protein is PCDH19, and the disease is an early infantile epileptic encephalopathy. In some embodiments, the target membrane protein is PCDH19, and the disease is early infantile epileptic encephalopathy type 9. In some embodiments, the target membrane protein is GABRB3, and the disease is epilepsy. In some embodiments, the target membrane protein is GABRB3, and the disease is GABRB3 associated epilepsy. In some embodiments, the target membrane protein is TSC2, and the disease is tuberous sclerosis. In some embodiments, the target membrane protein is TSC2, and the disease is tuberous sclerosis type 2. In some embodiments, the target membrane protein is TSC2, and the disease is tuberous sclerosis type 1. In some embodiments, the target membrane protein is TSC1, and the disease is tuberous sclerosis. In some embodiments, the target membrane protein is TSC1, and the disease is tuberous sclerosis type 1. In some embodiments, the target membrane protein is TSC1, and the disease is tuberous sclerosis type 2. In some embodiments, the target membrane protein is KCNQ3, and the disease is KCNQ2-Related Disorders (Epileptic Encephalopathy). In some embodiments, the target membrane protein is DMD, and the disease is Becker Muscular Dystrophy. In some embodiments, the target membrane protein is RHO, and the disease is Autosomal Dominant RP. In some embodiments, the target membrane protein is JAG1, and the disease is Alagille syndrome 1. In some embodiments, the target membrane protein is ITPR1, and the disease is Gillespie Syndrome. In some embodiments, the target membrane protein is FSHR, and the disease is ovarian dysgenesis 1 (ODG1).


5.7 Kits

In one aspect, provided herein are kits comprising a fusion protein described herein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion protein described herein, for therapeutic uses. Kits typically include a label indicating the intended use of the contents of the kit and instructions for use. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit. Accordingly, this disclosure provides a kit for treating a subject afflicted with a disease (e.g., a genetic disease), the kit comprising: (a) a dosage of a fusion protein, a nucleic acid encoding a fusion protein described herein, a vector comprising a nucleic acid encoding a fusion protein described herein, or a viral particle comprising a nucleic acid encoding a fusion described herein; and (b) instructions for using the fusion protein in any of the therapy methods disclosed herein.


6. EXAMPLES

The present invention is further illustrated by the following examples which should not be construed as further limiting.


6.1 Example 1. Generation of Targeted Engineered Deubiquitinases

This example provides general experimental methods of using fluorescent tagged target proteins together with fluorophore tagged engineered deubiquitinases (enDUBs) to demonstrate up-regulation of expression in the context of an enDUB. For illustrative purposes the constructs disclosed below will be synthesized in a suitable vector for mammalian expression. Generally, the target protein will be expressed with a C-terminal YFP followed by a P2A cleavage signal and an mCherry protein as a second reporter (Target protein-YFP-P2A-mCherry). This construct will be co-transfected in the presence of a trifunctional fusion protein comprising of a CFP protein followed by a P2A signal and a nanobody specifically binding to YPF followed by the engineered DUB (CFP-P2A-Anti-YFPnanobody-enDUB). In applications for drug treatment the targeting nanobodies (or other specific binders) will be directed to the wild type (or disease-causing mutant) protein in the cell to be upregulated while the enDUB is fused to a binding protein directed to the target protein. Target protein binding moieties could be any antibody or antibody fragments, nanobodies, or any other non-antibody scaffold such as fibronectins, anticalins, ankyrin repeats or natural binding proteins interacting specifically with the target protein to be upregulated. The amino acid sequence of the components of the test fusion proteins is provided in Table 4 below.









TABLE 4







Amino Acid Sequence of Components of test fusion proteins









Description
SEQ



Target Proteins
ID NO
Amino Acid Sequence





Beta 2
246
MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLA


adrenergic

IVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAA


receptor human

HILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSP




FKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINC




YANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQL




QKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLG




IIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGEN




PLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHV




EQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL





Kappa-type
247
MDSPIQIFRGEPGPTCAPSACLPPNSSAWFPGWAEPDSNGSAGSED


opioid receptor

AQLEPAHISPAIPVIITAVYSVVFVVGLVGNSLVMFVIIRYTKMKT


human

ATNIYIFNLALADALVTTTMPFQSTVYLMNSWPFGDVLCKIVISID




YYNMFTSIFTLTMMSVDRYIAVCHPVKALDERTPLKAKIINICIWL




LSSSVGISAIVLGGTKVREDVDVIECSLQFPDDDYSWWDLEMKICV




FIFAFVIPVLIIIVCYTLMILRLKSVRLLSGSREKDRNLRRITRLV




LVVVAVFVVCWTPIHIFILVEALGSTSHSTAALSSYYFCIALGYTN




SSLNPILYAFLDENFKRCFRDFCFPLKMRMERQSTSRVRNTVQDPA




YLRDIDGMNKPV





Muscarinic
248
MNNSTNSSNNSLALTSPYKTFEVVFIVLVAGSLSLVTIIGNILVMV


acetylcholine

SIKVNRHLQTVNNYFLESLACADLIIGVESMNLYTLYTVIGYWPLG


receptor M2

PVVCDLWLALDYVVSNASVMNLLIISEDRYFCVTKPLTYPVKRTTK


human

MAGMMIAAAWVLSFILWAPAILFWQFIVGVRTVEDGECYIQFFSNA




AVTFGTAIAAFYLPVIIMTVLYWHISRASKSRIKKDKKEPVANQDP




VSPSLVQGRIVKPNNNNMPSSDDGLEHNKIQNGKAPRDPVTENCVQ




GEEKESSNDSTSVSAVASNMRDDEITQDENTVSTSLGHSKDENSKQ




TCIRIGTKTPKSDSCTPTNTTVEVVGSSGQNGDEKQNIVARKIVKM




TKQPAKKKPPPSREKKVTRTILAILLAFIITWAPYNVMVLINTFCA




PCIPNTVWTIGYWLCYINSTINPACYALCNATFKKTFKHLLMCHYK




NIGATR










Fluorescent Proteins









YFP
249
VSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKF




ICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGY




VQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILG




HKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQ




NTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGIT




LGMDELYK





mCherry
250
MVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGT




QTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF




PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDG




PVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKT




TYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGG




MDELYK





CFP
251
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK




FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYK










A2 Peptides









P2A
252
GSGATNFSLLKQAGDVEENPGP





T2A
253
GSGEGRGSLLTCGDVEENPGP





E2A
254
GSGQCTNYALLKLAGDVESNPGP










Target Binders 









YFP targeting
255
WVAGMSSAGDRSSYEDSVKGRFTISRDDARNTVYLQMNSLKPEDTA


nanobody

QVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKERE




VYYCNVNVGFEYWGQGTQVTVSS





Beta 2
256
QVQLQESGGGLVQAGGSLRLSCAASGSIFALNIMGWYRQAPGKQRE


adrenergic

LVAAIHSGGTTNYANSVKGRFTISRDNAANTVYLQMNSLKPEDTAV


receptor human

YYCNVKDFGAIIYDYDYWGQGTQVTVSS


binder




(monobody)







Kappa-type
257
MAQVQLVESGGGLVRPGGSLRLSCVDSERTSYPMGWERRAPGKERE


opioid receptor

FVASITWSGIDPTYADSVADRETTSRDVANNTLYLQMNSLKHEDTA


human binder

VYYCAARAPVGQSSSPYDYDYWGQGTQVTVSSHHHHHHEPEA


(monobody)







Muscarinic
258
GPGSQVQLQESGGGLVQAGDSLRLSCAASGFDEDNFDDYAIGWFRQ


acetylcholine

APGQEREGVSCIDPSDGSTIYADSAKGRFTISSDNAENTVYLQMNS


receptor M2

LKPEDTAVYVCSAWTLFHSDEYWGQGTQVTVSS


human




(monobody)












EnDUBS









Cezanne
259
PPSFSEGSGGSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRG




ISHASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYN




EDERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTG




DGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRW




QQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANCGG




VESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAP




IPFGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKENTKEQ




AVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEV




KLHLLHSYMNVKWIPLSSDAQAPLAQ





OTUD1
260
DEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGNCLYRAVSKTVYGD




QSLHRELREQTVHYIADHLDHFSPLIEGDVGEFIIAAAQDGAWAGY




PELLAMGQMLNVNIHLTTGGRLESPTVSTMIHYLGPEDSLRPSIWL




SWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRKRDEELAKSMAISL




SKMYIEQNACS





TRABID
261
LEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGDLAAIEAYKSSGGD




IARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQRQDMLAILLTEVS




QQAAKCIPAMVCPELTEQIRREIAASLHQRKGDFACYFLTDLVTFT




LPADIEDLPPTVQEKLFDEVLDRDVQKELEEESPIINWSLELATRL




DSRLYALWNRTAGDCLLDSVLQATWGIYDKDSVLRKALHDSLHDCS




HWFYTRWKDWESWYSQSFGLHESLREEQWQEDWAFILSLASQPGAS




LEQTHIFVLAHILRRPIIVYGVKYYKSFRGETLGYTRFQGVYLPLL




WEQSFCWKSPIALGYTRGHFSALVAMENDGYGNRGAGANLNTDDDV




TITFLPLVDSERKLLHVHELSAQELGNEEQQEKLLREWLDCCVTEG




GVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIRPCTSLS





USP21
262
SDDKMAHHTLLLGSGHVGLRNLGNTCELNAVLQCLSSTRPLRDFCL




RRDFRQEVPGGGRAQELTEAFADVIGALWHPDSCEAVNPTRFRAVE




QKYVPSFSGYSQQDAQEFLKLLMERLHLEINRRGRRAPPILANGPV




PSPPRRGGALLEEPELSDDDRANLMWKRYLEREDSKIVDLFVGQLK




SCLKCQACGYRSTTFEVFCDLSLPIPKKGFAGGKVSLRDCFNLFTK




EEELESENAPVCDRCRQKTRSTKKLTVQRFPRILVLHLNRESASRG




SIKKSSVGVDFPLQRLSLGDFASDKAGSPVYQLYALCNHSGSVHYG




HYTALCRCQTGWHVYNDSRVSPVSENQVASSEGYVLFYQLMQEPPR




CL





OTUD4
263
ATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQVLHSQSRHVEVRMA




CIHYLRENREKFEAFIEGSFEEYLKRLENPQEWVGQVEISALSLMY




RKDFIIYREPNVSPSQVTENNFPEKVLLCFSNGNHYDIVYPIKYKE




SSAMCQSLLYELLYEKVEKTDVSKIVMELDTLEVADE





Human USP3
264
MECPHLSSSVCIAPDSAKFPNGSPSSWCCSVCRSNKSPWVCLTCSS


(full length)

VHCGRYVNGHAKKHYEDAQVPLTNHKKSEKQDKVQHTVCMDCSSYS


nuclear located

TYCYRCDDFVVNDTKLGLVQKVREHLQNLENSAFTADRHKKRKLLE




NSTLNSKLLKVNGSTTAICATGLRNLGNTCEMNAILQSLSNIEQFC




CYFKELPAVELRNGKTAGRRTYHTRSQGDNNVSLVEEFRKTLCALW




QGSQTAFSPESLFYVVWKIMPNERGYQQQDAHEFMRYLLDHLHLEL




QGGFNGVSRSAILQENSTLSASNKCCINGASTVVTAIFGGILQNEV




NCLICGTESRKFDPELDLSLDIPSQFRSKRSKNQENGPVCSLRDCL




RSFTDLEELDETELYMCHKCKKKQKSTKKFWIQKLPKVLCLHLKRF




HWTAYLRNKVDTYVEFPLRGLDMKCYLLEPENSGPESCLYDLAAVV




VHHGSGVGSGHYTAYATHEGRWFHENDSTVTLTDEETVVKAKAYIL




FYVEHQAKAGSDKL









The amino acid sequence of the test fusion proteins is provided in Table 5 below.









TABLE 5







Amino acid sequence of exemplary test fusion proteins









Description
SEQ ID NO
Amino Acid Sequence





Beta 2
265
MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLA


adrenergic

IVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAA


receptor human

HILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSP


Target-YFP-

FKYQSLLTKNKARVIILMVWIVSGLTSELPIQMHWYRATHQEAINC


P2A-mCherrry

YANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQL




QKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLG




IIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGEN




PLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHV




EQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLLV




SKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLKFI




CTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKSAMPEGYV




QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGH




KLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQN




TPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITL




GMDELYKGSGATNFSLLKQAGDVEENPGPMVSKGEEDNMAIIKEFM




RFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAW




DILSPQFMYGSKAYVKHPADIPDYLKLSFPEGEKWERVMNFEDGGV




VTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERM




YPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVN




IKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK





Human kappa-
266
MDSPIQIFRGEPGPTCAPSACLPPNSSAWFPGWAEPDSNGSAGSED


type opioid-

AQLEPAHISPAIPVIITAVYSVVFVVGLVGNSLVMFVIIRYTKMKT


receptor Target

ATNIYIFNLALADALVTTTMPFQSTVYLMNSWPFGDVLCKIVISID


YFP-P2A-

YYNMFTSIFTLTMMSVDRYIAVCHPVKALDERTPLKAKIINICIWL


mCherrry

LSSSVGISAIVLGGTKVREDVDVIECSLQFPDDDYSWWDLEMKICV




FIFAFVIPVLIIIVCYTLMILRLKSVRLLSGSREKDRNLRRITRLV




LVVVAVFVVCWTPIHIFILVEALGSTSHSTAALSSYYFCIALGYTN




SSLNPILYAFLDENFKRCFRDFCFPLKMRMERQSTSRVRNTVQDPA




YLRDIDGMNKPVVSKGEELFTGVVPILVELDGDVNGHKESVSGEGE




GDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQ




HDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELK




GIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIE




DGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHM




VLLEFVTAAGITLGMDELYKGSGATNFSLLKQAGDVEENPGPMVSK




GEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAK




LKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGE




KWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQ




KKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKA




KKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDEL




YK





Muscarinic
267
MNNSTNSSNNSLALTSPYKTFEVVFIVLVAGSLSLVTIIGNILVMV


acetylcholine

SIKVNRHLQTVNNYFLESLACADLIIGVESMNLYTLYTVIGYWPLG


receptor M2

PVVCDLWLALDYVVSNASVMNLLIISEDRYFCVTKPLTYPVKRTTK


Target-YFP-

MAGMMIAAAWVLSFILWAPAILFWQFIVGVRTVEDGECYIQFFSNA


P2A-mCherrry

AVTFGTAIAAFYLPVIIMTVLYWHISRASKSRIKKDKKEPVANQDP




VSPSLVQGRIVKPNNNNMPSSDDGLEHNKIQNGKAPRDPVTENCVQ




GEEKESSNDSTSVSAVASNMRDDEITQDENTVSTSLGHSKDENSKQ




TCIRIGTKTPKSDSCTPTNTTVEVVGSSGQNGDEKQNIVARKIVKM




TKQPAKKKPPPSREKKVTRTILAILLAFIITWAPYNVMVLINTFCA




PCIPNTVWTIGYWLCYINSTINPACYALCNATFKKTFKHLLMCHYK




NIGATRVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYG




KLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPDHMKQHDFFKS




AMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKE




DGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQL




ADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFV




TAAGITLGMDELYKGSGATNFSLLKQAGDVEENPGPMVSKGEEDNM




AIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKG




GPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGEKWERVM




NEEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGW




EASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQL




PGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK





CFP-P2A-
268
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Cezanne enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPPPSFSEGSGGSRTPE




KGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLARSH




VSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIERDLIEQS




MLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAASLGMWG




FHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESGLVYTE




DEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESLEEF




HVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLPLEVPAS




QCHRSPLVLAYDQAHFSALVSMEQKENTKEQAVIPLTDSEYKLLPL




HFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVKWIP




LSSDAQAPLAQ





CFP-P2A-
269
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


OTUD1 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPDEKLALYLAEVEKQD




KYLRQRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELREQTVHYI




ADHLDHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQMLNVNIH




LTTGGRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYDAVEDHS




YPNPEYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-
270
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


TRABID

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPLEVDEKKLKQIKNRM




KKTDWLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADEVRLLNR




PSAFDVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPAMVCPEL




TEQIRREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLPPTVQEK




LFDEVLDRDVQKELEEESPIINWSLELATRLDSRLYALWNRTAGDC




LLDSVLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKDWESWYS




QSFGLHESLREEQWQEDWAFILSLASQPGASLEQTHIFVLAHILRR




PIIVYGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKSPIALGY




TRGHFSALVAMENDGYGNRGAGANLNTDDDVTITFLPLVDSERKLL




HVHELSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKSSRRRNH




PLVTQMVEKWLDRYRQIRPCTSLS





CFP-P2A-
271
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


USP21 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPSDDKMAHHTLLLGSG




HVGLRNLGNTCFLNAVLQCLSSTRPLRDFCLRRDFRQEVPGGGRAQ




ELTEAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQQDA




QEFLKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLEEPE




LSDDDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRSTTE




EVFCDLSLPIPKKGFAGGKVSLRDCFNLFTKEEELESENAPVCDRC




RQKTRSTKKLTVQRFPRILVLHLNRFSASRGSIKKSSVGVDFPLQR




LSLGDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGWHVY




NDSRVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-
272
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


OTUD4 enDUB

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG




YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPATPMDAYLRKLGLYR




KLVAKDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENREKFEAF




IEGSFEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYREPNVSPS




QVTENNFPEKVLLCESNGNHYDIVYPIKYKESSAMCQSLLYELLYE




KVFKTDVSKIVMELDTLEVADE





CFP-P2A-a-
273
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


Cezanne enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSPPSFSEGSGGSRTPEKGESDREPTRPPRPILQRQDDIV




QEKRLSRGISHASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQ




LPDLTVYNEDERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQR




LLPLATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKE




ALKRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLG




TNGANCGGVESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRD




SGGEAFAPIPEGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSME




QKENTKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLA




SVILSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





CFP-P2A-a-
274
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


OTUD1 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSDEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGNCLYRA




VSKTVYGDQSLHRELREQTVHYIADHLDHESPLIEGDVGEFIIAAA




QDGAWAGYPELLAMGQMLNVNIHLTTGGRLESPTVSTMIHYLGPED




SLRPSIWLSWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRKRDEEL




AKSMAISLSKMYIEQNACS





CFP-P2A-a-
275
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


TRABID

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


enDUB

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSLEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGDLAAIE




AYKSSGGDIARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQRQDML




AILLTEVSQQAAKCIPAMVCPELTEQIRREIAASLHQRKGDFACYF




LTDLVTFTLPADIEDLPPTVQEKLEDEVLDRDVQKELEEESPIINW




SLELATRLDSRLYALWNRTAGDCLLDSVLQATWGIYDKDSVLRKAL




HDSLHDCSHWFYTRWKDWESWYSQSFGLHESLREEQWQEDWAFILS




LASQPGASLEQTHIFVLAHILRRPIIVYGVKYYKSFRGETLGYTRE




QGVYLPLLWEQSFCWKSPIALGYTRGHFSALVAMENDGYGNRGAGA




NLNTDDDVTITELPLVDSERKLLHVHELSAQELGNEEQQEKLLREW




LDCCVTEGGVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIRPCTSL





CFP-P2A-a-
276
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


USP21 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSSDDKMAHHTLLLGSGHVGLRNLGNTCFLNAVLQCLSST




RPLRDFCLRRDFRQEVPGGGRAQELTEAFADVIGALWHPDSCEAVN




PTRFRAVFQKYVPSFSGYSQQDAQEFLKLLMERLHLEINRRGRRAP




PILANGPVPSPPRRGGALLEEPELSDDDRANLMWKRYLEREDSKIV




DLFVGQLKSCLKCQACGYRSTTFEVECDLSLPIPKKGFAGGKVSLR




DCFNLFTKEEELESENAPVCDRCRQKTRSTKKLTVQRFPRILVLHL




NRFSASRGSIKKSSVGVDFPLQRLSLGDFASDKAGSPVYQLYALCN




HSGSVHYGHYTALCRCQTGWHVYNDSRVSPVSENQVASSEGYVLFY




QLMQEPPRCL





CFP-P2A-a-
277
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


YFPnanobody-

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG


OTUD4 enDUB

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL




GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ




QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLVESGGALVQPG




GSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYE




DSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQ




GTQVTVSSATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQVLHSQS




RHVEVRMACIHYLRENREKFEAFIEGSFEEYLKRLENPQEWVGQVE




ISALSLMYRKDFIIYREPNVSPSQVTENNFPEKVLLCESNGNHYDI




VYPIKYKESSAMCQSLLYELLYEKVFKTDVSKIVMELDTLEVADE





CFP-P2A-anti-
278
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


beta 2

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


adrenergic

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


Cezanne enDUB

TLGMDELYKGSGATNESLLKQAGDVEENPGPQVQLQESGGGLVQAG




GSLRLSCAASGSIFALNIMGWYRQAPGKQRELVAAIHSGGTTNYAN




SVKGRFTISRDNAANTVYLQMNSLKPEDTAVYYCNVKDEGAIIYDY




DYWGQGTQVTVSSPPSFSEGSGGSRTPEKGESDREPTRPPRPILQR




QDDIVQEKRLSRGISHASSSIVSLARSHVSSNGGGGGSNEHPLEMP




ICAFQLPDLTVYNEDERSFIERDLIEQSMLVALEQAGRLNWWVSVD




PTSQRLLPLATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEK




GVEKEALKRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKLASSEP




RMHLGTNGANCGGVESSEEPVYESLEEFHVEVLAHVLRRPIVVVAD




TMLRDSGGEAFAPIPFGGIYLPLEVPASQCHRSPLVLAYDQAHFSA




LVSMEQKENTKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSD




NVRLASVILSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





CFP-P2A-anti-
279
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


beta 2

FICTTGKLPVPWPTLVTTLTWGVQCESRYPDHMKQHDFFKSAMPEG


adrenergic

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


OTUD1 enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLQESGGGLVQAG




GSLRLSCAASGSIFALNIMGWYRQAPGKQRELVAAIHSGGTTNYAN




SVKGRFTISRDNAANTVYLQMNSLKPEDTAVYYCNVKDEGAIIYDY




DYWGQGTQVTVSSDEKLALYLAEVEKQDKYLRQRNKYRFHIIPDGN




CLYRAVSKTVYGDQSLHRELREQTVHYIADHLDHESPLIEGDVGEF




IIAAAQDGAWAGYPELLAMGQMLNVNIHLTTGGRLESPTVSTMIHY




LGPEDSLRPSIWLSWLSNGHYDAVEDHSYPNPEYDNWCKQTQVQRK




RDEELAKSMAISLSKMYIEQNACS





CFP-P2A-anti-
280
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


beta 2

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


adrenergic

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


TRABID

TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLQESGGGLVQAG


enDUB

GSLRLSCAASGSIFALNIMGWYRQAPGKQRELVAAIHSGGTTNYAN




SVKGRFTISRDNAANTVYLQMNSLKPEDTAVYYCNVKDEGAIIYDY




DYWGQGTQVTVSSLEVDFKKLKQIKNRMKKTDWLFLNACVGVVEGD




LAAIEAYKSSGGDIARQLTADEVRLLNRPSAFDVGYTLVHLAIRFQ




RQDMLAILLTEVSQQAAKCIPAMVCPELTEQIRREIAASLHQRKGD




FACYFLTDLVTFTLPADIEDLPPTVQEKLEDEVLDRDVQKELEEES




PIINWSLELATRLDSRLYALWNRTAGDCLLDSVLQATWGIYDKDSV




LRKALHDSLHDCSHWFYTRWKDWESWYSQSFGLHESLREEQWQEDW




AFILSLASQPGASLEQTHIFVLAHILRRPIIVYGVKYYKSERGETL




GYTRFQGVYLPLLWEQSFCWKSPIALGYTRGHFSALVAMENDGYGN




RGAGANLNTDDDVTITFLPLVDSERKLLHVHELSAQELGNEEQQEK




LLREWLDCCVTEGGVLVAMQKSSRRRNHPLVTQMVEKWLDRYRQIR




PCTSLS





CFP-P2A-anti-
281
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


beta 2

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


adrenergic

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


USP21 enDUB

TLGMDELYKGSGATNE




QVQLQESGGGLVQAGGSLRLSCAASGSIFALNIMGWYRQAPGKQRE




LVAAIHSGGTTNYANSVKGRFTISRDNAANTVYLQMNSLKPEDTAV




YYCNVKDFGAIIYDYDYWGQGTQVTVSSSDDKMAHHTLLLGSGHVG




LRNLGNTCFLNAVLQCLSSTRPLRDFCLRRDERQEVPGGGRAQELT




EAFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQQDAQEF




LKLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLEEPELSD




DDRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRSTTFEVE




CDLSLPIPKKGFAGGKVSLRDCENLFTKEEELESENAPVCDRCRQK




TRSTKKLTVQRFPRILVLHLNRESASRGSIKKSSVGVDFPLQRLSL




GDFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGWHVYNDS




RVSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
282
MVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGDATYGKLTLK


beta 2

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


adrenergic

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


OTUD4 enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPQVQLQESGGGLVQAG




GSLRLSCAASGSIFALNIMGWYRQAPGKQRELVAAIHSGGTTNYAN




SVKGRFTISRDNAANTVYLQMNSLKPEDTAVYYCNVKDEGAIIYDY




DYWGQGTQVTVSSATPMDAYLRKLGLYRKLVAKDGSCLFRAVAEQV




LHSQSRHVEVRMACIHYLRENREKFEAFIEGSFEEYLKRLENPQEW




VGQVEISALSLMYRKDFIIYREPNVSPSQVTENNFPEKVLLCESNG




NHYDIVYPIKYKESSAMCQSLLYELLYEKVFKTDVSKIVMELDTLE




VADE





CFP-P2A-anti-
283
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Kappa-type

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


opioid receptor

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


targeting binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


Cezanne enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPMAQVQLVESGGGLVR




PGGSLRLSCVDSERTSYPMGWFRRAPGKEREFVASITWSGIDPTYA




DSVADRETTSRDVANNTLYLQMNSLKHEDTAVYYCAARAPVGQSSS




PYDYDYWGQGTQVTVSSHHHHHHEPEAPPSFSEGSGGSRTPEKGES




DREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLARSHVSSN




GGGGGSNEHPLEMPICAFQLPDLTVYNEDERSFIERDLIEQSMLVA




LEQAGRLNWWVSVDPTSQRLLPLATTGDGNCLLHAASLGMWGFHDR




DLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESGLVYTEDEWQ




KEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESLEEFHVEV




LAHVLRRPIVVVADTMLRDSGGEAFAPIPEGGIYLPLEVPASQCHR




SPLVLAYDQAHFSALVSMEQKENTKEQAVIPLTDSEYKLLPLHFAV




DPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVKWIPLSSD




AQAPLAQ





CFP-P2A-anti-
284
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Kappa-type

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


opioid receptor

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


targeting binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


OTUD1 enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNESLLKQAGDVEENPGPMAQVQLVESGGGLVR




PGGSLRLSCVDSERTSYPMGWFRRAPGKEREFVASITWSGIDPTYA




DSVADRETTSRDVANNTLYLQMNSLKHEDTAVYYCAARAPVGQSSS




PYDYDYWGQGTQVTVSSHHHHHHEPEADEKLALYLAEVEKQDKYLR




QRNKYRFHIIPDGNCLYRAVSKTVYGDQSLHRELREQTVHYIADHL




DHFSPLIEGDVGEFIIAAAQDGAWAGYPELLAMGQMLNVNIHLTTG




GRLESPTVSTMIHYLGPEDSLRPSIWLSWLSNGHYDAVEDHSYPNP




EYDNWCKQTQVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-anti-
285
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Kappa-type

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


opioid receptor

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


targeting binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


TRABID

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPMAQVQLVESGGGLVR




PGGSLRLSCVDSERTSYPMGWFRRAPGKEREFVASITWSGIDPTYA




DSVADRFTTSRDVANNTLYLQMNSLKHEDTAVYYCAARAPVGQSSS




PYDYDYWGQGTQVTVSSHHHHHHEPEALEVDFKKLKQIKNRMKKTD




WLFLNACVGVVEGDLAAIEAYKSSGGDIARQLTADEVRLLNRPSAF




DVGYTLVHLAIRFQRQDMLAILLTEVSQQAAKCIPAMVCPELTEQI




RREIAASLHQRKGDFACYFLTDLVTFTLPADIEDLPPTVQEKLEDE




VLDRDVQKELEEESPIINWSLELATRLDSRLYALWNRTAGDCLLDS




VLQATWGIYDKDSVLRKALHDSLHDCSHWFYTRWKDWESWYSQSFG




LHFSLREEQWQEDWAFILSLASQPGASLEQTHIFVLAHILRRPIIV




YGVKYYKSFRGETLGYTRFQGVYLPLLWEQSFCWKSPIALGYTRGH




FSALVAMENDGYGNRGAGANLNTDDDVTITFLPLVDSERKLLHVHE




LSAQELGNEEQQEKLLREWLDCCVTEGGVLVAMQKSSRRRNHPLVT




QMVEKWLDRYRQIRPCTSLS





CFP-P2A-anti-
286
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Kappa-type

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


opioid receptor

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


targeting binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


USP21 enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPMAQVQLVESGGGLVR




PGGSLRLSCVDSERTSYPMGWFRRAPGKEREFVASITWSGIDPTYA




DSVADRETTSRDVANNTLYLQMNSLKHEDTAVYYCAARAPVGQSSS




PYDYDYWGQGTQVTVSSHHHHHHEPEASDDKMAHHTLLLGSGHVGL




RNLGNTCFLNAVLQCLSSTRPLRDFCLRRDERQEVPGGGRAQELTE




AFADVIGALWHPDSCEAVNPTRFRAVFQKYVPSFSGYSQQDAQEFL




KLLMERLHLEINRRGRRAPPILANGPVPSPPRRGGALLEEPELSDD




DRANLMWKRYLEREDSKIVDLFVGQLKSCLKCQACGYRSTTFEVFC




DLSLPIPKKGFAGGKVSLRDCENLFTKEEELESENAPVCDRCRQKT




RSTKKLTVQRFPRILVLHLNRESASRGSIKKSSVGVDFPLQRLSLG




DFASDKAGSPVYQLYALCNHSGSVHYGHYTALCRCQTGWHVYNDSR




VSPVSENQVASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
287
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Kappa-type

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


opioid receptor

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


targeting binder-

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


OTUD4 enDUB

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI




TLGMDELYKGSGATNFSLLKQAGDVEENPGPMAQVQLVESGGGLVR




PGGSLRLSCVDSERTSYPMGWERRAPGKEREFVASITWSGIDPTYA




DSVADRETTSRDVANNTLYLQMNSLKHEDTAVYYCAARAPVGQSSS




PYDYDYWGQGTQVTVSSHHHHHHEPEAATPMDAYLRKLGLYRKLVA




KDGSCLFRAVAEQVLHSQSRHVEVRMACIHYLRENREKFEAFIEGS




FEEYLKRLENPQEWVGQVEISALSLMYRKDFIIYREPNVSPSQVTE




NNFPEKVLLCESNGNHYDIVYPIKYKESSAMCQSLLYELLYEKVEK




TDVSKIVMELDTLEVADE





CFP-P2A-anti-
288
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Muscarinic

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


acetylcholine

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor M2

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


Cezanne enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPGPGSQVQLQESGGGL




VQAGDSLRLSCAASGEDEDNEDDYAIGWFRQAPGQEREGVSCIDPS




DGSTIYADSAKGRFTISSDNAENTVYLQMNSLKPEDTAVYVCSAWT




LFHSDEYWGQGTQVTVSSPPSFSEGSGGSRTPEKGESDREPTRPPR




PILQRQDDIVQEKRLSRGISHASSSIVSLARSHVSSNGGGGGSNEH




PLEMPICAFQLPDLTVYNEDERSFIERDLIEQSMLVALEQAGRLNW




WVSVDPTSQRLLPLATTGDGNCLLHAASLGMWGFHDRDLMLRKALY




ALMEKGVEKEALKRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKL




ASSEPRMHLGTNGANCGGVESSEEPVYESLEEFHVFVLAHVLRRPI




VVVADTMLRDSGGEAFAPIPEGGIYLPLEVPASQCHRSPLVLAYDQ




AHFSALVSMEQKENTKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWG




KDDSDNVRLASVILSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





CFP-P2A-anti-
289
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Muscarinic

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


acetylcholine

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor M2

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


OTUD1 enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPGPGSQVQLQESGGGL




VQAGDSLRLSCAASGEDEDNEDDYAIGWFRQAPGQEREGVSCIDPS




DGSTIYADSAKGRFTISSDNAENTVYLQMNSLKPEDTAVYVCSAWT




LFHSDEYWGQGTQVTVSSDEKLALYLAEVEKQDKYLRQRNKYRFHI




IPDGNCLYRAVSKTVYGDQSLHRELREQTVHYIADHLDHESPLIEG




DVGEFIIAAAQDGAWAGYPELLAMGQMLNVNIHLTTGGRLESPTVS




TMIHYLGPEDSLRPSIWLSWLSNGHYDAVEDHSYPNPEYDNWCKQT




QVQRKRDEELAKSMAISLSKMYIEQNACS





CFP-P2A-anti-
290
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Muscarinic

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


acetylcholine

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor M2

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


TRABID

TLGMDELYKGSGATNFSLLKQAGDVEENPGPGPGSQVQLQESGGGL


enDUB

VQAGDSLRLSCAASGEDEDNEDDYAIGWFRQAPGQEREGVSCIDPS




DGSTIYADSAKGRFTISSDNAENTVYLQMNSLKPEDTAVYVCSAWT




LFHSDEYWGQGTQVTVSSLEVDFKKLKQIKNRMKKTDWLFLNACVG




VVEGDLAAIEAYKSSGGDIARQLTADEVRLLNRPSAFDVGYTLVHL




AIRFQRQDMLAILLTEVSQQAAKCIPAMVCPELTEQIRREIAASLH




QRKGDFACYFLTDLVTFTLPADIEDLPPTVQEKLEDEVLDRDVQKE




LEEESPIINWSLELATRLDSRLYALWNRTAGDCLLDSVLQATWGIY




DKDSVLRKALHDSLHDCSHWFYTRWKDWESWYSQSFGLHESLREEQ




WQEDWAFILSLASQPGASLEQTHIFVLAHILRRPIIVYGVKYYKSE




RGETLGYTRFQGVYLPLLWEQSFCWKSPIALGYTRGHFSALVAMEN




DGYGNRGAGANLNTDDDVTITFLPLVDSERKLLHVHELSAQELGNE




EQQEKLLREWLDCCVTEGGVLVAMQKSSRRRNHPLVTQMVEKWLDR




YRQIRPCTSLS





CFP-P2A-anti-
291
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Muscarinic

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDEFKSAMPEG


acetylcholine

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor M2

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


USP21 enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPGPGSQVQLQESGGGL




VQAGDSLRLSCAASGEDEDNEDDYAIGWFRQAPGQEREGVSCIDPS




DGSTIYADSAKGRFTISSDNAENTVYLQMNSLKPEDTAVYVCSAWT




LFHSDEYWGQGTQVTVSSSDDKMAHHTLLLGSGHVGLRNLGNTCEL




NAVLQCLSSTRPLRDFCLRRDFRQEVPGGGRAQELTEAFADVIGAL




WHPDSCEAVNPTRFRAVFQKYVPSFSGYSQQDAQEFLKLLMERLHL




EINRRGRRAPPILANGPVPSPPRRGGALLEEPELSDDDRANLMWKR




YLEREDSKIVDLFVGQLKSCLKCQACGYRSTTFEVFCDLSLPIPKK




GFAGGKVSLRDCENLFTKEEELESENAPVCDRCRQKTRSTKKLTVQ




RFPRILVLHLNRESASRGSIKKSSVGVDFPLQRLSLGDFASDKAGS




PVYQLYALCNHSGSVHYGHYTALCRCQTGWHVYNDSRVSPVSENQV




ASSEGYVLFYQLMQEPPRCL





CFP-P2A-anti-
292
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK


Muscarinic

FICTTGKLPVPWPTLVTTLTWGVQCFSRYPDHMKQHDFFKSAMPEG


acetylcholine

YVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNIL


receptor M2

GHKLEYNYISHNVYITADKQKNGIKANFKIRHNIEDGSVQLADHYQ


targeting binder-

QNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGI


OTUD4 enDUB

TLGMDELYKGSGATNFSLLKQAGDVEENPGPGPGSQVQLQESGGGL




VQAGDSLRLSCAASGEDEDNEDDYAIGWFRQAPGQEREGVSCIDPS




DGSTIYADSAKGRFTISSDNAENTVYLQMNSLKPEDTAVYVCSAWT




LFHSDEYWGQGTQVTVSSATPMDAYLRKLGLYRKLVAKDGSCLFRA




VAEQVLHSQSRHVEVRMACIHYLRENREKFEAFIEGSFEEYLKRLE




NPQEWVGQVEISALSLMYRKDFIIYREPNVSPSQVTENNFPEKVLL




CFSNGNHYDIVYPIKYKESSAMCQSLLYELLYEKVEKTDVSKIVME




LDTLEVADE









6.2 Example 2. Testing of Targeted Engineered Deubiquitinases

To demonstrate upregulation of a target protein in the context of a specific targeting enDUB the following experiments will be performed.


Schematic constructs used:

    • Control experiment using non-targeting enDUB fusion
      • Target-YFP-P2A-mCherrry
      • CFP-P2A-enDUB (nontargeting control enDUB)
    • Test constructs for up-regulation:
      • Target-YFP-P2A-mCherry
      • CFP-P2A-a-YFPnanobody-enDUB
    • Or specific targeting enDUB fusion composed of
      • CFP-P2A-anti-targeting binder-enDUB


Co-transfection of both plasmids carrying the YFP tagged target protein together with the enDUB fused to a target binding protein into HEK cells will be performed. A control construct carrying the enDUB in the absence of the targeting binder will also be co-transfected together with the labeled target protein. After 24-48 hours the transfected cells will be analyzed by FACS or upregulation over the control. The mCherry signal on the target protein will be used to normalize for transfection efficiency while the CFP signal will be used to normalize for the transfection efficiency of the enDUB constructs. The YFP fused to the target protein is the read-out for target gene expression and will be plotted vs the signal in the control transfection. Relative increase in the YFP fluorescence over control will demonstrate upregulation in the presence of the enDUB.


6.3 Example 3. Screening Assay for Testing Fusion Proteins

The following example describes an assay to analyze the ability of a targeted engineered deubiquitinase (enDub) (e.g., an enDub described herein) to increase expression of a target protein. Generally, the assay involves tagging the target protein with a fluorescent tag (e.g., NanoLuciferase (NLuc)) and an alfa-tag (α-Tag); and tagging a fusion protein of the enDub and an anti-alfa Tag nanobody with a different fluorescent tag (e.g., Firefly Luciferase (FLuc)) through a cleavable linker. The use of two different fluorescent tags enables normalization of the signal to compensate for variation in transfection/expression, as the second fluorescent tag is rapidly cleaved from the enDub-anti-alfa tag fusion protein inside the cell through cleavage of the cleavable linker. FIG. 2 provides a general schematic of the cellular aspects of the assay. The protocol, including materials and methods is described below.


CHO-K1 cells were digested with 0.25% (w/v) Trypsin-EDTA, at 37° C., for 5 min. Complete medium was added for the CHO-K1 cell cultures to stop the digestion. The CHO-K1 cells were centrifuges at 800 rpm for 5 minutes. After centrifugation, the supernatant was discarded and the CHO-K1 cells were resuspend in 2 mL culture medium and counted. 10{circumflex over ( )}6 CHO-K1 cells were electroporated under 440V with 0.5 ug of a plasmid encoding the target protein tagged with NLuc and alfa-tag, and 1 ug of a plasmid encoding a) enDub-anti-alfa tag nanobody-FLuc fusion protein (experimental), b) the enDub (control), or the anti-alfa tag nanobody (control). 5E+4 cells/well were placed in in 24 well plates and cultured for 24 h, at 37° C., 5% CO2. The cells were digested with 0.25% (w/v) Trypsin-EDTA, at 37° C. for 5 min. Complete medium was added to the culture to stop the digestion and the cells were counted for use in NanoGlo® Dual Luciferase® Assay (Promega), which enables detection of FLuc and NLuc® in a single sample. The NanoGlo® Dual Luciferase® Assay was carried out according to manufacturer's instructions (Promega, Nano-Glo® Dual-Luciferase® Reporter Assay Technical Manual #TM426). Briefly, 1E+4 cells/well were placed in 96 well black plates and cultured for 24 h, at 37° C., 5% CO2. The plates were removed from the incubator and allowed to equilibrate to room temperature. The samples were modified as needed to have a starting volume of 80 μl per well. All sample wells were injected with 80 μl of ONE-Glo™ EX Reagent and incubated for 3 minutes. The firefly luminescence was read in all sample wells using a 1-second integration time. All sample wells were injected with 80 μl of NanoDLR™ Stop & Glo® Reagent; and incubated for 5 minutes. The NanoLuc® luminescence of all sample wells was read using a 1-second integration time. The dispensing lines were cleaned according to manufacturer's instructions (Nano-Glo® Dual-Luciferase® Reporter Assay Technical Manual #TM426.) and the data analyzed.


The amino acid sequence of the components of the fusion proteins used in the assay are detailed in Table 6 below.









TABLE 6







Amino acid sequence of components of test fusion proteins










Description

SEQ ID NO
Amino Acid Sequence





Fluorescent Protein
NanoLuc
425
VFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQ





NLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGL





SGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLV





IDGVTPNMIDYFGRPYEGIAVFDGKKITVTGTL





WNGNKIIDERLINPDGSLLFRVTINGVTGWRLC





ERILA



Firefly
426
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRY



Luciferase

ALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEA





MKRYGLNTNHRIVVCSENSLQFFMPVLGALFIG





VAVAPANDIYNERELLNSMGISQPTVVFVSKKG





LQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMY





TFVTSHLPPGENEYDFVPESEDRDKTIALIMNS





SGSTGLPKGVALPHRTACVRESHARDPIFGNQI





IPDTAILSVVPFHHGFGMFTTLGYLICGFRVVL





MYRFEEELFLRSLQDYKIQSALLVPTLESFFAK





STLIDKYDLSNLHEIASGGAPLSKEVGEAVAKR





FHLPGIRQGYGLTETTSAILITPEGDDKPGAVG





KVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPM





IMSGYVNNPEATNALIDKDGWLHSGDIAYWDED





EHFFIVDRLKSLIKYKGYQVAPAELESILLQHP





NIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE





KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTG





KLDARKIREILIKAKKGGKIAVTRLK












Alfa Tag
427
PSRLEEELRRRLTEP





P2A
428
GSGATNFSLLKQAGDVEENPGP





Cezanne (Exemplary Catalytic
429
PPSFSEGSGGSRTPEKGFSDREPTRPPRPILQR


Domain)

QDDIVQEKRLSRGISHASSSIVSLARSHVSSNG




GGGGSNEHPLEMPICAFQLPDLTVYNEDERSFI




ERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLL




PLATTGDGNCLLHAASLGMWGFHDRDLMLRKAL




YALMEKGVEKEALKRRWRWQQTQQNKESGLVYT




EDEWQKEWNELIKLASSEPRMHLGTNGANCGGV




ESSEEPVYESLEEFHVFVLAHVLRRPIVVVADT




MLRDSGGEAFAPIPFGGIYLPLEVPASQCHRSP




LVLAYDQAHFSALVSMEQKENTKEQAVIPLTDS




EYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVI




LSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ









The amino acid sequence of exemplary target fusion proteins comprising a target protein, NLuc, and the alfa tag are detailed in Table 7 below.









TABLE 7







Amino Acid Sequence of exemplary Target Protein-NLuc-Alfa Tag Fusion Proteins









Test Protein
SEQ ID NO
Amino Acid Sequence





GRIN2A-nanoluc-
430
MGRVGYWTLLVLPALLVWRGPAPSAAAEKGPPALNIAVMLGHSHD


alfa-tag-fusion

VTERELRTLWGPEQAAGLPLDVNVVALLMNRTDPKSLITHVCDLM




SGARIHGLVFGDDTDQEAVAQMLDFISSHTFVPILGIHGGASMIM




ADKDPTSTFFQFGASIQQQATVMLKIMQDYDWHVESLVTTIFPGY




REFISFVKTTVDNSFVGWDMQNVITLDTSFEDAKTQVQLKKIHSS




VILLYCSKDEAVLILSEARSLGLTGYDFFWIVPSLVSGNTELIPK




EFPSGLISVSYDDWDYSLEARVRDGIGILTTAASSMLEKFSYIPE




AKASCYGQMERPEVPMHTLHPFMVNVTWDGKDLSFTEEGYQVHPR




LVVIVLNKDREWEKVGKWENHTLSLRHAVWPRYKSFSDCEPDDNH




LSIVTLEEAPFVIVEDIDPLTETCVRNTVPCRKFVKINNSTNEGM




NVKKCCKGFCIDILKKLSRTVKFTYDLYLVTNGKHGKKVNNVWNG




MIGEVVYQRAVMAVGSLTINEERSEVVDESVPFVETGISVMVSRS




NGTVSPSAFLEPFSASVWVMMFVMLLIVSAIAVFVFEYESPVGYN




RNLAKGKAPHGPSFTIGKAIWLLWGLVENNSVPVQNPKGTTSKIM




VSVWAFFAVIFLASYTANLAAFMIQEEFVDQVTGLSDKKFQRPHD




YSPPFRFGTVPNGSTERNIRNNYPYMHQYMTKENQKGVEDALVSL




KTGKLDAFIYDAAVLNYKAGRDEGCKLVTIGSGYIFATTGYGIAL




QKGSPWKRQIDLALLQFVGDGEMEELETLWLTGICHNEKNEVMSS




QLDIDNMAGVFYMLAAAMALSLITFIWEHLFYWKLRFCFTGVCSD




RPGLLESISRGIYSCIHGVHIEEKKKSPDENLTGSQSNMLKLLRS




AKNISSMSNMNSSRMDSPKRAADFIQRGSLIMDMVSDKGNLMYSD




NRSFQGKESIFGDNMNELQTFVANRQKDNLNNYVFQGQHPLTLNE




SNPNTVEVAVSTESKANSRPRQLWKKSVDSIRQDSLSQNPVSQRD




EATAENRTHSLKSPRYLPEEMAHSDISETSNRATCHREPDNSKNH




KTKDNFKRSVASKYPKDCSEVERTYLKTKSSSPRDKIYTIDGEKE




PGFHLDPPQFVENVTLPENVDFPDPYQDPSENFRKGDSTLPMNRN




PLHNEEGLSNNDQYKLYSKHFTLKDKGSPHSETSERYRQNSTHCR




SCLSNMPTYSGHFTMRSPFKCDACLRMGNLYDIDEDQMLQETGNP




ATGEQVYQQDWAQNNALQLQKNKLRISRQHSYDNIVDKPRELDLS




RPSRSISLKDRERLLEGNFYGSLFSVPSSKLSGKKSSLFPQGLED




SKRSKSLLPDHTSDNPFLHSHRDDQRLVIGRCPSDPYKHSLPSQA




VNDSYLRSSLRSTASYCSRDSRGHNDVYISEHVMPYAANKNNMYS




TPRVLNSCSNRRVYKKMPSIESDVKVPVFTLEDFVGDWRQTAGYN




LDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPY




EGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMI




DYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINPDGSLLER




VTINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





SLC2A1-nanoluc-
431
MEPSSKKLTGRLMLAVGGAVLGSLQFGYNTGVINAPQKVIEEFYN


alfa-tag-fusion

QTWVHRYGESILPTTLTTLWSLSVAIFSVGGMIGSFSVGLFVNRE




GRRNSMLMMNLLAFVSAVLMGFSKLGKSFEMLILGRFIIGVYCGL




TTGFVPMYVGEVSPTALRGALGTLHQLGIVVGILIAQVFGLDSIM




GNKDLWPLLLSIIFIPALLQCIVLPFCPESPRELLINRNEENRAK




SVLKKLRGTADVTHDLQEMKEESRQMMREKKVTILELFRSPAYRQ




PILIAVVLQLSQQLSGINAVFYYSTSIFEKAGVQQPVYATIGSGI




VNTAFTVVSLFVVERAGRRTLHLIGLAGMAGCAILMTIALALLEQ




LPWMSYLSIVAIFGFVAFFEVGPGPIPWFIVAELFSQGPRPAAIA




VAGFSNWTSNFIVGMCFQYVEQLCGPYVFIIFTVLLVLFFIFTYF




KVPETKGRTFDEIASGFRQGGASQSDKTPEELFHPLGADSQVKVP




VFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVSVTPIQRI




VLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYPVDDHHFK




VILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKITVTGTLWNG




NKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGGGGSPSRLE




EELRRRLTEP





CACNA1A-
432
MARFGDEMPARYGGGGSGAAAGVVVGSGGGRGAGGSRQGGQPGAQ


nanoluc-alfa-tag-

RMYKQSMAQRARTMALYNPIPVRQNCLTVNRSLFLESEDNVVRKY


fusion

AKKITEWPPFEYMILATIIANCIVLALEQHLPDDDKTPMSERLDD




TEPYFIGIFCFEAGIKIIALGFAFHKGSYLRNGWNVMDFVVVLTG




ILATVGTEFDLRTLRAVRVLRPLKLVSGIPSLQVVLKSIMKAMIP




LLQIGLLLFFAILIFAIIGLEFYMGKFHTTCFEEGTDDIQGESPA




PCGTEEPARTCPNGTKCQPYWEGPNNGITQFDNILFAVLTVFQCI




TMEGWTDLLYNSNDASGNTWNWLYFIPLIIIGSFFMLNLVLGVLS




GEFAKERERVENRRAFLKLRRQQQIERELNGYMEWISKAEEVILA




EDETDGEQRHPFDALRRTTIKKSKTDLLNPEEAEDQLADIASVGS




PFARASIKSAKLENSTFFHKKERRMRFYIRRMVKTQAFYWTVLSL




VALNTLCVAIVHYNQPEWLSDFLYYAEFIFLGLFMSEMFIKMYGL




GTRPYFHSSENCFDCGVIIGSIFEVIWAVIKPGTSFGISVLRALR




LLRIFKVTKYWASLRNLVVSLLNSMKSIISLLFLLFLFIVVFALL




GMQLFGGQFNFDEGTPPTNEDTFPAAIMTVFQILTGEDWNEVMYD




GIKSQGGVQGGMVFSIYFIVLTLFGNYTLLNVELAIAVDNLANAQ




ELTKDEQEEEEAANQKLALQKAKEVAEVSPLSAANMSIAVKEQQK




NQKPAKSVWEQRTSEMRKQNLLASREALYNEMDPDERWKAAYTRH




LRPDMKTHLDRPLVVDPQENRNNNTNKSRAAEPTVDQRLGQQRAE




DELRKQARYHDRARDPSGSAGLDARRPWAGSQEAELSREGPYGRE




SDHHAREGSLEQPGFWEGEAERGKAGDPHRRHVHRQGGSRESRSG




SPRTGADGEHRRHRAHRRPGEEGPEDKAERRARHREGSRPARGGE




GEGEGPDGGERRRRHRHGAPATYEGDARREDKERRHRRRKENQGS




GVPVSGPNLSTTRPIQQDLGRQDPPLAEDIDNMKNNKLATAESAA




PHGSLGHAGLPQSPAKMGNSTDPGPMLAIPAMATNPQNAASRRTP




NNPGNPSNPGPPKTPENSLIVTNPSGTQTNSAKTARKPDHTTVDI




PPACPPPLNHTVVQVNKNANPDPLPKKEEEKKEEEEDDRGEDGPK




PMPPYSSMFILSTTNPLRRLCHYILNLRYFEMCILMVIAMSSIAL




AAEDPVQPNAPRNNVLRYFDYVFTGVFTFEMVIKMIDLGLVLHQG




AYFRDLWNILDFIVVSGALVAFAFTGNSKGKDINTIKSLRVLRVL




RPLKTIKRLPKLKAVFDCVVNSLKNVENILIVYMLEMFIFAVVAV




QLFKGKFFHCTDESKEFEKDCRGKYLLYEKNEVKARDREWKKYEF




HYDNVLWALLTLFTVSTGEGWPQVLKHSVDATFENQGPSPGYRME




MSIFYVVYFVVFPFFFVNIFVALIIITFQEQGDKMMEEYSLEKNE




RACIDFAISAKPLTRHMPQNKQSFQYRMWQFVVSPPFEYTIMAMI




ALNTIVLMMKFYGASVAYENALRVENIVFTSLESLECVLKVMAFG




ILNYFRDAWNIFDFVTVLGSITDILVTEFGNNFINLSFLRLFRAA




RLIKLLRQGYTIRILLWTFVQSFKALPYVCLLIAMLFFIYAIIGM




QVFGNIGIDVEDEDSDEDEFQITEHNNERTFFQALMLLERSATGE




AWHNIMLSCLSGKPCDKNSGILTRECGNEFAYFYFVSFIFLCSEL




MLNLFVAVIMDNFEYLTRDSSILGPHHLDEYVRVWAEYDPAAWGR




MPYLDMYQMLRHMSPPLGLGKKCPARVAYKRLLRMDLPVADDNTV




HFNSTLMALIRTALDIKIAKGGADKQQMDAELRKEMMAIWPNLSQ




KTLDLLVTPHKSTDLTVGKIYAAMMIMEYYRQSKAKKLQAMREEQ




DRTPLMFQRMEPPSPTQEGGPGQNALPSTQLDPGGALMAHESGLK




ESPSWVTQRAQEMFQKTGTWSPEQGPPTDMPNSQPNSQSVEMREM




GRDGYSDSEHYLPMEGQGRAASMPRLPAENQRRRGRPRGNNLSTI




SDTSPMKRSASVLGPKARRLDDYSLERVPPEENQRHHQRRRDRSH




RASERSLGRYTDVDTGLGTDLSMTTQSGDLPSKERDQERGRPKDR




KHRQHHHHHHHHHHPPPPDKDRYAQERPDHGRARARDQRWSRSPS




EGREHMAHRQGSSSVSGSPAPSTSGTSTPRRGRRQLPQTPSTPRP




HVSYSPVIRKAGGSGPPQQQQQQQQQQQQQAVARPGRAATSGPRR




YPGPTAEPLAGDRPPTGGHSSGRSPRMERRVPGPARSESPRACRH




GGARWPASGPHVSEGPPGPRHHGYYRGSDYDEADGPGSGGGEEAM




AGAYDAPPPVRHASSGATGRSPRTPRASGPACASPSRHGRRLPNG




YYPAHGLARPRGPGSRKGLHEPYSESDDDWCKVPVFTLEDFVGDW




RQTAGYNLDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKID




IHVIIPYEGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVID




GVTPNMIDYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINP




DGSLLFRVTINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





GABRB3-nanoluc-
433
MWGLAGGRLFGIFSAPVLVAVVCCAQSVNDPGNMSFVKETVDKLL


alfa-tag-fusion

KGYDIRLRPDFGGPPVCVGMNIDIASIDMVSEVNMDYTLTMYFQQ




YWRDKRLAYSGIPLNLTLDNRVADQLWVPDTYFLNDKKSFVHGVT




VKNRMIRLHPDGTVLYGLRITTTAACMMDLRRYPLDEQNCTLEIE




SYGYTTDDIEFYWRGGDKAVTGVERIELPQFSIVEHRLVSRNVVE




ATGAYPRLSLSFRLKRNIGYFILQTYMPSILITILSWVSFWINYD




ASAARVALGITTVLTMTTINTHLRETLPKIPYVKAIDMYLMGCFV




FVFLALLEYAFVNYIFFGRGPQRQKKLAEKTAKAKNDRSKSESNR




VDAHGNILLTSLEVHNEMNEVSGGIGDTRNSAISEDNSGIQYRKQ




SMPREGHGRELGDRSLPHKKTHLRRRSSQLKIKIPDLTDVNAIDR




WSRIVFPFTFSLENLVYWLYYVNKVPVFTLEDFVGDWRQTAGYNL




DQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYE




GLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMID




YFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINPDGSLLERV




TINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





SLC6A1-nanoluc-
434
MATNGSKVADGQISTEVSEAPVANDKPKTLVVKVQKKAADLPDRD


alfa-tag-fusion

TWKGRFDFLMSCVGYAIGLGNVWRFPYLCGKNGGGAFLIPYFLTL




IFAGVPLFLLECSLGQYTSIGGLGVWKLAPMFKGVGLAAAVLSFW




LNIYYIVIISWAIYYLYNSFTTTLPWKQCDNPWNTDRCESNYSMV




NTTNMTSAVVEFWERNMHQMTDGLDKPGQIRWPLAITLAIAWILV




YFCIWKGVGWTGKVVYFSATYPYIMLIILFFRGVTLPGAKEGILF




YITPNFRKLSDSEVWLDAATQIFFSYGLGLGSLIALGSYNSFHNN




VYRDSIIVCCINSCTSMFAGFVIFSIVGFMAHVTKRSIADVAASG




PGLAFLAYPEAVTQLPISPLWAILFFSMLLMLGIDSQFCTVEGFI




TALVDEYPRLLRNRRELFIAAVCIISYLIGLSNITQGGIYVFKLE




DYYSASGMSLLFLVFFECVSISWFYGVNRFYDNIQEMVGSRPCIW




WKLCWSFFTPIIVAGVFIFSAVQMTPLTMGNYVFPKWGQGVGWLM




ALSSMVLIPGYMAYMFLTLKGSLKQRIQVMVQPSEDIVRPENGPE




QPQAGSSTSKEAYIKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGV




SSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQ




IEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMIDYEGRPYEGI




AVFDGKKITVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWR




LCERILAGGGGSPSRLEEELRRRLTEP





KCNQ2-nanoluc-
435
MVQKSRNGGVYPGPSGEKKLKVGFVGLDPGAPDSTRDGALLIAGS


alfa-tag-fusion

EAPKRGSILSKPRAGGAGAGKPPKRNAFYRKLQNFLYNVLERPRG




WAFIYHAYVELLVESCLVLSVESTIKEYEKSSEGALYILEIVTIV




VFGVEYFVRIWAAGCCCRYRGWRGRLKFARKPFCVIDIMVLIASI




AVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLGSVV




YAHSKELVTAWYIGELCLILASELVYLAEKGENDHEDTYADALWW




GLITLTTIGYGDKYPQTWNGRLLAATFTLIGVSFFALPAGILGSG




FALKVQEQHRQKHFEKRRNPAAGLIQSAWRFYATNLSRTDLHSTW




QYYERTVTVPMYSSQTQTYGASRLIPPLNQLELLRNLKSKSGLAF




RKDPPPEPSPSKGSPCRGPLCGCCPGRSSQKVSLKDRVESSPRGV




AAKGKGSPQAQTVRRSPSADQSLEDSPSKVPKSWSEGDRSRARQA




FRIKGAASRQNSEEASLPGEDIVDDKSCPCEFVTEDLTPGLKVSI




RAVCVMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLDMLSRIKSL




QSRVDQIVGRGPAITDKDRTKGPAEAELPEDPSMMGRLGKVEKQV




LSMEKKLDELVNIYMQRMGIPPTETEAYFGAKEPEPAPPYHSPED




SREHVDRHGCIVKIVRSSSSTGQKNFSAPPAAPPVQCPPSTSWQP




QSHPRQGHGTSPVGDHGSLVRIPPPPAHERSLSAYGGGNRASMEF




LRQEDTPGCRPPEGNLRDSDTSISIPSVDHEELERSESGFSISQS




KENLDALNSCYAAVAPCAKVRPYIAEGESDTDSDLCTPCGPPPRS




ATGEGPFGDVGWAGPRKKVPVFTLEDFVGDWRQTAGYNLDQVLEQ




GGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQ




MGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPY




EGIAVFDGKKITVTGTLWNGNKIIDERLINPDGSLLERVTINGVT




GWRLCERILAGGGGSPSRLEEELRRRLTEP





SCN8A-nanoluc-
436
MAARLLAPPGPDSFKPFTPESLANIERRIAESKLKKPPKADGSHR


alfa-tag-fusion

EDDEDSKPKPNSDLEAGKSLPFIYGDIPQGLVAVPLEDEDPYYLT




QKTFVVLNRGKTLFRFSATPALYILSPENLIRRIAIKILIHSVES




MIIMCTILTNCVEMTFSNPPDWSKNVEYTFTGIYTFESLVKIIAR




GFCIDGFTFLRDPWNWLDESVIMMAYITEFVNLGNVSALRTERVL




RALKTISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGL




QLFMGNLRNKCVVWPINENESYLENGTKGEDWEEYINNKTNFYTV




PGMLEPLLCGNSSDAGQCPEGYQCMKAGRNPNYGYTSFDTFSWAF




LALFRLMTQDYWENLYQLTLRAAGKTYMIFFVLVIFVGSFYLVNL




ILAVVAMAYEEQNQATLEEAEQKEAEFKAMLEQLKKQQEEAQAAA




MATSAGTVSEDAIEEEGEEGGGSPRSSSEISKLSSKSAKERRNRR




KKRKQKELSEGEEKGDPEKVEKSESEDGMRRKAFRLPDNRIGRKE




SIMNQSLLSIPGSPFLSRHNSKSSIFSFRGPGRERDPGSENEFAD




DEHSTVEESEGRRDSLFIPIRARERRSSYSGYSGYSQGSRSSRIF




PSLRRSVKRNSTVDCNGVVSLIGGPGSHIGGRLLPEATTEVEIKK




KGPGSLLVSMDQLASYGRKDRINSIMSVVTNTLVEELEESQRKCP




PCWYKFANTFLIWECHPYWIKLKEIVNLIVMDPFVDLAITICIVL




NTLFMAMEHHPMTPQFEHVLAVGNLVFTGIFTAEMELKLIAMDPY




YYFQEGWNIFDGFIVSLSLMELSLADVEGLSVLRSERLLRVEKLA




KSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKS




YKECVCKINQDCELPRWHMHDFFHSFLIVERVLCGEWIETMWDCM




EVAGQAMCLIVEMMVMVIGNLVVLNLFLALLLSSFSADNLAATDD




DGEMNNLQISVIRIKKGVAWTKLKVHAFMQAHFKQREADEVKPLD




ELYEKKANCIANHTGADIHRNGDFQKNGNGTTSGIGSSVEKYIID




EDHMSFINNPNLTVRVPIAVGESDFENLNTEDVSSESDPEGSKDK




LDDTSSSEGSTIDIKPEVEEVPVEQPEEYLDPDACFTEGCVQRFK




CCQVNIEEGLGKSWWILRKTCFLIVEHNWFETFIIFMILLSSGAL




AFEDIYIEQRKTIRTILEYADKVETYIFILEMLLKWTAYGFVKFF




TNAWCWLDELIVAVSLVSLIANALGYSELGAIKSLRTLRALRPLR




ALSRFEGMRVVVNALVGAIPSIMNVLLVCLIFWLIFSIMGVNLFA




GKYHYCFNETSEIRFEIEDVNNKTECEKLMEGNNTEIRWKNVKIN




FDNVGAGYLALLQVATFKGWMDIMYAAVDSRKPDEQPKYEDNIYM




YIYFVIFIIFGSFFTLNLFIGVIIDNENQQKKKFGGQDIFMTEEQ




KKYYNAMKKLGSKKPQKPIPRPLNKIQGIVFDFVTQQAFDIVIMM




LICLNMVTMMVETDTQSKQMENILYWINLVFVIFFTCECVLKMFA




LRHYYFTIGWNIFDFVVVILSIVGMFLADIIEKYFVSPTLERVIR




LARIGRILRLIKGAKGIRTLLFALMMSLPALFNIGLLLFLVMFIF




SIFGMSNFAYVKHEAGIDDMENFETFGNSMICLFQITTSAGWDGL




LLPILNRPPDCSLDKEHPGSGFKGDCGNPSVGIFFFVSYIIISFL




IVVNMYIAIILENFSVATEESADPLSEDDFETFYEIWEKFDPDAT




QFIEYCKLADFADALEHPLRVPKPNTIELIAMDLPMVSGDRIHCL




DILFAFTKRVLGDSGELDILRQQMEERFVASNPSKVSYEPITTTL




RRKQEEVSAVVLQRAYRGHLARRGFICKKTTSNKLENGGTHREKK




ESTPSTASLPSYDSVTKPEKEKQQRAEEGRRERAKRQKEVRESKC




KVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVSVTPI




QRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYPVDDH




HFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKITVTGTL




WNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGGGGSPS




RLEEELRRRLTEP





SCN2A-nanoluc-
437
MAQSVLVPPGPDSFRFFTRESLAAIEQRIAEEKAKRPKQERKDED


alfa-tag-fusion

DENGPKPNSDLEAGKSLPFIYGDIPPEMVSVPLEDLDPYYINKKT




FIVLNKGKAISRFSATPALYILTPENPIRKLAIKILVHSLENMLI




MCTILTNCVFMTMSNPPDWTKNVEYTFTGIYTFESLIKILARGFC




LEDFTFLRDPWNWLDFTVITFAYVTEFVDLGNVSALRTERVLRAL




KTISVIPGLKTIVGALIQSVKKLSDVMILTVECLSVFALIGLQLE




MGNLRNKCLQWPPDNSSFEINITSFENNSLDGNGTTFNRTVSIEN




WDEYIEDKSHFYFLEGQNDALLCGNSSDAGQCPEGYICVKAGRNP




NYGYTSFDTFSWAFLSLERLMTQDFWENLYQLTLRAAGKTYMIFF




VLVIFLGSFYLINLILAVVAMAYEEQNQATLEEAEQKEAEFQQML




EQLKKQQEEAQAAAAAASAESRDESGAGGIGVFSESSSVASKLSS




KSEKELKNRRKKKKQKEQSGEEEKNDRVRKSESEDSIRRKGFRES




LEGSRLTYEKRFSSPHQSLLSIRGSLFSPRRNSRASLESFRGRAK




DIGSENDFADDEHSTFEDNDSRRDSLFVPHRHGERRHSNVSQASR




ASRVLPILPMNGKMHSAVDCNGVVSLVGGPSTLTSAGQLLPEGTT




TETEIRKRRSSSYHVSMDLLEDPTSRQRAMSIASILTNTMEELEE




SRQKCPPCWYKFANMCLIWDCCKPWLKVKHLVNLVVMDPFVDLAI




TICIVLNTLFMAMEHYPMTEQFSSVLSVGNLVETGIFTAEMELKI




IAMDPYYYFQEGWNIFDGFIVSLSLMELGLANVEGLSVLRSERLL




RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGM




QLFGKSYKECVCKISNDCELPRWHMHDFFHSFLIVERVLCGEWIE




TMWDCMEVAGQTMCLTVFMMVMVIGNLVVLNLFLALLLSSFSSDN




LAATDDDNEMNNLQIAVGRMQKGIDFVKRKIREFIQKAFVRKQKA




LDEIKPLEDLNNKKDSCISNHTTIEIGKDLNYLKDGNGTTSGIGS




SVEKYVVDESDYMSFINNPSLTVTVPIAVGESDFENLNTEEFSSE




SDMEESKEKLNATSSSEGSTVDIGAPAEGEQPEVEPEESLEPEAC




FTEDCVRKFKCCQISIEEGKGKLWWNLRKTCYKIVEHNWFETFIV




FMILLSSGALAFEDIYIEQRKTIKTMLEYADKVETYIFILEMLLK




WVAYGFQVYFTNAWCWLDFLIVDVSLVSLTANALGYSELGAIKSL




RTLRALRPLRALSRFEGMRVVVNALLGAIPSIMNVLLVCLIFWLI




FSIMGVNLFAGKFYHCINYTTGEMFDVSVVNNYSECKALIESNQT




ARWKNVKVNFDNVGLGYLSLLQVATFKGWMDIMYAAVDSRNVELQ




PKYEDNLYMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG




QDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPANKFQGMVEDFVTK




QVFDISIMILICLNMVTMMVETDDQSQEMTNILYWINLVFIVLFT




GECVLKLISLRYYYFTIGWNIFDFVVVILSIVGMFLAELIEKYFV




SPTLERVIRLARIGRILRLIKGAKGIRTLLFALMMSLPALENIGL




LLFLVMFIYAIFGMSNFAYVKREVGIDDMENFETEGNSMICLFQI




TTSAGWDGLLAPILNSGPPDCDPDKDHPGSSVKGDCGNPSVGIFF




FVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEDDFEMFYE




VWEKFDPDATQFIEFAKLSDFADALDPPLLIAKPNKVQLIAMDLP




MVSGDRIHCLDILFAFTKRVLGESGEMDALRIQMEEREMASNPSK




VSYEPITTTLKRKQEEVSAIIIQRAYRRYLLKQKVKKVSSIYKKD




KGKECDGTPIKEDTLIDKLNENSTPEKTDMTPSTTSPPSYDSVTK




PEKEKFEKDKSEKEDKGKDIRESKKKVPVFTLEDFVGDWRQTAGY




NLDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIP




YEGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNM




IDYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINPDGSLLF




RVTINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





Scn1a-nanoluc-
438
MEQTVLVPPGPDSENFFTRESLAAIERRIAEEKAKNPKPDKKDDD


alfa-tag-fusion

ENGPKPNSDLEAGKNLPFIYGDIPPEMVSEPLEDLDPYYINKKTE




IVLNKGKAIFRESATSALYILTPFNPLRKIAIKILVHSLESMLIM




CTILTNCVEMTMSNPPDWTKNVEYTFTGIYTFESLIKIIARGECL




EDFTELRDPWNWLDFTVITFAYVTEFVDLGNVSALRTERVLRALK




TISVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALIGLQLEM




GNLRNKCIQWPPTNASLEEHSIEKNITVNYNGTLINETVFEEDWK




SYIQDSRYHYFLEGELDALLCGNSSDAGQCPEGYMCVKAGRNPNY




GYTSFDTESWAFLSLERLMTQDFWENLYQLTLRAAGKTYMIFFVL




VIFLGSFYLINLILAVVAMAYEEQNQATLEEAEQKEAEFQQMIEQ




LKKQQEAAQQAATATASEHSREPSAAGRLSDSSSEASKLSSKSAK




ERRNRRKKRKQKEQSGGEEKDEDEFQKSESEDSIRRKGFRESIEG




NRLTYEKRYSSPHQSLLSIRGSLFSPRRNSRTSLESERGRAKDVG




SENDFADDEHSTFEDNESRRDSLFVPRRHGERRNSNLSQTSRSSR




MLAVFPANGKMHSTVDCNGVVSLVGGPSVPTSPVGQLLPEVIIDK




PATDDNGTTTETEMRKRRSSSFHVSMDFLEDPSQRQRAMSIASIL




TNTVEELEESRQKCPPCWYKESNIFLIWDCSPYWLKVKHVVNLVV




MDPFVDLAITICIVLNTLFMAMEHYPMTDHENNVLTVGNLVETGI




FTAEMELKIIAMDPYYYFQEGWNIFDGFIVTLSLVELGLANVEGL




SVLRSFRLLRVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAII




VFIFAVVGMQLFGKSYKDCVCKIASDCQLPRWHMNDFFHSFLIVE




RVLCGEWIETMWDCMEVAGQAMCLTVFMMVMVIGNLVVLNLFLAL




LLSSFSADNLAATDDDNEMNNLQIAVDRMHKGVAYVKRKIYEFIQ




QSFIRKQKILDEIKPLDDLNNKKDSCMSNHTAEIGKDLDYLKDVN




GTTSGIGTGSSVEKYIIDESDYMSFINNPSLTVTVPIAVGESDFE




NLNTEDESSESDLEESKEKLNESSSSSEGSTVDIGAPVEEQPVVE




PEETLEPEACFTEGCVQRFKCCQINVEEGRGKQWWNLRRTCFRIV




EHNWFETFIVEMILLSSGALAFEDIYIDQRKTIKTMLEYADKVET




YIFILEMLLKWVAYGYQTYFTNAWCWLDFLIVDVSLVSLTANALG




YSELGAIKSLRTLRALRPLRALSRFEGMRVVVNALLGAIPSIMNV




LLVCLIFWLIFSIMGVNLFAGKFYHCINTTTGDREDIEDVNNHTD




CLKLIERNETARWKNVKVNFDNVGFGYLSLLQVATFKGWMDIMYA




AVDSRNVELQPKYEESLYMYLYFVIFIIFGSFFTLNLFIGVIIDN




FNQQKKKFGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPGNKF




QGMVFDFVTRQVEDISIMILICLNMVTMMVETDDQSEYVTTILSR




INLVFIVLFTGECVLKLISLRHYYFTIGWNIFDFVVVILSIVGME




LAELIEKYFVSPTLFRVIRLARIGRILRLIKGAKGIRTLLFALMM




SLPALFNIGLLLFLVMFIYAIFGMSNFAYVKREVGIDDMENFETE




GNSMICLFQITTSAGWDGLLAPILNSKPPDCDPNKVNPGSSVKGD




CGNPSVGIFFFVSYIIISELVVVNMYIAVILENESVATEESAEPL




SEDDFEMFYEVWEKFDPDATQFMEFEKLSQFAAALEPPLNLPQPN




KLQLIAMDLPMVSGDRIHCLDILFAFTKRVLGESGEMDALRIQME




ERFMASNPSKVSYQPITTTLKRKQEEVSAVIIQRAYRRHLLKRTV




KQASFTYNKNKIKGGANLLIKEDMIIDRINENSITEKTDLTMSTA




ACPPSYDRVTKPIVEKHEQEGKDEKAKGKKVPVFTLEDFVGDWRQ




TAGYNLDQVLEQGGVSSLFQNLGVSVTPIQRIVLSGENGLKIDIH




VIIPYEGLSGDQMGQIEKIFKVVYPVDDHHFKVILHYGTLVIDGV




TPNMIDYFGRPYEGIAVEDGKKITVTGTLWNGNKIIDERLINPDG




SLLFRVTINGVTGWRLCERILAGGGGSPSRLEEELRRRLTEP





Grin2b-nanoluc-
439
MKPRAECCSPKFWLVLAVLAVSGSRARSQKSPPSIGIAVILVGTS


alfa-tag-fusion

DEVAIKDAHEKDDFHHLSVVPRVELVAMNETDPKSIITRICDLMS




DRKIQGVVFADDTDQEAIAQILDFISAQTLTPILGIHGGSSMIMA




DKDESSMFFQFGPSIEQQASVMLNIMEEYDWYIFSIVTTYFPGYQ




DFVNKIRSTIENSFVGWELEEVLLLDMSLDDGDSKIQNQLKKLQS




PIILLYCTKEEATYIFEVANSVGLTGYGYTWIVPSLVAGDTDTVP




AEFPTGLISVSYDEWDYGLPARVRDGIAIITTAASDMLSEHSFIP




EPKSSCYNTHEKRIYQSNMLNRYLINVTFEGRNLSFSEDGYQMHP




KLVIILLNKERKWERVGKWKDKSLQMKYYVWPRMCPETEEQEDDH




LSIVTLEEAPFVIVESVDPLSGTCMRNTVPCQKRIVTENKTDEEP




GYIKKCCKGFCIDILKKISKSVKFTYDLYLVTNGKHGKKINGTWN




GMIGEVVMKRAYMAVGSLTINEERSEVVDFSVPFIETGISVMVSR




SNGTVSPSAFLEPFSADVWVMMFVMLLIVSAVAVFVFEYESPVGY




NRCLADGREPGGPSFTIGKAIWLLWGLVENNSVPVQNPKGTTSKI




MVSVWAFFAVIFLASYTANLAAFMIQEEYVDQVSGLSDKKFQRPN




DFSPPFRFGTVPNGSTERNIRNNYAEMHAYMGKFNQRGVDDALLS




LKTGKLDAFIYDAAVLNYMAGRDEGCKLVTIGSGKVFASTGYGIA




IQKDSGWKRQVDLAILQLFGDGEMEELEALWLTGICHNEKNEVMS




SQLDIDNMAGVFYMLGAAMALSLITFICEHLFYWQFRHCFMGVCS




GKPGMVESISRGIYSCIHGVAIEERQSVMNSPTATMNNTHSNILR




LLRTAKNMANLSGVNGSPQSALDFIRRESSVYDISEHRRSFTHSD




CKSYNNPPCEENLESDYISEVERTFGNLQLKDSNVYQDHYHHHHR




PHSIGSASSIDGLYDCDNPPFTTQSRSISKKPLDIGLPSSKHSQL




SDLYGKESFKSDRYSGHDDLIRSDVSDISTHTVTYGNIEGNAAKR




RKQQYKDSLKKRPASAKSRREFDEIELAYRRRPPRSPDHKRYFRD




KEGLRDFYLDQFRTKENSPHWEHVDLTDIYKERSDDFKRDSVSGG




GPCTNRSHIKHGTGDKHGVVSGVPAPWEKNLTNVEWEDRSGGNFC




RSCPSKLHNYSTTVTGQNSGRQACIRCEACKKAGNLYDISEDNSL




QELDQPAAPVAVTSNASTTKYPQSPTNSKAQKKNRNKLRRQHSYD




TFVDLQKEEAALAPRSVSLKDKGREMDGSPYAHMFEMSAGESTFA




NNKSSVPTAGHHHHNNPGGGYMLSKSLYPDRVTQNPFIPTFGDDQ




CLLHGSKSYFFRQPTVAGASKARPDFRALVTNKPVVSALHGAVPA




RFQKDICIGNQSNPCVPNNKNPRAFNGSSNGHVYEKLSSIESDVK




VPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVSVTPIQ




RIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYPVDDHH




FKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKITVTGTLW




NGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGGGGSPSR




LEEELRRRLTEP





SLC50A1-nanoluc-
440
MEAGGFLDSLIYGACVVFTLGMESAGLSDLRHMRMTRSVDNVQFL


alfa-tag-fusion

PFLTTEVKKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQN




LGVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFK




VVYPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGK




KITVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERIL




AGGGGSPSRLEEELRRRLTEP





TMEM258-
441
MELEAMSRYTSPVNPAVFPHLTVVLLAIGMFFTAWFFVYPFTEQP


nanoluc-alfa-tag-

EDQHKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLGVS


fusion

VTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVVYP




VDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKITV




TGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAGGG




GSPSRLEEELRRRLTEP





FSHR-nanoluc-
442
MALLLVSLLAFLSLGSGCHHRICHCSNRVFLCQESKVTEIPSDLP


alfa-tag-fusion

RNAIELKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGVSSLFQNLG




VSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQIEKIFKVV




YPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGIAVEDGKKI




TVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWRLCERILAG




GGGSPSRLEEELRRRLTEP





KCNQ1-nanoluc-
446
MAAASSPPRAERKRWGWGRLPGARRGSAGLAKKCPFSLELAEGGP


alfa-tag-fusion

AGGALYAPIAPGAPGPAPPASPAAPAAPPVASDLGPRPPVSLDPR




VSIYSTRRPVLARTHVQGRVYNFLERPTGWKCFVYHFAVELIVLV




CLIFSVLSTIEQYAWRYYESSLEPYPDALATGTLEWMEIVLVVFF




GTEYVVRLWSAGCRSKYVGLWGRLRFARKPISIIDLIVVVASMVV




LCVGSKGQVFATSAIRGIRFLQILRMLHVDRQGGTWRLLGSVVFI




HRQELITTLYIGELGLIFSSYFVYLAEKDAVNESGRVEFGSYADA




LWWGVVTVTTIGYGDKVPQTWVGKTIASCFSVFAISFFALPAGIL




GSGFALKVQQKQRQKHENRQIPAAASLIQTAWRCYAAENPDSSTW




KIYIRKAPRSHTLLSPSPKPKKSVVVKKKKFKLDKDNGVTPGEKM




LTVPHITCDPPEERRLDHFSVDGYDSSVRKSPTLLEVSMPHEMRT




NSFAEDLDLEGETLLTPITHISQLREHHRATIKVIRRMQYFVAKK




KFQQARKPYDVRDVIEQYSQGHLNLMVRIKELQRRLDQSIGKPSL




FISVSEKSKDRGSNTIGARLNRVEDKVTQLDQRLALITDMLHQLL




SLHGGSTPGSGGPPREGGAHITQPCGSGGSVDPELELPSNTLPTY




EQLTVPRRGPDEGSKVPVFTLEDFVGDWRQTAGYNLDQVLEQGGV




SSLFQNLGVSVTPIQRIVLSGENGLKIDIHVIIPYEGLSGDQMGQ




IEKIFKVVYPVDDHHFKVILHYGTLVIDGVTPNMIDYFGRPYEGI




AVFDGKKITVTGTLWNGNKIIDERLINPDGSLLFRVTINGVTGWR




LCERILAGGGGSPSRLEEELRRRLTEP









The amino acid sequence of exemplary fusion proteins comprising a control or a targeted engineered deubiquitinase are detailed in Table 8 below.









TABLE 8







Amino Acid Sequence of exemplary enDub Control and Screening Fusion Proteins









Description
SEQ ID NO
Amino Acid Sequence





FireflyLuciferase-
443
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-nano

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFEM


(Control)

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK




ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLESFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSSGE




VQLQESGGGLVQPGGSLRLSCTASGVTISALNAMAMGWYRQAPGE




RRVMVAAVSERGNAMYRESVQGRFTVTRDFTNKMVSLQMDNLKPE




DTAVYYCHVLEDRVDSFHDYWGQGTQVTVSS





FireflyLuciferase-
444
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-Cezanne

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFEM


(Control)

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK




ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESEDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGERVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLESFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSPPS




FSEGSGGSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGIS




HASSSIVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNE




DERSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTG




DGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWR




WQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANC




GGVESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEA




FAPIPFGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKEN




TKEQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVI




LSLEVKLHLLHSYMNVKWIPLSSDAQAPLAQ





FireflyLuciferase-
445
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDA


P2A-

HIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFEM


a_alfatag_nano-

PVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGLQK


Cezanne

ILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGENEYD




FVPESEDRDKTIALIMNSSGSTGLPKGVALPHRTACVRESHARDP




IFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE




ELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASG




GAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPG




AVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP




EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA




PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE




KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILI




KAKKGGKIAVTRLKGSGATNFSLLKQAGDVEENPGPRSGTGSSGE




VQLQESGGGLVQPGGSLRLSCTASGVTISALNAMAMGWYRQAPGE




RRVMVAAVSERGNAMYRESVQGRFTVTRDFTNKMVSLQMDNLKPE




DTAVYYCHVLEDRVDSFHDYWGQGTQVTVSSGAPGSGPPSESEGS




GGSRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSS




IVSLARSHVSSNGGGGGSNEHPLEMPICAFQLPDLTVYNEDERSE




IERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLLPLATTGDGNCL




LHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQ




QNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVES




SEEPVYESLEEFHVEVLAHVLRRPIVVVADTMLRDSGGEAFAPIP




FGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKENTKEQA




VIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEV




KLHLLHSYMNVKWIPLSSDAQAPLAQ









The assay was conducted with utilizing the tagged proteins and targeted enDubs described above in Tables 7 and 8. The results of the KCNQ1 targeting are shown in FIG. 3, showing a 3.8-fold increase in KCNQ1 protein expression. The results of the SCN1A targeting are shown in FIG. 4, showing a 4.4-fold increase in SCN1A protein expression. The results of the GRIN2B targeting are shown in FIG. 5, showing a 5.3-fold increase in GRIN2B protein expression. The results of the SLC50A1 targeting are shown in FIG. 6, showing a 2.03-fold increase in SLC50A1 protein expression. The results of the TREM258 targeting are shown in FIG. 7, showing a 2.77-fold increase in TREM258 protein expression. The results of the FSHR targeting are shown in FIG. 8, showing a 1.33-fold increase in FSHR protein expression. The control used for the SLC50A1, TREM258, and FSHR experiments is the engineered deubiquitinase without the nanobody targeting the alfa-tag. Normalization of transduction efficiency was performed using the firefly luciferase signal as the reference and the ratio between NLuc signal divided by firefly luciferase signal plotted on the y axes.


The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.


All references (e.g., publications or patents or patent applications) cited herein are incorporated herein by reference in their entireties and for all purposes to the same extent as if each individual reference (e.g., publication or patent or patent application) was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. Other embodiments are within the following claims.

Claims
  • 1. A fusion protein comprising: a. an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; andb. a targeting domain comprising a targeting moiety that specifically binds a membrane protein that is not an ion channel.
  • 2. The fusion protein of claim 1, wherein said deubiquitinase is a cysteine protease or a metalloprotease.
  • 3. The fusion protein of claim 2, wherein said deubiquitinase is a cysteine protease.
  • 4. The fusion protein of claim 3, wherein said cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.
  • 5. The fusion protein of claim 4, wherein said cysteine protease is a USP.
  • 6. The fusion protein of claim 5, wherein said USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.
  • 7. The fusion protein of claim 4, wherein said cysteine protease is a UCH.
  • 8. The fusion protein of claim 7, wherein said UCH is BAP1, UCHL1, UCHL3, or UCHL5.
  • 9. The fusion protein of claim 4, wherein said cysteine protease is a MJD.
  • 10. The fusion protein of claim 9, wherein said MJD is ATXN3 or ATXN3L.
  • 11. The fusion protein of claim 4, wherein said cysteine protease is a OTU.
  • 12. The fusion protein of claim 11, wherein said OTU is OTUB1 or OTUB2.
  • 13. The fusion protein of claim 4, wherein said cysteine protease is a MINDY.
  • 14. The fusion protein of claim 13, wherein said MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.
  • 15. The fusion protein of claim 4, wherein said cysteine protease is a ZUFSP.
  • 16. The fusion protein of claim 15, wherein said ZUFSP is ZUP1.
  • 17. The fusion protein of claim 2, wherein said deubiquitinase is a metalloprotease.
  • 18. The fusion protein of claim 17, wherein said metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.
  • 19. The fusion protein of any one of the preceding claims, wherein said deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 20. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 21. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293.
  • 22. The fusion protein of any one of the preceding claims, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293.
  • 23. The fusion protein of any one of the preceding claims, wherein said moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof.
  • 24. The fusion protein of claim 23, wherein said antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, or a (VHH)2.
  • 25. The fusion protein of claim 23, wherein said antibody, or functional fragment or functional variant thereof, comprises a VHH or a (VHH)2.
  • 26. The fusion protein of any one of the preceding claims, wherein the membrane protein is selected from the group consisting of solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1), proline-rich transmembrane protein 2 (PRRT2), usherin (USH2A), protocadherin-19 (PCDH19), tuberin (TSC2), hamartin (TSC1), dystrophin (DMD), Rhodopsin (RHO), protein jagged-1 (JAG1), inositol 1,4,5-trisphosphate receptor type 1 (ITPR1), sugar transporter SWEET1 (SLC50A1), transmembrane protein 258 (TMEM258), or follicle stimulating hormone receptor (FSHR).
  • 27. The fusion protein of any one of the preceding claims, wherein the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 221-227 or 243-245.
  • 28. The fusion protein of any one of the preceding claims, wherein said effector domain is directly operably connected to said targeting domain.
  • 29. The fusion protein of any one of claims 1-28, wherein said effector domain is indirectly operably connected to said targeting domain.
  • 30. The fusion protein of claim 28, wherein said effector domain is indirectly operably connected to said targeting domain via a peptide linker.
  • 31. The fusion protein of claim 29, wherein said effector domain is indirectly operably connected to said targeting domain via a peptide linker of sufficient length such that said effector domain and said targeting domain can simultaneous bind the respective target proteins.
  • 32. The fusion protein of claim 30 or 31, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications.
  • 33. The fusion protein of claim 32, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-306 comprising 1, 2, or 3 amino acid modifications.
  • 34. The fusion protein of any one of the preceding claims, wherein said effector domain is operably connected either directly or indirectly to the C terminus of said targeting domain.
  • 35. The fusion protein of any one of claims 1-33, wherein said effector moiety is operably connected either directly or indirectly to the N terminus of said targeting domain.
  • 36. A fusion protein comprising: a. an effector domain comprising a catalytic domain of a deubiquitinase, or a functional fragment or functional variant thereof; andb. a targeting domain comprising a targeting moiety that specifically binds a membrane protein selected from the group consisting of glutamate receptor ionotropic NMDA 2B (GRIN2B), cystic fibrosis transmembrane conductance regulator (CFTR), sodium channel protein type 1 subunit alpha (SCN1A), copper-transporting ATPase 2 (ATP7B), potassium voltage-gated channel subfamily KQT member 2 (KCNQ2), sodium channel protein type 2 subunit alpha (SCN2A), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), sodium channel protein type 8 subunit alpha (SCN8A), glutamate receptor ionotropic, NMDA 2A (GRIN2A), sodium- and chloride-dependent GABA transporter 1 (SLC6A1), sodium/potassium-transporting ATPase subunit alpha-2 (ATP1A2), sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3), sodium channel protein type 9 subunit alpha (SCN9A), gamma-aminobutyric acid receptor subunit beta-3 (GABRB3), and potassium voltage-gated channel subfamily KQT member 3 (KCNQ3).
  • 37. The fusion protein of claim 36, wherein said moiety that specifically binds a membrane protein comprises an antibody, or functional fragment or functional variant thereof.
  • 38. The fusion protein of claim 37, wherein said antibody, or functional fragment or functional variant thereof, comprises a full-length antibody, a single chain variable fragment (scFv), a scFv2, a scFv-Fc, a Fab, a Fab′, a F(ab′)2, a F(v), a VHH, or a (VHH)2.
  • 39. The fusion protein of claim 38, wherein said antibody, or functional fragment or functional variant thereof, comprises a VHH or a (VHH)2.
  • 40. The fusion protein of any one of claims 36-39, wherein the membrane protein comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 228-245.
  • 41. The fusion protein of any one of claims 36-40, wherein said deubiquitinase is a cysteine protease or a metalloprotease.
  • 42. The fusion protein of claim 41, wherein said deubiquitinase is a cysteine protease.
  • 43. The fusion protein of claim 41, wherein said cysteine protease is a ubiquitin-specific protease (USP), a ubiquitin C-terminal hydrolase (UCH), a Machado-Josephin domain protease (MJD), an ovarian tumour protease (OTU), a MINDY protease, or a ZUFSP protease.
  • 44. The fusion protein of claim 43, wherein said cysteine protease is a USP.
  • 45. The fusion protein of claim 44, wherein said USP is USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21, USP22, USP23, USP24, USP25, USP26, USP27X, USP28, USP29, USP30, USP31, USP32, USP33, USP34, USP35, USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46.
  • 46. The fusion protein of claim 43, wherein said cysteine protease is a UCH.
  • 47. The fusion protein of claim 46, wherein said UCH is BAP1, UCHL1, UCHL3, or UCHL5.
  • 48. The fusion protein of claim 43, wherein said cysteine protease is a MJD.
  • 49. The fusion protein of claim 48, wherein said MJD is ATXN3 or ATXN3L.
  • 50. The fusion protein of claim 43, wherein said cysteine protease is a OTU.
  • 51. The fusion protein of claim 50, wherein said OTU is OTUB1 or OTUB2.
  • 52. The fusion protein of claim 43, wherein said cysteine protease is a MINDY.
  • 53. The fusion protein of claim 52, wherein said MINDY is MINDY1, MINDY2, MINDY3, or MINDY4.
  • 54. The fusion protein of claim 43, wherein said cysteine protease is a ZUFSP.
  • 55. The fusion protein of claim 54, wherein said ZUFSP is ZUP1.
  • 56. The fusion protein of claim 41, wherein said deubiquitinase is a metalloprotease.
  • 57. The fusion protein of claim 56, wherein said metalloprotease is a Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain protease.
  • 58. The fusion protein of any one of claims 36-57, wherein said deubiquitinase comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 59. The fusion protein of any one of claims 36-58, wherein said catalytic domain comprises a catalytic domain derived from a deubiquitinase at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 1-112.
  • 60. The fusion protein of any one of claims 36-59, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of any one of SEQ ID NOS: 113-220 or 293.
  • 61. The fusion protein of any one of claims 36-60, wherein said catalytic domain comprises an amino acid sequence at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 293.
  • 62. The fusion protein of any one of claims 36-61, wherein said effector domain is directly operably connected to said targeting domain.
  • 63. The fusion protein of any one of claims 36-62, wherein said effector domain is indirectly operably connected to said targeting domain.
  • 64. The fusion protein of claim 63, wherein said effector domain is indirectly operably connected to said targeting domain via a peptide linker.
  • 65. The fusion protein of claim 64, wherein said effector domain is indirectly operably connected to said targeting domain via a peptide linker of sufficient length such that said effector domain and said targeting domain can simultaneous bind the respective target proteins.
  • 66. The fusion protein of claim 64 or 65, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-424, or the amino acid sequence of any one of SEQ ID NOS: 297-424 comprising 1, 2, or 3 amino acid modifications.
  • 67. The fusion protein of claim 66, wherein said peptide linker comprises the amino acid sequence of any one of SEQ ID NOS: 297-306, or the amino acid sequence of any one of SEQ ID NOS: 297-306 comprising 1, 2, or 3 amino acid modifications.
  • 68. The fusion protein of any one of claims 36-67, wherein said effector domain is operably connected either directly or indirectly to the C terminus of said targeting domain.
  • 69. The fusion protein of any one of claims 36-68, wherein said effector moiety is operably connected either directly or indirectly to the N terminus of said targeting domain.
  • 70. A nucleic acid molecule encoding the fusion protein of any one of claims 1-69.
  • 71. The nucleic acid molecule of claim 70, wherein the nucleic acid molecule is a DNA molecule.
  • 72. The nucleic acid molecule of claim 70, wherein the nucleic acid molecule is an RNA molecule.
  • 73. A vector comprising the nucleic acid molecule of any one of claims 70-72.
  • 74. The vector of claim 73, wherein the vector is a plasmid or a viral vector.
  • 75. A viral particle comprising the nucleic acid of any one of claims 70-72.
  • 76. An in vitro cell or population of cells comprising the fusion protein of any one of claims 1-69, the nucleic acid molecule of any one of claims 70-72, or the vector of any one of claims 73-74.
  • 77. A pharmaceutical composition comprising the fusion protein of any one of claims 1-69, the nucleic acid molecule of any one of claims 70-72, the vector of any one of claims 73-74, or the viral particle of claim 75, and an excipient.
  • 78. A method of making the fusion protein of any one of claims 1-69, comprising a. introducing into an in vitro cell or population of cells the nucleic acid molecule of any one of claims 70-72, the vector of any one of claims 73-74, the viral particle of claim 75;b. culturing the cell or population of cells in a culture medium under conditions suitable for expression of the fusion protein,c. isolating the fusion protein from the culture medium, andd. optionally purifying the fusion protein.
  • 79. A method of treating or preventing a disease in a subject comprising administering the fusion protein of any one of claims 1-69, the nucleic acid of any one of claims 70-72, the vector of any one of claims 73-74, the viral particle of claim 75, or the pharmaceutical composition of claim 77, to a subject in need thereof.
  • 80. The method of claim 79, wherein the subject is human.
  • 81. The method of any one of claims 79-80, wherein the disease is associated with decreased expression of a functional version of the membrane protein relative to a non-diseased control.
  • 82. The method of any one of claims 79-81, wherein the disease is associated with decreased stability of a functional version of the membrane protein relative to a non-diseased control.
  • 83. The method of any one of claims 79-82, wherein the disease is associated with increased ubiquitination and degradation of the membrane protein relative to a non-diseased control.
  • 84. The method of any one of claims 79-83, wherein the disease is a genetic disease.
  • 85. The method of claim 84, wherein the genetic disease is a haploinsufficiency disease.
  • 86. The method of any one of claims 79-85, wherein the disease is a GRIN2B-Related Disorder, a SCN2A-Related Disorder, a SCN8A-Related Disorder, SLC6A1-Related Disorder, a PRRT2 Dyskinesia & Epilepsy, a GRIN2A-Related Disorder, a CACNA1A-Related Disorder, a SCN9A Epilepsy, a PCDH19 Encephalopathy, GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, Usher syndrome type 2A, early infantile epileptic encephalopathy type 9, tuberous sclerosis type 2; tuberous sclerosis type 1, a KCNQ2-Related Disorder (e.g., epileptic encephalopathy), Becker Muscular Dystrophy, autosomal Dominant RP, or Alagille syndrome 1, Gillespie Syndrome.
  • 87. The method of any one of claims 79-86, wherein the disease is early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; epilepsy (e.g., focal, with speech disorder and with or without mental retardation), myoclonic-atonic epilepsy, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy, or a KCNQ2-Related Disorder (e.g., epileptic encephalopathy).
  • 88. The method of any one of claims 79-87, wherein the disease is a GRIN2B-Related Disorder, a SCN2A-Related Disorder, a SCN8A-Related Disorder, SLC6A1-Related Disorder, a PRRT2 Dyskinesia & Epilepsy, a GRIN2A-Related Disorder, a CACNA1A-Related Disorder, a SCN9A Epilepsy, a PCDH19 Encephalopathy, early infantile epileptic encephalopathy type 9, early infantile epileptic encephalopathy type 11, early infantile epileptic encephalopathy type 13, early infantile epileptic encephalopathy type 27, cystic fibrosis, Dravet syndrome, Wilson disease, episodic ataxia type 2; GLUT1 deficiency syndrome, episodic kinesigenic dyskinesia 1, epilepsy (e.g., focal, with speech disorder and with or without mental retardation), KCNQ2 encephalopathy, myoclonic-atonic epilepsy, Usher syndrome type 2A, alternating hemiplegia of childhood, alternating hemiplegia of childhood type 2, epilepsy type 7, GABRB3 associated epilepsy; tuberous sclerosis type 2; tuberous sclerosis type 1, Becker Muscular Dystrophy, autosomal Dominant RP, Alagille syndrome 1, or Gillespie Syndrome.
  • 89. Said method of any one of claims 79-88, wherein a. said target membrane protein is GRIN2B, and said disease is a GRIN2B related disorder (e.g., an epileptic encephalopathy);b. said target membrane protein is GRIN2B, and said disease is an early infantile epileptic encephalopathy;c. said target membrane protein is GRIN2B, and said disease is early infantile epileptic encephalopathy type 27;d. said target membrane protein is CFTR, and said disease is cystic fibrosis;e. said target membrane protein is SCN1A, and said disease is Dravet syndrome;f. said target membrane protein is ATP7B, and said disease is Wilson disease;g. said target membrane protein is CACNA1A, and said disease is a CACA1A related disorder;h. said target membrane protein is CACNA1A, and said disease is episodic ataxia type 2;i. said target membrane protein is KCNQ2, and said disease is an KCNQ2 encephalopathy;j. said target membrane protein is KCNQ2, and said disease is an epileptic encephalopathy;k. said target membrane protein is SCN2A, and said disease is a SCN2A related disorder (e.g., an epileptic encephalopathy);l. said target membrane protein is SCN2A, and said disease is early infantile epileptic encephalopathy type 11;m. said target membrane protein is SLC2A1, and said disease is GLUT1 deficiency syndrome;n. said target membrane protein is SCN8A, and said disease is a SCN8A related disorder (e.g., an epileptic encephalopathy);o. said target membrane protein is SCN8A, and said disease is an epileptic encephalopathy;p. said target membrane protein is SCN8A, and said disease is early infantile epileptic encephalopathy type 13;q. said target membrane protein is PRRT2, and said disease is a PRRPT2 dyskinesia and/or epilepsy;r. said target membrane protein is PRRT2, and said disease is an episodic kinesigenic dyskinesia type;s. said target membrane protein is PRRT2, and said disease is episodic kinesigenic dyskinesia type 1;t. said target membrane protein is GRIN2A, and said disease is a GRIN2A related disorder;u. said target membrane protein is GRIN2A, and said disease is epilepsy;v. said target membrane protein is GRIN2A, and said disease is focal epilepsy;w. said target membrane protein is GRIN2A, and said disease is focal epilepsy with speech disorder and with or without mental retardation;x. said target membrane protein is SLC6A1, and said disease is a SLC6A1 related disorder;y. said target membrane protein is SLC6A1, and said disease is epilepsy;z. said target membrane protein is SLC6A1, and said disease is myoclonic-atonic epilepsy;aa. said target membrane protein is USH2A, and said disease is Usher syndrome;bb. said target membrane protein is USH2A, and said disease is Usher syndrome type 2A;cc. said target membrane protein is ATP1A2, and said disease is alternating hemiplegia of childhood;dd. said target membrane protein is ATP1A2, and said disease is alternating hemiplegia of childhood type 1;ee. said target membrane protein is ATP1A3, and said disease is alternating hemiplegia of childhood;ff. said target membrane protein is ATP1A3, and said disease is alternating hemiplegia of childhood type 2;gg. said target membrane protein is SCN9A, and said disease an SCN9A epilepsy;hh. said target membrane protein is SCN9A1, and said disease an SCN9A epilepsy;ii. said target membrane protein is SCN9A1, and said disease is epilepsy;jj. said target membrane protein is SCN9A1, and said disease is epilepsy type 7;kk. said target membrane protein is PCDH19, and said disease is PCDH19 encephalopathy;ll. said target membrane protein is PCDH19, and said disease is an early infantile epileptic encephalopathy;mm. said target membrane protein is PCDH19, and said disease is early infantile epileptic encephalopathy type 9;nn. said target membrane protein is GABRB3, and said disease is epilepsy;oo. said target membrane protein is GABRB3, and said disease is GABRB3 associated epilepsy;pp. said target membrane protein is TSC2, and said disease is tuberous sclerosis;qq. said target membrane protein is TSC2, and said disease is tuberous sclerosis type 2;rr. said target membrane protein is TSC2, and said disease is tuberous sclerosis type 1;ss. said target membrane protein is TSC1, and said disease is tuberous sclerosis;tt. said target membrane protein is TSC1, and said disease is tuberous sclerosis type 1;uu. said target membrane protein is TSC1, and said disease is tuberous sclerosis type 2;vv. said target membrane protein is KCNQ3, and said disease is KCNQ2-Related Disorders (Epileptic Encephalopathy);ww. said target membrane protein is DMD, and said disease is Becker Muscular Dystrophy;xx. said target membrane protein is RHO, and said disease is Autosomal Dominant RP;yy. said target membrane protein is JAG1, and said disease is Alagille syndrome 1;zz. said target membrane protein is ITPR1, and said disease is Gillespie Syndrome; oraaa. said target membrane protein is FSHR, and said disease is ovarian dysgenesis 1 (ODG1).
  • 90. The method of any one of claims 79-89, wherein the fusion protein is administered at a therapeutically effective dose.
  • 91. The method of any one of claims 79-90, wherein the fusion protein is administered systematically or locally.
  • 92. The method of any one of claims 79-91, wherein the fusion protein is administered intravenously, subcutaneously, or intramuscularly.
  • 93. The fusion protein of any one of claims 1-69, the polynucleotide of claim 70, the DNA of claim 71, the RNA of claim 72, the vector of any one of claims 73-74, the viral particle of claim 75, or the pharmaceutical composition of claim 77 for use as a medicament.
  • 94. The fusion protein of any one of claims 1-69, the polynucleotide of claim 70, the DNA of claim 71, the RNA of claim 72, the vector of any one of claims 73-74, the viral particle of claim 75, or the pharmaceutical composition of claim 77 for use in treating or inhibiting a genetic disorder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 63/110,619, filed Nov. 6, 2020, the entire disclosure of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/058291 11/5/2021 WO
Provisional Applications (1)
Number Date Country
63110619 Nov 2020 US