The present invention relates to memory, and more particularly to multiple-memory circuit systems.
The memory capacity requirements of computers in general, and servers in particular, are increasing rapidly due to various trends such as 64-bit processors and operating systems, multi-core processors, virtualization, etc. However, other industry trends such as higher memory bus speeds and small form factor machines, etc. are reducing the number of memory module slots in such systems. Thus, a need exists in the industry for large capacity memory circuits to be used in such systems.
However, there is also an exponential relationship between a capacity of monolithic memory circuits and a price associated therewith. As a result, large capacity memory modules may be cost prohibitive. To this end, the use of multiple smaller capacity memory circuits is a cost-effective approach to increasing such memory capacity.
A system and method are provided including a component in communication with a plurality of memory circuits and a system. The component is operable to interface the memory circuits and the system for simulating at least one memory circuit with at least one aspect that is different from at least one aspect of at least one of the plurality of memory circuits. The component is further operable to perform a power saving operation.
For example, in various embodiments, one or more of the memory circuits 104A, 104B, 104N may include a monolithic memory circuit. For instance, such monolithic memory circuit may take the form of dynamic random access memory (DRAM). Such DRAM may take any form including, but not limited to synchronous (SDRAM), double data rate synchronous (DDR, DRAM, DDR2 DRAM, DDR3 DRAM, etc.), quad data rate (QDR DRAM), direct RAMBUS (DRDRAM), fast page mode (FPM DRAM), video (VDRAM), extended data out (EDO DRAM), burst EDO (BEDO DRAM), multibank (MDRAM), synchronous graphics (SGRAM), and/or any other type of DRAM. Of course, one or more of the memory circuits 104A, 104B, 104N may include other types of memory such as magnetic random access memory (MRAM), intelligent random access memory (IRAM), distributed network architecture (DNA) memory, window random access memory (WRAM), flash memory (e.g. NAND, NOR, or others, etc.), pseudostatic random access memory (PSRAM), wetware memory, and/or any other type of memory circuit that meets the above definition.
In additional embodiments, the memory circuits 104A, 104B, 104N may be symmetrical or asymmetrical. For example, in one embodiment, the memory circuits 104A, 104B, 104N may be of the same type, brand, and/or size, etc. Of course, in other embodiments, one or more of the memory circuits 104A, 104B, 104N may be of a first type, brand, and/or size, while one or more other memory circuits 104A, 104B, 104N may be of a second type, brand, and/or size, etc. Just by way of example, one or more memory circuits 104A, 104B, 104N may be of a DRAM type, while one or more other memory circuits 104A, 104B, 104N may be of a flash type. While three or more memory circuits 104A, 104B, 104N are shown in
Strictly as an option, the memory circuits 104A, 104B, 104N may or may not be positioned on at least one dual in-line module (DIMM) (not shown). In various embodiments, the DIMM may include a registered DIMM (R-DIMM), a small outline-DIMM (SO-DIMM), a fully buffered-DIMM (FB-DIMM), an un-buffered DIMM, etc. Of course, in other embodiments, the memory circuits 104A, 104B, 104N may or may not be positioned on any desired entity for packaging purposes.
Further in the context of the present description, the system 106 may include any system capable of requesting and/or initiating a process that results in an access of the memory circuits 104A, 104B, 104N. As an option, the system 106 may accomplish this utilizing a memory controller (not shown), or any other desired mechanism. In one embodiment, such system 106 may include a host system in the form of a desktop computer, lap-top computer, server, workstation, a personal digital assistant (PDA) device, a mobile phone device, a television, a peripheral device (e.g. printer, etc.). Of course, such examples are set forth for illustrative purposes only, as any system meeting the above definition may be employed in the context of the present framework 100.
Turning now to the interface circuit 102, such interface circuit 102 may include any circuit capable of indirectly or directly communicating with the memory circuits 104A, 104B, 104N and the system 106. In various optional embodiments, the interface circuit 102 may include one or more interface circuits, a buffer chip, etc. Embodiments involving such a buffer chip will be set forth hereinafter during reference to subsequent figures. In still other embodiments, the interface circuit 102 may or may not be manufactured in monolithic form.
While the memory circuits 104A, 104B, 104N, interface circuit 102, and system 106 are shown to be separate parts, it is contemplated that any of such parts (or portions thereof) may or may not be integrated in any desired manner. In various embodiments, such optional integration may involve simply packaging such parts together (e.g. stacking the parts, etc.) and/or integrating them monolithically. Just by way of example, in various optional embodiments, one or more portions (or all, for that matter) of the interface circuit 102 may or may not be packaged with one or more of the memory circuits 104A, 104B, 104N (or all, for that matter). Different optional embodiments which may be implemented in accordance with the present multiple memory circuit framework 100 will be set forth hereinafter during reference to
In use, the interface circuit 102 may be capable of various functionality, in the context of different embodiments. More illustrative information will now be set forth regarding such optional functionality which may or may not be implemented in the context of such interface circuit 102, per the desires of the user. It should be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. For example, any of the following features may be optionally incorporated with or without the exclusion of other features described.
For instance, in one optional embodiment, the interface circuit 102 interfaces a plurality of signals 108 that are communicated between the memory circuits 104A, 104B, 104N and the system 106. As shown, such signals may, for example, include address/control/clock signals, etc. In one aspect of the present embodiment, the interfaced signals 108 may represent all of the signals that are communicated between the memory circuits 104A, 104B, 104N and the system 106. In other aspects, at least a portion of signals 110 may travel directly between the memory circuits 104A, 104B, 104N and the system 106 or component thereof [e.g. register, advanced memory buffer (AMB), memory controller, or any other component thereof, where the term component is defined hereinbelow]. In various embodiments, the number of the signals 108 (vs. a number of the signals 110, etc.) may vary such that the signals 108 are a majority or more (L>M), etc.
In yet another embodiment, the interface circuit 102 may be operable to interface a first number of memory circuits 104A, 104B, 104N and the system 106 for simulating at least one memory circuit of a second number. In the context of the present description, the simulation may refer to any simulating, emulating, disguising, transforming, converting, and/or the like that results in at least one aspect (e.g. a number in this embodiment, etc.) of the memory circuits 104A, 104B, 104N appearing different to the system 106. In different embodiments, the simulation may be electrical in nature, logical in nature, protocol in nature, and/or performed in any other desired manner. For instance, in the context of electrical simulation, a number of pins, wires, signals, etc. may be simulated, while, in the context of logical simulation, a particular function may be simulated. In the context of protocol, a particular protocol (e.g. DDR3, etc.) may be simulated.
In still additional aspects of the present embodiment, the second number may be more or less than the first number. Still yet, in the latter case, the second number may be one, such that a single memory circuit is simulated. Different optional embodiments which may employ various aspects of the present embodiment will be set forth hereinafter during reference to
In still yet another embodiment, the interface circuit 102 may be operable to interface the memory circuits 104A, 104B, 104N and the system 106 for simulating at least one memory circuit with at least one aspect that is different from at least one aspect of at least one of the plurality of the memory circuits 104A, 104B, 104N. In accordance with various aspects of such embodiment, such aspect may include a signal, a capacity, a timing, a logical interface, etc. Of course, such examples of aspects are set forth for illustrative purposes only and thus should not be construed as limiting, since any aspect associated with one or more of the memory circuits 104A, 104B, 104N may be simulated differently in the foregoing manner.
In the case of the signal, such signal may refer to a control signal (e.g. an address signal; a signal associated with an activate operation, precharge operation, write operation, read operation, a mode register write operation, a mode register read operation, a refresh operation; etc.), a data signal, a logical or physical signal, or any other signal for that matter. For instance, a number of the aforementioned signals may be simulated to appear as fewer or more signals, or even simulated to correspond to a different type. In still other embodiments, multiple signals may be combined to simulate another signal. Even still, a length of time in which a signal is asserted may be simulated to be different.
In the case of protocol, such may, in one exemplary embodiment, refer to a particular standard protocol. For example, a number of memory circuits 104A, 104B, 104N that obey a standard protocol (e.g. DDR2, etc.) may be used to simulate one or more memory circuits that obey a different protocol (e.g. DDR3, etc.). Also, a number of memory circuits 104A, 104B, 104N that obey a version of protocol (e.g. DDR2 with 3-3-3 latency timing, etc.) may be used to simulate one or more memory circuits that obey a different version of the same protocol (e.g. DDR2 with 5-5-5 latency timing, etc.).
In the case of capacity, such may refer to a memory capacity (which may or may not be a function of a number of the memory circuits 104A, 104B, 104N; see previous embodiment). For example, the interface circuit 102 may be operable for simulating at least one memory circuit with a first memory capacity that is greater than (or less than) a second memory capacity of at least one of the memory circuits 104A, 104B, 104N.
In the case where the aspect is timing-related, the timing may possibly relate to a latency (e.g. time delay, etc.). In one aspect of the present embodiment, such latency may include a column address strobe (CAS) latency, which refers to a latency associated with accessing a column of data. Still yet, the latency may include a row address to column address latency (tRCD), which refers to a latency required between the row address strobe (RAS) and CAS. Even still, the latency may include a row precharge latency (tRP), which refers a latency required to terminate access to an open row, and open access to a next row. Further, the latency may include an activate to precharge latency (tRAS), which refers to a latency required to access a certain row of data between an activate operation and a precharge operation. In any case, the interface circuit 102 may be operable for simulating at least one memory circuit with a first latency that is longer (or shorter) than a second latency of at least one of the memory circuits 104A, 104B, 104N. Different optional embodiments which employ various features of the present embodiment will be set forth hereinafter during reference to
In still another embodiment, a component may be operable to receive a signal from the system 106 and communicate the signal to at least one of the memory circuits 104A, 104B, 104N after a delay. Again, the signal may refer to a control signal (e.g. an address signal; a signal associated with an activate operation, precharge operation, write operation, read operation; etc.), a data signal, a logical or physical signal, or any other signal for that matter. In various embodiments, such delay may be fixed or variable (e.g. a function of the current signal, the previous signal, etc.). In still other embodiments, the component may be operable to receive a signal from at least one of the memory circuits 104A, 104B, 104N and communicate the signal to the system 106 after a delay.
As an option, the delay may include a cumulative delay associated with any one or more of the aforementioned signals. Even still, the delay may result in a time shift of the signal forward and/or back in time (with respect to other signals). Of course, such forward and backward time shift may or may not be equal in magnitude. In one embodiment, this time shifting may be accomplished by utilizing a plurality of delay functions which each apply a different delay to a different signal. In still additional embodiments, the aforementioned shifting may be coordinated among multiple signals such that different signals are subject to shifts with different relative directions/magnitudes, in an organized fashion.
Further, it should be noted that the aforementioned component may, but need not necessarily take the form of the interface circuit 102 of
In a power-saving embodiment, at least one of a plurality of memory circuits 104A, 104B, 104N may be identified that is not currently being accessed by the system 106. In one embodiment, such identification may involve determining whether a page [i.e. any portion of any memory(s), etc.] is being accessed in at least one of the plurality of memory circuits 104A, 104B, 104N. Of course, any other technique may be used that results in the identification of at least one of the memory circuits 104A, 104B, 104N that is not being accessed.
In response to the identification of the at least one memory circuit 104A, 104B, 104N, a power saving operation is initiated in association with the at least one memory circuit 104A, 104B, 104N. In one optional embodiment, such power saving operation may involve a power down operation and, in particular, a precharge power down operation. Of course, however, it should be noted that any operation that results in at least some power savings may be employed in the context of the present embodiment.
Similar to one or more of the present embodiments, the present functionality or a portion thereof may be carried out utilizing any desired component. For example, such component may, but need not necessarily take the form of the interface circuit 102 of
In still yet another embodiment, a plurality of the aforementioned components may serve, in combination, to interface the memory circuits 104A, 104B, 104N and the system 106. In various embodiments, two, three, four, or more components may accomplish this. Also, the different components may be relatively configured in any desired manner. For example, the components may be configured in parallel, serially, or a combination thereof. In addition, any number of the components may be allocated to any number of the memory circuits 104A, 104B, 104N.
Further, in the present embodiment, each of the plurality of components may be the same or different. Still yet, the components may share the same or similar interface tasks and/or perform different interface tasks. Such interface tasks may include, but are not limited to simulating one or more aspects of a memory circuit, performing a power savings/refresh operation, carrying out any one or more of the various functionalities set forth herein, and/or any other task relevant to the aforementioned interfacing. One optional embodiment which employs various features of the present embodiment will be set forth hereinafter during reference to
Additional illustrative information will now be set forth regarding various optional embodiments in which the foregoing techniques may or may not be implemented, per the desires of the user. For example, an embodiments is set forth for storing at least a portion of information received in associated with a first operation for use in performing a second operation. See
It should again be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. Any of the following features may be optionally incorporated with or without the exclusion of other features described.
As shown in each of such figures, the buffer chip 202 is placed electrically between an electronic host system 204 and a stack of DRAM circuits 206A-D. In the context of the present description, a stack may refer to any collection of memory circuits. Further, the buffer chip 202 may include any device capable of buffering a stack of circuits (e.g. DRAM circuits 206A-D, etc.). Specifically, the buffer chip 202 may be capable of buffering the stack of DRAM circuits 206A-D to electrically and/or logically resemble at least one larger capacity DRAM circuit to the host system 204. In this way, the stack of DRAM circuits 206A-D may appear as a smaller quantity of larger capacity DRAM circuits to the host system 204.
For example, the stack of DRAM circuits 206A-D may include eight 512 Mb DRAM circuits. Thus, the buffer chip 202 may buffer the stack of eight 512 Mb DRAM circuits to resemble a single 4 Gb DRAM circuit to a memory controller (not shown) of the associated host system 204. In another example, the buffer chip 202 may buffer the stack of eight 512 Mb DRAM circuits to resemble two 2 Gb DRAM circuits to a memory controller of an associated host system 204.
Further, the stack of DRAM circuits 206A-D may include any number of DRAM circuits. Just by way of example, a buffer chip 202 may be connected to 2, 4, 8 or more DRAM circuits 206A-D. Also, the DRAM circuits 206A-D may be arranged in a single stack, as shown in
The DRAM circuits 206A-D may be arranged on a single side of the buffer chip 202, as shown in
The buffer chip 202 may optionally be a part of the stack of DRAM circuits 206A-D. Of course, however, the buffer chip 202 may also be separate from the stack of DRAM circuits 206A-D. In addition, the buffer chip 202 may be physically located anywhere in the stack of DRAM circuits 206A-D, where such buffer chip 202 electrically sits between the electronic host system 204 and the stack of DRAM circuits 206A-D.
In one embodiment, a memory bus (not shown) may connect to the buffer chip 202, and the buffer chip 202 may connect to each of the DRAM circuits 206A-D in the stack. As shown in
The electrical connections between the buffer chip 202 and the stack of DRAM circuits 206A-D may be configured in any desired manner. In one optional embodiment; address, control (e.g. command, etc.), and clock signals may be common to all DRAM circuits 206A-D in the stack (e.g. using one common bus). As another option, there may be multiple address, control and clock buses. As yet another option, there may be individual address, control and clock busses to each DRAM circuit 206A-D. Similarly, data signals may be wired as one common bus, several busses or as an individual bus to each DRAM circuit 206A-D. Of course, it should be noted that any combinations of such configurations may also be utilized.
For example, as shown in
These configurations may therefore allow for the host system 204 to only be in contact with a load of the buffer chip 202 on the memory bus. In this way, any electrical loading problems (e.g. bad signal integrity, improper signal timing, etc.) associated with the stacked DRAM circuits 206A-D may (but not necessarily) be prevented, in the context of various optional embodiments.
In operation 282, first information is received in association with a first operation to be performed on at least one of a plurality of memory circuits (e.g. see the memory circuits 104A, 104B, 104N of
For reasons that will soon become apparent, at least a portion of the first information is stored. Note operation 284. Still yet, in operation 286, second information is received in association with a second operation. Similar to the first information, the second information may or may not be received coincidently with the second operation, and may include address information. Such second operation, however, may in one embodiment, include a column operation.
To this end, the second operation may be performed utilizing the stored portion of the first information in addition to the second information. See operation 288. More illustrative information will now be set forth regarding various optional features with which the foregoing method 280 may or may not be implemented, per the desires of the user. Specifically, an example will be set for illustrating the manner in which the method 280 may be employed for accommodating a buffer chip that is simulating at least one aspect of a plurality of memory circuits.
In particular, the present example of the method 280 of
For example, a stack of four ×4 1 Gb DRAM circuits 206A-D behind a buffer chip 202 may appear as a single ×4 4 Gb DRAM circuit to the memory controller. Thus, the memory controller may provide sixteen row address bits and three bank address bits during a row (e.g. activate) operation, and provide eleven column address bits and three bank address bits during a column (e.g. read or write) operation. However, the individual DRAM circuits 206A-D in the stack may require only fourteen row address bits and three bank address bits for a row operation, and eleven column address bits and three bank address bits during a column operation.
As a result, during a row operation in the above example, the buffer chip 202 may receive two address bits more than are needed by each DRAM circuit 206A-D in the stack. The buffer chip 202 may therefore use the two extra address bits from the memory controller to select one of the four DRAM circuits 206A-D in the stack. In addition, the buffer chip 202 may receive the same number of address bits from the memory controller during a column operation as are needed by each DRAM circuit 206A-D in the stack.
Thus, in order to select the correct DRAM circuit 206A-D in the stack during a column operation, the buffer chip 202 may be designed to store the two extra address bits provided during a row operation and use the two stored address bits to select the correct DRAM circuit 206A-D during the column operation. The mapping between a system address (e.g. address from the memory controller, including the chip select signal(s)) and a device address (e.g. the address, including the chip select signals, presented to the DRAM circuits 206A-D in the stack) may be performed by the buffer chip 202 in various manners.
In one embodiment, a lower order system row address and bank address bits may be mapped directly to the device row address and bank address inputs. In addition, the most significant row address bit(s) and, optionally, the most significant bank address bit(s), may be decoded to generate the chip select signals for the DRAM circuits 206A-D in the stack during a row operation. The address bits used to generate the chip select signals during the row operation may also be stored in an internal lookup table by the buffer chip 202 for one or more clock cycles. During a column operation, the system column address and bank address bits may be mapped directly to the device column address and bank address inputs, while the stored address bits may be decoded to generate the chip select signals.
For example, addresses may be mapped between four 512 Mb DRAM circuits 206A-D that simulate a single 2 Gb DRAM circuits utilizing the buffer chip 202. There may be 15 row address bits from the system 204, such that row address bits 0 through 13 are mapped directly to the DRAM circuits 206A-D. There may also be 3 bank address bits from the system 204, such that bank address bits 0 through 1 are mapped directly to the DRAM circuits 206A-D.
During a row operation, the bank address bit 2 and the row address bit 14 may be decoded to generate the 4 chip select signals for each of the four DRAM circuits 206A-D. Row address bit 14 may be stored during the row operation using the bank address as the index. In addition, during the column operation, the stored row address bit 14 may again used with bank address bit 2 to form the four DRAM chip select signals.
As another example, addresses may be mapped between four 1 Gb DRAM circuits 206A-D that simulate a single 4 Gb DRAM circuits utilizing the buffer chip 202. There may be 16 row address bits from the system 204, such that row address bits 0 through 14 are mapped directly to the DRAM circuits 206A-D. There may also be 3 bank address bits from the system 204, such that bank address bits 0 through 3 are mapped directly to the DRAM circuits 206A-D.
During a row operation, row address bits 14 and 15 may be decoded to generate the 4 chip select signals for each of the four DRAM circuits 206A-D. Row address bits 14 and 15 may also be stored during the row operation using the bank address as the index. During the column operation, the stored row address bits 14 and 15 may again be used to form the four DRAM chip select signals.
In various embodiments, this mapping technique may optionally be used to ensure that there are no unnecessary combinational logic circuits in the critical timing path between the address input pins and address output pins of the buffer chip 202. Such combinational logic circuits may instead be used to generate the individual chip select signals. This may therefore allow the capacitive loading on the address outputs of the buffer chip 202 to be much higher than the loading on the individual chip select signal outputs of the buffer chip 202.
In another embodiment, the address mapping may be performed by the buffer chip 202 using some of the bank address signals from the memory controller to generate the individual chip select chip signals. The buffer chip 202 may store the higher order row address bits during a row operation using the bank address as the index, an then may use the stored address bits as part of the DRAM circuit bank address during a column operation. This address mapping technique may require an optional lookup table to be positioned in the critical timing path between the address inputs from the memory controller and the address outputs, to the DRAM circuits 206A-D in the stack.
For example, address may be mapped between four 512 Mb DRAM circuits 206A-D that simulate a single 2 Gb DRAM utilizing the buffer chip 202. There may be 15 row address bits from the system 204, where row address bits 0 through 13 are mapped directly to the DRAM circuits 206A-D. There may also be 3 bank address bits from the system 204, such that bank address bit 0 is used as a DRAM circuit bank address bit for the DRAM circuits 206A-D.
In addition, row address bit 14 may be used as an additional DRAM circuit bank address bit. During a row operation, the bank address bits 1 and 2 from the system may be decoded to generate the 4 chip select signals for each of the four DRAM circuits 206A-D. Further, row address bit 14 may be stored during the row operation. During the column operation, the stored row address bit 14 may again be used along with the bank address bit 0 from the system to form the DRAM circuit bank address.
In both of the above described address mapping techniques, the column address from the memory controller may be mapped directly as the column address to the DRAM circuits 206A-D in the stack. Specifically, this direct mapping may be performed since each of the DRAM circuits 206A-D in the stack, even if of the same width but different capacities (e.g. from 512 Mb to 4 Gb), may have the same page sizes. In an optional embodiment, address A[10] may be used by the memory controller to enable or disable auto-precharge during a column operation. Therefore, the buffer chip 202 may forward A[10] from the memory controller to the DRAM circuits 206A-D in the stack without any modifications during a column operation.
In various embodiments, it may be desirable to determine whether the simulated DRAM circuit behaves according to a desired DRAM standard or other design specification. A behavior of many DRAM circuits is specified by the JEDEC standards and it may be desirable, in some embodiments, to exactly simulate a particular JEDEC standard DRAM. The JEDEC standard defines control signals that a DRAM circuit must accept and the behavior of the DRAM circuit as a result of such control signals. For example, the JEDEC specification for a DDR2 DRAM is known as JESD79-2B.
If it is desired, for example, to determine whether a JEDEC standard is met, the following algorithm may be used. Such algorithm checks, using a set of software verification tools for formal verification of logic, that protocol behavior of the simulated DRAM circuit is the same as a desired standard or other design specification. This formal verification is quite feasible because the DRAM protocol described in a DRAM standard is typically limited to a few control signals (e.g. approximately 15 control signals in the case of the JEDEC DDR2 specification, for example).
Examples of the aforementioned software verification tools include MAGELLAN supplied by SYNOPSYS, or other software verification tools, such as INCISIVE supplied by CADENCE, verification tools supplied by JASPER, VERIX supplied by REAL INTENT, 0-IN supplied by MENTOR CORPORATION, and others. These software verification tools use written assertions that correspond to the rules established by the DRAM protocol and specification. These written assertions are further included in the code that forms the logic description for the buffer chip. By writing assertions that correspond to the desired behavior of the simulated DRAM circuit, a proof may be constructed that determines whether the desired design requirements are met. In this way, one may test various embodiments for compliance with a standard, multiple standards, or other design specification.
For instance, an assertion may be written that no two DRAM control signals are allowed to be issued to an address, control and clock bus at the same time. Although one may know which of the various buffer chip/DRAM stack configurations and address mappings that have been described herein are suitable, the aforementioned algorithm may allow a designed to prove that the simulated DRAM circuit exactly meets the required standard or other design specification. If, for example, an address mapping that uses a common bus for data and a common bus for address results in a control and clock bus that does not meet a required specification, alternative designs for buffer chips with other bus arrangements or alternative designs for the interconnect between the buffer chips may be used and tested for compliance with the desired standard or other design specification.
As shown, a high capacity DIMM 300 may be created utilizing buffered stacks of DRAM circuits 302. Thus, a DIMM 300 may utilize a plurality of buffered stacks of DRAM circuits 302 instead of individual DRAM circuits, thus increasing the capacity of the DIMM. In addition, the DIMM 300 may include a register 304 for address and operation control of each of the buffered stacks of DRAM circuits 302. It should be noted that any desired number of buffered stacks of DRAM circuits 302 may be utilized in conjunction with the DIMM 300. Therefore, the configuration of the DIMM 300, as shown, should not be construed as limiting in any way.
In an additional unillustrated embodiment, the register 304 may be substituted with an AMB (not shown), in the context of an FB-DIMM.
In use, any delay through a buffer chip (e.g. see the buffer chip 202 of
Such delay may be a result of the buffer chip being located electrically between the memory bus of the host system and the stacked DRAM circuits, since most or all of the signals that connect the memory bus to the DRAM circuits pass through the buffer chip. A finite amount of time may therefore be needed for these signals to traverse through the buffer chip. With the exception of register chips and advanced memory buffers (AMB), industry standard protocols for memory [e.g. (DDR SDRAM), DDR2 SDRAM, etc.] may not comprehend the buffer chip that sits between the memory bus and the DRAM. Industry standard protocols for memory [e.g. (DDR SDRAM), DDR2 SDRAM, etc.] narrowly define the properties of chips that sit between host and memory circuits. Such industry standard protocols define the properties of a register chip and AMB but not the properties of the buffer chip 202, etc. Thus, the signal delay through the buffer chip may violate the specifications of industry standard protocols.
In one embodiment, the buffer chip may provide a one-half clock cycle delay between the buffer chip receiving address and control signals from the memory controller (or optionally from a register chip, an AMB, etc.) and the address and control signals being valid at the inputs of the stacked DRAM circuits. Similarly, the data signals may also have a one-half clock cycle delay in traversing the buffer chip, either from the memory controller to the DRAM circuits or from the DRAM circuits to the memory controller. Of course, the one-half clock cycle delay set forth above is set forth for illustrative purposes only and thus should not be construed as limiting in any manner whatsoever. For example, other embodiments are contemplated where a one clock cycle delay, a multiple clock cycle delay (or fraction thereof), and/or any other delay amount is incorporated, for that matter. As mentioned earlier, in other embodiments, the aforementioned delay may be coordinated among multiple signals. such that different signals are subject to time-shifting with different relative directions/magnitudes, in an organized fashion.
As shown in
In one example, if the DRAM circuits in the stack have a native CAS latency of 4 and the address and control signals along with the data signals experience a one-half clock cycle delay through the buffer chip, then the buffer chip may make the buffered stack appear to the memory controller as one or more larger DRAM circuits with a CAS latency of 5 (i.e. 4+1). In another example, if the address and control signals along with the data signals experience a 1 clock cycle delay through the buffer chip, then the buffer chip may make the buffered stack appear as one or more larger DRAM circuits with a CAS latency of 6 (i.e. 4+2).
Designing a buffer chip (e.g. see the buffer chip 202 of
However, since the native read CAS latency of the DRAM circuits is 4, the DRAM circuits may require a write CAS latency of 3 (see 504). As a result, the write data from the memory controller may arrive at the buffer chip later than when the DRAM circuits require the data. Thus, the buffer chip may delay such write operations to alleviate any of such timing problems. Such delay in write operations will be described in more detail with respect to
In order to be compliant with the protocol utilized by the DRAM circuits in the stack, a buffer chip (e.g. see the buffer chip 202 of
As shown, an AMB on an FB-DIMM may be designed to send write data earlier to buffered stacks instead of delaying the write address and operation, as describe din reference to
For example, a buffer chip (e.g. see the buffer chip 202 of
In order to prevent conflicts on an address bus between the buffer chip and its associated stack(s), either the write operation or the precharge/activate operation may be delayed. As shown, a buffer chip (e.g. see the buffer chip 202 of
For example, if the cumulative latency through a buffer chip is 2 clock cycles while the native read CAS latency of the DRAM circuits is 4 clock cycles, then in order to hide the delay of the address/control signals and the data signals through the buffer chip, the buffered stack may appear as one or more larger capacity DRAM circuits with a read CAS latency of 6 clock cycles to the memory controller. In addition, if the tRCD and tRP of the DRAM circuits is 4 clock cycles each, the buffered stack may appear as one or more larger capacity DRAM circuits with tRCD of 6 clock cycles and tRP of 6 clock cycles in order to allow a buffer chip (e.g., see the buffer chip 202 of
Since the buffered stack appears to the memory controller as having a tRCD of 6 clock cycles, the memory controller may schedule a column operation to a bank 6 clock cycles after an activate (e.g. row) operation to the same bank. However, the DRAM circuits in the stack may actually have a tRCD of 4 clock cycles. Thus, the buffer chip may have the ability to delay the activate operation by up to 2 clock cycles in order to avoid any conflicts on the address bus between the buffer chip and the DRAM circuits in the stack while still ensuring correct read and write timing on the channel between the memory controller and buffered stack.
As shown, the buffer chip may issue the activate operation to the DRAM circuits one, two, or three clock cycles after it receives the activate operation from the memory controller, register, or AMB. The actual delay of the activate operation through the buffer chip may depend on the presence or absence of other DRAM operations that may conflict with the activate operation, and may optionally change from one activate operation to another.
Similarly, since the buffered stack may appear to the memory controller as at least one larger capacity DRAM circuit with a tRP of 6 clock cycles, the memory controller may schedule a subsequent activate (e.g. row) operation to a bank a minimum of 6 clock cycles after issuing a precharge operation to the DRAM circuits in the stack by up to 2 clock cycles in order to avoid any conflicts on the address bus between the buffer chip and the DRAM circuits in the stack. In addition, even if there are no conflicts on the address bus, the buffer chip may still delay issuing a precharge operation in order to satisfy the tRAS requirement of the DRAM circuits.
In particular, if the activate operation to a bank was delayed to avoid an address bus conflict, then the precharge operation to the same bank may be delayed by the buffer chip to satisfy the tRAS requirement of the DRAM circuits. The buffer chip may issue the precharge operation to the DRAM circuits one, two, or three clock cycles after it receives the precharge operation from the memory controller, register, or AMB. The actual delay of the precharge operation through the buffer chip may depend on the presence of absence of address bus conflicts or tRAS violations, and may change form one precharge operation to another.
The multiple DRAM circuits 1002A-D buffered in the stack by the buffer chip 1004 may appear as at least one larger capacity DRAM circuit to the memory controller. However, the combined power dissipation of such DRAM circuits 1002A-D may be much higher than the power dissipation of a monolithic DRAM of the same capacity. For example, the buffered stack may consist of four 512 Mb DDR2 SDRAM circuits that appear to the memory controller as a single 2 Gb DDR2 SDRAM circuit.
The power dissipation of all four DRAM circuits 1002A-D in the stack may be much higher than the power dissipation of a monolithic 2 Gb DDR2 SDRAM. As a result, a DIMM containing multiple buffered stacks may dissipate much more power than a standard DIMM built using monolithic DRAM circuits. This increased power dissipation may limit the widespread adoption of DIMMs that use buffered stacks.
Thus, a power management technique that reduces the power dissipation of DIMMs that contain buffered stacks of DRAM circuits may be utilized. Specifically, the DRAM circuits 1002A-D may be opportunistically placed in a precharge power down mode using the clock enable (CKE) pin of the DRAM circuits 1002A-D. For example, a single rank registered DIMM (R-DIMM) may contain a plurality of buffered stacks of DRAM circuits 1002A-D, where each stack consists of four ×4 512 Mb DDR2 SDRAM circuits 1002A-D and appears as a single ×2 Gb DDR2 SDRAM circuit to the memory controller. A 2 Gb DDR2 SDRAM may generally have eight banks as specified by JEDEC. Therefore, the buffer chip 1004 may map each 512 Mb DRAM circuit in the tack to two banks of the equivalent 2 Gb DRAM, as shown.
The memory controller of the host system may open and close pages in the banks of the DRAM circuits 1002A-D based on the memory requests it receives from the rest of the system. In various embodiments, no more than one page may be able to be open in a bank at any given time. For example, with respect to
The CKE inputs of the DRAM circuits 1002A-D in a stack may be controlled by the buffer chip 1004, by a chip on an R-DIMM, by an AMB on a FB-DIMM, or by the memory controller in order to implement the power management scheme described hereinabove. In one embodiment, this power management scheme may be particularly efficient when the memory controller implements a closed page policy.
Another optional power management scheme may include mapping a plurality of DRAM circuits to a single bank of the larger capacity DRAM seen by the memory controller. For example, a buffered stack of sixteen ×4 256 Mb DDR2 SDRAM circuits may appear to the memory controller as a single ×4 4 Gb DDR2 SDRAM circuit. Since a 4 Gb DDR2 SDRAM circuit is specified by JEDEC to have eight banks, each bank of the 4 Gb DDR2 SDRAM circuit may be 512 Mb. Thus, two of the 256 Mb DDR2 SDRAM circuits may be mapped by the buffer chip 1004 to a single bank of the equivalent 4 Gb DDR2 SDRAM circuit seen by the memory controller.
In this way, bank 0 of the 4 Gb DDR2 SDRAM circuit may be mapped by the buffer chip to two 256 Mb DDR2 SDRAM circuits (e.g. DRAM A and DRAM B) in the stack. However, since only one page can be open in a bank at any given time, only one of DRAM A or DRAM B may be in the active state at any given time. If the memory controller opens a page in DRAM A, then DRAM B may be placed in the precharge power down mode by de-asserting its CKE input. As another option, if the memory controller opens a page in DRAM B, DRAM A may be placed in the precharge power down mode by de-asserting its CKE input. This technique may ensure that if p DRAM circuits are mapped to a bank of the larger capacity DRAM circuit seen by the memory controller, then p-1 of the p DRAM circuits may continuously (e.g. always, etc.) be subjected to a power saving operation. The power saving operation may, for example, comprise operating in a precharge power down mode except when refresh is required. Of course, power-savings may also occur in other embodiments without such continuity.
As shown, a refresh control signal is received in operation 1102. In one optional embodiment, such refresh control signal may, for example, be received from a memory controller, where such memory controller intends to refresh a simulated memory circuit(s).
In response to the receipt of such refresh control signal, a plurality of refresh control signals are sent to a plurality of the memory circuits (e.g. see the memory circuits 104A, 104B, 104N of
During use of still additional embodiments, at least one first refresh control signal may be sent to a first subset (e.g. of one or more) of the memory circuits at a first time and at least one second refresh control signal may be sent to a second subset (e.g. of one or more) of the memory circuits at a second time. Thus, in some embodiments, a single refresh control signal may be sent to a plurality of the memory circuits (e.g. a group of memory circuits, etc.). Further, a plurality of the refresh control signals may be sent to a plurality of the memory circuits. To this end, refresh control signals may be sent individually or to groups of memory circuits, as desired.
Thus, in still yet additional embodiments, the refresh control signals may be sent after a delay in accordance with a particular timing. In one embodiment, for example, the timing in which the refresh control signals are sent to the memory circuits may be selected to minimize a current draw. This may be accomplished in various embodiments by staggering a plurality of refresh control signals. In still other embodiments, the timing in which the refresh control signals are sent to the memory circuits may be selected to comply with a tRFC parameter associated with each of the memory circuits.
To this end, in the context of an example involving a plurality of DRAM circuits (e.g. see the embodiments of
When the buffer chip receives a refresh control signal from the memory controller, it may refresh the smaller DRAM circuits within the span of time specified by the tRFC associated with the emulated DRAM circuit. Since the tRFC of the emulated DRAM circuits is larger than that of the smaller DRAM circuits, it may not be necessary to issue refresh control signals to all of the smaller DRAM circuits simultaneously. Refresh control signals may be issued separately to individual DRAM circuits or may be issued to groups of DRAM circuits, provided that the tRFC requirement of the smaller DRAM circuits is satisfied by the time the tRFC of the emulated DRAM circuits has elapsed. In use, the refreshes may be spaced to minimize the peak current draw of the combination buffer chip and DRAM circuit set during a refresh operation.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. For example, any of the network elements may employ any of the desired functionality set forth hereinabove. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
The present application is a continuation of an application filed Jul. 31, 2006 under application Ser. No. 11/461,420, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3800292 | Curley et al. | Mar 1974 | A |
4069452 | Conway et al. | Jan 1978 | A |
4323965 | Johnson et al. | Apr 1982 | A |
4334307 | Bourgeois et al. | Jun 1982 | A |
4345319 | Bernardini et al. | Aug 1982 | A |
4392212 | Miyasaka et al. | Jul 1983 | A |
4525921 | Carson et al. | Jul 1985 | A |
4566082 | Anderson | Jan 1986 | A |
4592019 | Huang et al. | May 1986 | A |
4646128 | Carson et al. | Feb 1987 | A |
4698748 | Juzswik et al. | Oct 1987 | A |
4706166 | Go | Nov 1987 | A |
4710903 | Hereth et al. | Dec 1987 | A |
4764846 | Go | Aug 1988 | A |
4780843 | Tietjen | Oct 1988 | A |
4794597 | Ooba et al. | Dec 1988 | A |
4796232 | House | Jan 1989 | A |
4807191 | Flannagan | Feb 1989 | A |
4841440 | Yonezu et al. | Jun 1989 | A |
4862347 | Rudy | Aug 1989 | A |
4884237 | Mueller et al. | Nov 1989 | A |
4887240 | Garverick et al. | Dec 1989 | A |
4888687 | Allison et al. | Dec 1989 | A |
4899107 | Corbett et al. | Feb 1990 | A |
4912678 | Mashiko | Mar 1990 | A |
4922451 | Lo et al. | May 1990 | A |
4935734 | Austin | Jun 1990 | A |
4937791 | Steele et al. | Jun 1990 | A |
4956694 | Eide | Sep 1990 | A |
4982265 | Watanabe et al. | Jan 1991 | A |
4983533 | Go | Jan 1991 | A |
5025364 | Zellmer | Jun 1991 | A |
5072424 | Brent et al. | Dec 1991 | A |
5083266 | Watanabe | Jan 1992 | A |
5104820 | Go et al. | Apr 1992 | A |
5193072 | Frenkil et al. | Mar 1993 | A |
5212666 | Takeda | May 1993 | A |
5220672 | Nakao et al. | Jun 1993 | A |
5241266 | Ahmad et al. | Aug 1993 | A |
5252807 | Chizinsky | Oct 1993 | A |
5257233 | Schaefer | Oct 1993 | A |
5278796 | Tillinghast et al. | Jan 1994 | A |
5282177 | McLaury | Jan 1994 | A |
5332922 | Oguchi et al. | Jul 1994 | A |
5347428 | Carson et al. | Sep 1994 | A |
5369749 | Baker et al. | Nov 1994 | A |
5384745 | Konishi et al. | Jan 1995 | A |
5388265 | Volk | Feb 1995 | A |
5390334 | Harrison | Feb 1995 | A |
5408190 | Wood et al. | Apr 1995 | A |
5432729 | Carson et al. | Jul 1995 | A |
5448511 | Paurus et al. | Sep 1995 | A |
5453434 | Albaugh et al. | Sep 1995 | A |
5467455 | Gay et al. | Nov 1995 | A |
5483497 | Mochizuki et al. | Jan 1996 | A |
5498886 | Hsu et al. | Mar 1996 | A |
5502333 | Bertin et al. | Mar 1996 | A |
5502667 | Bertin et al. | Mar 1996 | A |
5513135 | Dell et al. | Apr 1996 | A |
5513339 | Agrawal et al. | Apr 1996 | A |
5519832 | Warchol | May 1996 | A |
5526320 | Zagar et al. | Jun 1996 | A |
5530836 | Busch et al. | Jun 1996 | A |
5550781 | Sugawara et al. | Aug 1996 | A |
5559990 | Cheng et al. | Sep 1996 | A |
5561622 | Bertin et al. | Oct 1996 | A |
5563086 | Bertin et al. | Oct 1996 | A |
5566344 | Hall et al. | Oct 1996 | A |
5581498 | Ludwig et al. | Dec 1996 | A |
5581779 | Hall et al. | Dec 1996 | A |
5590071 | Kolor et al. | Dec 1996 | A |
5598376 | Merritt et al. | Jan 1997 | A |
5604714 | Manning et al. | Feb 1997 | A |
5606710 | Hall et al. | Feb 1997 | A |
5608262 | Degani et al. | Mar 1997 | A |
5610864 | Manning | Mar 1997 | A |
5623686 | Hall et al. | Apr 1997 | A |
5627791 | Wright et al. | May 1997 | A |
5640337 | Huang et al. | Jun 1997 | A |
5640364 | Merritt et al. | Jun 1997 | A |
5652724 | Manning | Jul 1997 | A |
5654204 | Anderson | Aug 1997 | A |
5661677 | Rondeau et al. | Aug 1997 | A |
5661695 | Zagar et al. | Aug 1997 | A |
5668773 | Zagar et al. | Sep 1997 | A |
5675549 | Ong et al. | Oct 1997 | A |
5680342 | Frankeny | Oct 1997 | A |
5682354 | Manning | Oct 1997 | A |
5692121 | Bozso et al. | Nov 1997 | A |
5692202 | Kardach et al. | Nov 1997 | A |
5696732 | Zagar et al. | Dec 1997 | A |
5702984 | Bertin et al. | Dec 1997 | A |
5703813 | Manning et al. | Dec 1997 | A |
5706247 | Merritt et al. | Jan 1998 | A |
RE35733 | Hernandez et al. | Feb 1998 | E |
5717654 | Manning | Feb 1998 | A |
5721859 | Manning | Feb 1998 | A |
5724288 | Cloud et al. | Mar 1998 | A |
5729503 | Manning | Mar 1998 | A |
5729504 | Cowles | Mar 1998 | A |
5742792 | Yanai et al. | Apr 1998 | A |
5748914 | Barth et al. | May 1998 | A |
5752045 | Chen | May 1998 | A |
5757703 | Merritt et al. | May 1998 | A |
5760478 | Bozso et al. | Jun 1998 | A |
5761703 | Bolyn | Jun 1998 | A |
5781766 | Davis | Jul 1998 | A |
5787457 | Miller et al. | Jul 1998 | A |
5798961 | Heyden et al. | Aug 1998 | A |
5802010 | Zagar et al. | Sep 1998 | A |
5802395 | Connolly et al. | Sep 1998 | A |
5802555 | Shigeeda | Sep 1998 | A |
5812488 | Zagar et al. | Sep 1998 | A |
5818788 | Kimura et al. | Oct 1998 | A |
5819065 | Chilton et al. | Oct 1998 | A |
5831833 | Shirakawa et al. | Nov 1998 | A |
5831931 | Manning | Nov 1998 | A |
5831932 | Merritt et al. | Nov 1998 | A |
5834838 | Anderson | Nov 1998 | A |
5835435 | Bogin et al. | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5838177 | Keeth | Nov 1998 | A |
5841580 | Farmwald et al. | Nov 1998 | A |
5843799 | Hsu et al. | Dec 1998 | A |
5843807 | Burns | Dec 1998 | A |
5845108 | Yoo et al. | Dec 1998 | A |
5850368 | Ong et al. | Dec 1998 | A |
5859792 | Rondeau et al. | Jan 1999 | A |
5860106 | Domen et al. | Jan 1999 | A |
5870347 | Keeth et al. | Feb 1999 | A |
5870350 | Bertin et al. | Feb 1999 | A |
5872907 | Griess et al. | Feb 1999 | A |
5875142 | Chevallier | Feb 1999 | A |
5878279 | Athenes | Mar 1999 | A |
5884088 | Kardach et al. | Mar 1999 | A |
5901105 | Ong et al. | May 1999 | A |
5903500 | Tsang et al. | May 1999 | A |
5905688 | Park | May 1999 | A |
5907512 | Parkinson et al. | May 1999 | A |
5913072 | Wierenga | Jun 1999 | A |
5915105 | Farmwald et al. | Jun 1999 | A |
5915167 | Leedy | Jun 1999 | A |
5917758 | Keeth | Jun 1999 | A |
5923611 | Ryan | Jul 1999 | A |
5924111 | Huang et al. | Jul 1999 | A |
5926435 | Park et al. | Jul 1999 | A |
5929650 | Pappert et al. | Jul 1999 | A |
5943254 | Bakeman, Jr. et al. | Aug 1999 | A |
5946265 | Cowles | Aug 1999 | A |
5949254 | Keeth | Sep 1999 | A |
5953215 | Karabatsos | Sep 1999 | A |
5953263 | Farmwald et al. | Sep 1999 | A |
5954804 | Farmwald et al. | Sep 1999 | A |
5956233 | Yew et al. | Sep 1999 | A |
5962435 | Mao et al. | Oct 1999 | A |
5963429 | Chen | Oct 1999 | A |
5963463 | Rondeau et al. | Oct 1999 | A |
5963464 | Dell et al. | Oct 1999 | A |
5963504 | Manning | Oct 1999 | A |
5966724 | Ryan | Oct 1999 | A |
5966727 | Nishino | Oct 1999 | A |
5969996 | Muranaka et al. | Oct 1999 | A |
5973392 | Senba et al. | Oct 1999 | A |
5995424 | Lawrence et al. | Nov 1999 | A |
5995443 | Farmwald et al. | Nov 1999 | A |
6001671 | Fjelstad | Dec 1999 | A |
6002613 | Cloud et al. | Dec 1999 | A |
6002627 | Chevallier | Dec 1999 | A |
6014339 | Kobayashi et al. | Jan 2000 | A |
6016282 | Keeth | Jan 2000 | A |
6026050 | Baker et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6032214 | Farmwald et al. | Feb 2000 | A |
6032215 | Farmwald et al. | Feb 2000 | A |
6034916 | Lee | Mar 2000 | A |
6034918 | Farmwald et al. | Mar 2000 | A |
6035365 | Farmwald et al. | Mar 2000 | A |
6038195 | Farmwald et al. | Mar 2000 | A |
6038673 | Benn et al. | Mar 2000 | A |
6044032 | Li | Mar 2000 | A |
6047073 | Norris et al. | Apr 2000 | A |
6047344 | Kawasumi et al. | Apr 2000 | A |
6053948 | Vaidyanathan et al. | Apr 2000 | A |
6058451 | Bermingham et al. | May 2000 | A |
6065092 | Roy | May 2000 | A |
6069504 | Keeth | May 2000 | A |
6070217 | Connolly et al. | May 2000 | A |
6073223 | McAllister et al. | Jun 2000 | A |
6075730 | Barth et al. | Jun 2000 | A |
6075744 | Tsern et al. | Jun 2000 | A |
6078546 | Lee | Jun 2000 | A |
6079025 | Fung | Jun 2000 | A |
6084434 | Keeth | Jul 2000 | A |
6088290 | Ohtake et al. | Jul 2000 | A |
6091251 | Wood et al. | Jul 2000 | A |
RE36839 | Simmons et al. | Aug 2000 | E |
6101152 | Farmwald et al. | Aug 2000 | A |
6101564 | Athenes et al. | Aug 2000 | A |
6101612 | Jeddeloh | Aug 2000 | A |
6108795 | Jeddeloh | Aug 2000 | A |
6111812 | Gans et al. | Aug 2000 | A |
6125072 | Wu | Sep 2000 | A |
6134638 | Olarig et al. | Oct 2000 | A |
6154370 | Degani et al. | Nov 2000 | A |
6166991 | Phelan | Dec 2000 | A |
6181640 | Kang | Jan 2001 | B1 |
6182184 | Farmwald et al. | Jan 2001 | B1 |
6199151 | Williams et al. | Mar 2001 | B1 |
6208168 | Rhee | Mar 2001 | B1 |
6216246 | Shau | Apr 2001 | B1 |
6222739 | Bhakta et al. | Apr 2001 | B1 |
6226709 | Goodwin et al. | May 2001 | B1 |
6226730 | Murdoch et al. | May 2001 | B1 |
6233192 | Tanaka | May 2001 | B1 |
6233650 | Johnson et al. | May 2001 | B1 |
6240048 | Matsubara | May 2001 | B1 |
6243282 | Rondeau et al. | Jun 2001 | B1 |
6252807 | Suzuki et al. | Jun 2001 | B1 |
6260097 | Farmwald et al. | Jul 2001 | B1 |
6260154 | Jeddeloh | Jul 2001 | B1 |
6262938 | Lee et al. | Jul 2001 | B1 |
6266285 | Farmwald et al. | Jul 2001 | B1 |
6266292 | Tsern et al. | Jul 2001 | B1 |
6274395 | Weber | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6295572 | Wu | Sep 2001 | B1 |
6298426 | Ajanovic | Oct 2001 | B1 |
6304511 | Gans et al. | Oct 2001 | B1 |
6307769 | Nuxoll et al. | Oct 2001 | B1 |
6314051 | Farmwald et al. | Nov 2001 | B1 |
6317352 | Halbert et al. | Nov 2001 | B1 |
6317381 | Gans et al. | Nov 2001 | B1 |
6324120 | Farmwald et al. | Nov 2001 | B2 |
6326810 | Keeth | Dec 2001 | B1 |
6327664 | Dell et al. | Dec 2001 | B1 |
6330683 | Jeddeloh | Dec 2001 | B1 |
6336174 | Li et al. | Jan 2002 | B1 |
6338108 | Motomura | Jan 2002 | B1 |
6338113 | Kubo et al. | Jan 2002 | B1 |
6341347 | Joy et al. | Jan 2002 | B1 |
6343019 | Jiang et al. | Jan 2002 | B1 |
6343042 | Tsern et al. | Jan 2002 | B1 |
6353561 | Funyu et al. | Mar 2002 | B1 |
6356105 | Volk | Mar 2002 | B1 |
6356500 | Cloud et al. | Mar 2002 | B1 |
6362656 | Rhee | Mar 2002 | B2 |
6363031 | Phelan | Mar 2002 | B2 |
6378020 | Farmwald et al. | Apr 2002 | B2 |
6381188 | Choi et al. | Apr 2002 | B1 |
6381668 | Lunteren | Apr 2002 | B1 |
6389514 | Rokicki | May 2002 | B1 |
6392304 | Butler | May 2002 | B1 |
6414868 | Wong et al. | Jul 2002 | B1 |
6418034 | Weber et al. | Jul 2002 | B1 |
6421754 | Kau et al. | Jul 2002 | B1 |
6424532 | Kawamura | Jul 2002 | B2 |
6426916 | Farmwald et al. | Jul 2002 | B2 |
6429029 | Eldridge et al. | Aug 2002 | B1 |
6430103 | Nakayama et al. | Aug 2002 | B2 |
6437600 | Keeth | Aug 2002 | B1 |
6438057 | Ruckerbauer | Aug 2002 | B1 |
6442698 | Nizar | Aug 2002 | B2 |
6445591 | Kwong | Sep 2002 | B1 |
6452826 | Kim et al. | Sep 2002 | B1 |
6452863 | Farmwald et al. | Sep 2002 | B2 |
6453400 | Maesako et al. | Sep 2002 | B1 |
6453402 | Jeddeloh | Sep 2002 | B1 |
6453434 | Delp et al. | Sep 2002 | B2 |
6455348 | Yamaguchi | Sep 2002 | B1 |
6457095 | Volk | Sep 2002 | B1 |
6459651 | Lee et al. | Oct 2002 | B1 |
6473831 | Schade | Oct 2002 | B1 |
6476476 | Glenn | Nov 2002 | B1 |
6480929 | Gauthier et al. | Nov 2002 | B1 |
6487102 | Halbert et al. | Nov 2002 | B1 |
6489669 | Shimada et al. | Dec 2002 | B2 |
6490161 | Johnson | Dec 2002 | B1 |
6492726 | Quek et al. | Dec 2002 | B1 |
6493789 | Ware et al. | Dec 2002 | B2 |
6496440 | Manning | Dec 2002 | B2 |
6496897 | Ware et al. | Dec 2002 | B2 |
6498766 | Lee et al. | Dec 2002 | B2 |
6510097 | Fukuyama | Jan 2003 | B2 |
6510503 | Gillingham et al. | Jan 2003 | B2 |
6512392 | Fleury et al. | Jan 2003 | B2 |
6521984 | Matsuura | Feb 2003 | B2 |
6526471 | Shimomura et al. | Feb 2003 | B1 |
6526473 | Kim | Feb 2003 | B1 |
6526484 | Stacovsky et al. | Feb 2003 | B1 |
6545895 | Li et al. | Apr 2003 | B1 |
6546446 | Farmwald et al. | Apr 2003 | B2 |
6553450 | Dodd et al. | Apr 2003 | B1 |
6560158 | Choi et al. | May 2003 | B2 |
6563337 | Dour | May 2003 | B2 |
6563759 | Yahata et al. | May 2003 | B2 |
6564281 | Farmwald et al. | May 2003 | B2 |
6564285 | Mills et al. | May 2003 | B1 |
6574150 | Suyama et al. | Jun 2003 | B2 |
6584037 | Farmwald et al. | Jun 2003 | B2 |
6587912 | Leddige et al. | Jul 2003 | B2 |
6590822 | Hwang et al. | Jul 2003 | B2 |
6594770 | Sato et al. | Jul 2003 | B1 |
6597616 | Tsern et al. | Jul 2003 | B2 |
6597617 | Ooishi et al. | Jul 2003 | B2 |
6614700 | Dietrich et al. | Sep 2003 | B2 |
6618267 | Dalal et al. | Sep 2003 | B1 |
6618791 | Dodd et al. | Sep 2003 | B1 |
6621760 | Ahmad et al. | Sep 2003 | B1 |
6628538 | Funaba et al. | Sep 2003 | B2 |
6630729 | Huang | Oct 2003 | B2 |
6631086 | Bill et al. | Oct 2003 | B1 |
6639820 | Khandekar et al. | Oct 2003 | B1 |
6646939 | Kwak | Nov 2003 | B2 |
6650588 | Yamagata | Nov 2003 | B2 |
6650594 | Lee et al. | Nov 2003 | B1 |
6657634 | Sinclair | Dec 2003 | B1 |
6657918 | Foss et al. | Dec 2003 | B2 |
6657919 | Foss et al. | Dec 2003 | B2 |
6658016 | Dai et al. | Dec 2003 | B1 |
6658530 | Robertson et al. | Dec 2003 | B1 |
6659512 | Harper et al. | Dec 2003 | B1 |
6664625 | Hiruma | Dec 2003 | B2 |
6665224 | Lehmann et al. | Dec 2003 | B1 |
6665227 | Fetzer | Dec 2003 | B2 |
6668242 | Reynov et al. | Dec 2003 | B1 |
6674154 | Minamio et al. | Jan 2004 | B2 |
6683372 | Wong et al. | Jan 2004 | B1 |
6684292 | Piccirillo et al. | Jan 2004 | B2 |
6690191 | Wu et al. | Feb 2004 | B2 |
6697295 | Farmwald et al. | Feb 2004 | B2 |
6701446 | Tsern et al. | Mar 2004 | B2 |
6705877 | Li et al. | Mar 2004 | B1 |
6708144 | Merryman et al. | Mar 2004 | B1 |
6710430 | Minamio et al. | Mar 2004 | B2 |
6711043 | Friedman et al. | Mar 2004 | B2 |
6713856 | Tsai et al. | Mar 2004 | B2 |
6714891 | Dendinger | Mar 2004 | B2 |
6724684 | Kim | Apr 2004 | B2 |
6730540 | Siniaguine | May 2004 | B2 |
6731009 | Jones et al. | May 2004 | B1 |
6731527 | Brown | May 2004 | B2 |
6742098 | Halbert et al. | May 2004 | B1 |
6744687 | Koo et al. | Jun 2004 | B2 |
6747887 | Halbert et al. | Jun 2004 | B2 |
6751113 | Bhakta et al. | Jun 2004 | B2 |
6751696 | Farmwald et al. | Jun 2004 | B2 |
6754129 | Khateri et al. | Jun 2004 | B2 |
6754132 | Kyung | Jun 2004 | B2 |
6757751 | Gene | Jun 2004 | B1 |
6762948 | Kyun et al. | Jul 2004 | B2 |
6765812 | Anderson | Jul 2004 | B2 |
6766469 | Larson et al. | Jul 2004 | B2 |
6771526 | LaBerge | Aug 2004 | B2 |
6772359 | Kwak et al. | Aug 2004 | B2 |
6779097 | Gillingham et al. | Aug 2004 | B2 |
6785767 | Coulson | Aug 2004 | B2 |
6791877 | Miura et al. | Sep 2004 | B2 |
6795899 | Dodd et al. | Sep 2004 | B2 |
6799241 | Kahn et al. | Sep 2004 | B2 |
6801989 | Johnson et al. | Oct 2004 | B2 |
6807598 | Farmwald et al. | Oct 2004 | B2 |
6807655 | Rehani et al. | Oct 2004 | B1 |
6816991 | Sanghani | Nov 2004 | B2 |
6819602 | Seo et al. | Nov 2004 | B2 |
6819617 | Hwang et al. | Nov 2004 | B2 |
6820163 | McCall et al. | Nov 2004 | B1 |
6820169 | Wilcox et al. | Nov 2004 | B2 |
6826104 | Kawaguchi et al. | Nov 2004 | B2 |
6839290 | Ahmad et al. | Jan 2005 | B2 |
6844754 | Yamagata | Jan 2005 | B2 |
6845027 | Mayer et al. | Jan 2005 | B2 |
6845055 | Koga et al. | Jan 2005 | B1 |
6847582 | Pan | Jan 2005 | B2 |
6850449 | Takahashi | Feb 2005 | B2 |
6862202 | Schaefer | Mar 2005 | B2 |
6862249 | Kyung | Mar 2005 | B2 |
6862653 | Dodd et al. | Mar 2005 | B1 |
6873534 | Bhakta et al. | Mar 2005 | B2 |
6878570 | Lyu et al. | Apr 2005 | B2 |
6894933 | Kuzmenka et al. | May 2005 | B2 |
6898683 | Nakamura | May 2005 | B2 |
6908314 | Brown | Jun 2005 | B2 |
6912778 | Ahn et al. | Jul 2005 | B2 |
6914786 | Paulsen et al. | Jul 2005 | B1 |
6917219 | New | Jul 2005 | B2 |
6922371 | Takahashi et al. | Jul 2005 | B2 |
6930900 | Bhakta et al. | Aug 2005 | B2 |
6930903 | Bhakta et al. | Aug 2005 | B2 |
6938119 | Kohn et al. | Aug 2005 | B2 |
6943450 | Fee et al. | Sep 2005 | B2 |
6944748 | Sanches et al. | Sep 2005 | B2 |
6947341 | Stubbs et al. | Sep 2005 | B2 |
6951982 | Chye et al. | Oct 2005 | B2 |
6952794 | Lu | Oct 2005 | B2 |
6961281 | Wong et al. | Nov 2005 | B2 |
6968416 | Moy | Nov 2005 | B2 |
6968419 | Holman | Nov 2005 | B1 |
6970968 | Holman | Nov 2005 | B1 |
6980021 | Srivastava et al. | Dec 2005 | B1 |
6986118 | Dickman | Jan 2006 | B2 |
6992501 | Rapport | Jan 2006 | B2 |
6992950 | Foss et al. | Jan 2006 | B2 |
7000062 | Perego et al. | Feb 2006 | B2 |
7003618 | Perego et al. | Feb 2006 | B2 |
7003639 | Tsern et al. | Feb 2006 | B2 |
7007095 | Chen et al. | Feb 2006 | B2 |
7007175 | Chang et al. | Feb 2006 | B2 |
7010642 | Perego et al. | Mar 2006 | B2 |
7010736 | Teh et al. | Mar 2006 | B1 |
7024518 | Halbert et al. | Apr 2006 | B2 |
7026708 | Cady et al. | Apr 2006 | B2 |
7028215 | Depew et al. | Apr 2006 | B2 |
7028234 | Huckaby et al. | Apr 2006 | B2 |
7033861 | Partridge et al. | Apr 2006 | B1 |
7035150 | Streif et al. | Apr 2006 | B2 |
7043599 | Ware et al. | May 2006 | B1 |
7043611 | McClannahan et al. | May 2006 | B2 |
7045396 | Crowley et al. | May 2006 | B2 |
7045901 | Lin et al. | May 2006 | B2 |
7046538 | Kinsley et al. | May 2006 | B2 |
7053470 | Sellers et al. | May 2006 | B1 |
7053478 | Roper et al. | May 2006 | B2 |
7058776 | Lee | Jun 2006 | B2 |
7058863 | Kouchi et al. | Jun 2006 | B2 |
7061784 | Jakobs et al. | Jun 2006 | B2 |
7061823 | Faue et al. | Jun 2006 | B2 |
7066741 | Burns et al. | Jun 2006 | B2 |
7075175 | Kazi et al. | Jul 2006 | B2 |
7079396 | Gates et al. | Jul 2006 | B2 |
7079441 | Partsch et al. | Jul 2006 | B1 |
7079446 | Murtagh et al. | Jul 2006 | B2 |
7085152 | Ellis et al. | Aug 2006 | B2 |
7085941 | Li | Aug 2006 | B2 |
7089438 | Raad | Aug 2006 | B2 |
7093101 | Aasheim et al. | Aug 2006 | B2 |
7103730 | Saxena et al. | Sep 2006 | B2 |
7110322 | Farmwald et al. | Sep 2006 | B2 |
7119428 | Tanie et al. | Oct 2006 | B2 |
7120727 | Lee et al. | Oct 2006 | B2 |
7126399 | Lee | Oct 2006 | B1 |
7127567 | Ramakrishnan et al. | Oct 2006 | B2 |
7133960 | Thompson et al. | Nov 2006 | B1 |
7136978 | Miura et al. | Nov 2006 | B2 |
7138823 | Janzen et al. | Nov 2006 | B2 |
7149145 | Kim et al. | Dec 2006 | B2 |
7149824 | Johnson | Dec 2006 | B2 |
7173863 | Conley et al. | Feb 2007 | B2 |
7200021 | Raghuram | Apr 2007 | B2 |
7205789 | Karabatsos | Apr 2007 | B1 |
7210059 | Jeddeloh | Apr 2007 | B2 |
7215561 | Park et al. | May 2007 | B2 |
7218566 | Totolos, Jr. et al. | May 2007 | B1 |
7224595 | Dreps et al. | May 2007 | B2 |
7228264 | Barrenscheen et al. | Jun 2007 | B2 |
7231562 | Ohlhoff et al. | Jun 2007 | B2 |
7233541 | Yamamoto et al. | Jun 2007 | B2 |
7234081 | Nguyen et al. | Jun 2007 | B2 |
7243185 | See et al. | Jul 2007 | B2 |
7245541 | Janzen | Jul 2007 | B2 |
7254036 | Pauley et al. | Aug 2007 | B2 |
7266639 | Raghuram | Sep 2007 | B2 |
7269042 | Kinsley et al. | Sep 2007 | B2 |
7269708 | Ware | Sep 2007 | B2 |
7274583 | Park et al. | Sep 2007 | B2 |
7277333 | Schaefer | Oct 2007 | B2 |
7286436 | Bhakta et al. | Oct 2007 | B2 |
7289386 | Bhakta et al. | Oct 2007 | B2 |
7296754 | Nishizawa et al. | Nov 2007 | B2 |
7299330 | Gillingham et al. | Nov 2007 | B2 |
7302598 | Suzuki et al. | Nov 2007 | B2 |
7307863 | Yen et al. | Dec 2007 | B2 |
7317250 | Koh et al. | Jan 2008 | B2 |
7337293 | Brittain et al. | Feb 2008 | B2 |
7363422 | Perego et al. | Apr 2008 | B2 |
7366947 | Gower et al. | Apr 2008 | B2 |
7379316 | Rajan | May 2008 | B2 |
7386656 | Rajan et al. | Jun 2008 | B2 |
7392338 | Rajan et al. | Jun 2008 | B2 |
7408393 | Jain et al. | Aug 2008 | B1 |
7409492 | Tanaka et al. | Aug 2008 | B2 |
7414917 | Ruckerbauer et al. | Aug 2008 | B2 |
7428644 | Jeddeloh et al. | Sep 2008 | B2 |
7437579 | Jeddeloh et al. | Oct 2008 | B2 |
7441064 | Gaskins | Oct 2008 | B2 |
7457122 | Lai et al. | Nov 2008 | B2 |
7464225 | Tsern | Dec 2008 | B2 |
7472220 | Rajan et al. | Dec 2008 | B2 |
7474576 | Co et al. | Jan 2009 | B2 |
7480147 | Hoss et al. | Jan 2009 | B2 |
7480774 | Ellis et al. | Jan 2009 | B2 |
7496777 | Kapil | Feb 2009 | B2 |
7515453 | Rajan | Apr 2009 | B2 |
7532537 | Solomon et al. | May 2009 | B2 |
7539800 | Dell et al. | May 2009 | B2 |
7573136 | Jiang et al. | Aug 2009 | B2 |
7580312 | Rajan et al. | Aug 2009 | B2 |
7581121 | Barth et al. | Aug 2009 | B2 |
7581127 | Rajan et al. | Aug 2009 | B2 |
7590796 | Rajan et al. | Sep 2009 | B2 |
7599205 | Rajan | Oct 2009 | B2 |
7606245 | Ma et al. | Oct 2009 | B2 |
7609567 | Rajan et al. | Oct 2009 | B2 |
7613880 | Miura et al. | Nov 2009 | B2 |
7619912 | Bhakta et al. | Nov 2009 | B2 |
7724589 | Rajan et al. | May 2010 | B2 |
7730338 | Rajan et al. | Jun 2010 | B2 |
7761724 | Rajan et al. | Jul 2010 | B2 |
7934070 | Brittain et al. | Apr 2011 | B2 |
7990797 | Moshayedi et al. | Aug 2011 | B2 |
20010000822 | Dell et al. | May 2001 | A1 |
20010003198 | Wu | Jun 2001 | A1 |
20010011322 | Stolt et al. | Aug 2001 | A1 |
20010019509 | Aho et al. | Sep 2001 | A1 |
20010021106 | Weber et al. | Sep 2001 | A1 |
20010021137 | Kai et al. | Sep 2001 | A1 |
20010046129 | Broglia et al. | Nov 2001 | A1 |
20010046163 | Yaganawa | Nov 2001 | A1 |
20020002662 | Olarig et al. | Jan 2002 | A1 |
20020004897 | Kao et al. | Jan 2002 | A1 |
20020015340 | Batinovich | Feb 2002 | A1 |
20020019961 | Blodgett | Feb 2002 | A1 |
20020034068 | Weber et al. | Mar 2002 | A1 |
20020038405 | Leddige et al. | Mar 2002 | A1 |
20020041507 | Woo et al. | Apr 2002 | A1 |
20020051398 | Mizugaki | May 2002 | A1 |
20020060945 | Ikeda | May 2002 | A1 |
20020060948 | Chang et al. | May 2002 | A1 |
20020064073 | Chien | May 2002 | A1 |
20020064083 | Ryu et al. | May 2002 | A1 |
20020089831 | Forthun | Jul 2002 | A1 |
20020089970 | Asada et al. | Jul 2002 | A1 |
20020094671 | Distefano et al. | Jul 2002 | A1 |
20020121650 | Minamio et al. | Sep 2002 | A1 |
20020121670 | Minamio et al. | Sep 2002 | A1 |
20020124195 | Nizar | Sep 2002 | A1 |
20020129204 | Leighnor et al. | Sep 2002 | A1 |
20020145900 | Schaefer | Oct 2002 | A1 |
20020165706 | Raynham | Nov 2002 | A1 |
20020167092 | Fee et al. | Nov 2002 | A1 |
20020172024 | Hui et al. | Nov 2002 | A1 |
20020174274 | Wu et al. | Nov 2002 | A1 |
20020184438 | Usui | Dec 2002 | A1 |
20030002262 | Benisek et al. | Jan 2003 | A1 |
20030011993 | Summers et al. | Jan 2003 | A1 |
20030016550 | Yoo et al. | Jan 2003 | A1 |
20030021175 | Tae Kwak | Jan 2003 | A1 |
20030026155 | Yamagata | Feb 2003 | A1 |
20030026159 | Frankowsky et al. | Feb 2003 | A1 |
20030035312 | Halbert et al. | Feb 2003 | A1 |
20030039158 | Horiguchi et al. | Feb 2003 | A1 |
20030041295 | Hou et al. | Feb 2003 | A1 |
20030061458 | Wilcox et al. | Mar 2003 | A1 |
20030061459 | Aboulenein et al. | Mar 2003 | A1 |
20030083855 | Fukuyama | May 2003 | A1 |
20030088743 | Rader | May 2003 | A1 |
20030093614 | Kohn et al. | May 2003 | A1 |
20030101392 | Lee | May 2003 | A1 |
20030105932 | David et al. | Jun 2003 | A1 |
20030117875 | Lee et al. | Jun 2003 | A1 |
20030123389 | Russell et al. | Jul 2003 | A1 |
20030126338 | Dodd et al. | Jul 2003 | A1 |
20030127737 | Takahashi | Jul 2003 | A1 |
20030131160 | Hampel et al. | Jul 2003 | A1 |
20030145163 | Seo et al. | Jul 2003 | A1 |
20030158995 | Lee et al. | Aug 2003 | A1 |
20030164539 | Yau | Sep 2003 | A1 |
20030164543 | Kheng Lee | Sep 2003 | A1 |
20030182513 | Dodd et al. | Sep 2003 | A1 |
20030183934 | Barrett | Oct 2003 | A1 |
20030189868 | Riesenman et al. | Oct 2003 | A1 |
20030189870 | Wilcox | Oct 2003 | A1 |
20030191888 | Klein | Oct 2003 | A1 |
20030191915 | Saxena et al. | Oct 2003 | A1 |
20030200382 | Wells et al. | Oct 2003 | A1 |
20030200474 | Li | Oct 2003 | A1 |
20030205802 | Segaram et al. | Nov 2003 | A1 |
20030206476 | Joo | Nov 2003 | A1 |
20030217303 | Chua-Eoan et al. | Nov 2003 | A1 |
20030223290 | Park et al. | Dec 2003 | A1 |
20030227798 | Pax | Dec 2003 | A1 |
20030229821 | Ma | Dec 2003 | A1 |
20030230801 | Jiang et al. | Dec 2003 | A1 |
20030231540 | Lazar et al. | Dec 2003 | A1 |
20030231542 | Zaharinova-Papazova et al. | Dec 2003 | A1 |
20030234664 | Yamagata | Dec 2003 | A1 |
20040016994 | Huang | Jan 2004 | A1 |
20040027902 | Ooishi et al. | Feb 2004 | A1 |
20040034732 | Valin et al. | Feb 2004 | A1 |
20040034755 | LaBerge et al. | Feb 2004 | A1 |
20040037133 | Park et al. | Feb 2004 | A1 |
20040042503 | Shaeffer et al. | Mar 2004 | A1 |
20040044808 | Salmon et al. | Mar 2004 | A1 |
20040047228 | Chen | Mar 2004 | A1 |
20040057317 | Schaefer | Mar 2004 | A1 |
20040064647 | DeWhitt et al. | Apr 2004 | A1 |
20040064767 | Huckaby et al. | Apr 2004 | A1 |
20040083324 | Rabinovitz et al. | Apr 2004 | A1 |
20040088475 | Streif et al. | May 2004 | A1 |
20040100837 | Lee | May 2004 | A1 |
20040117723 | Foss | Jun 2004 | A1 |
20040123173 | Emberling et al. | Jun 2004 | A1 |
20040125635 | Kuzmenka | Jul 2004 | A1 |
20040133736 | Kyung | Jul 2004 | A1 |
20040139359 | Samson et al. | Jul 2004 | A1 |
20040145963 | Byon | Jul 2004 | A1 |
20040151038 | Ruckerbauer et al. | Aug 2004 | A1 |
20040174765 | Seo et al. | Sep 2004 | A1 |
20040177079 | Gluhovsky et al. | Sep 2004 | A1 |
20040178824 | Pan | Sep 2004 | A1 |
20040184324 | Pax | Sep 2004 | A1 |
20040186956 | Perego et al. | Sep 2004 | A1 |
20040188704 | Halbert et al. | Sep 2004 | A1 |
20040195682 | Kimura | Oct 2004 | A1 |
20040196732 | Lee | Oct 2004 | A1 |
20040205433 | Gower et al. | Oct 2004 | A1 |
20040208173 | Di Gregorio | Oct 2004 | A1 |
20040225858 | Brueggen | Nov 2004 | A1 |
20040228166 | Braun et al. | Nov 2004 | A1 |
20040228196 | Kwak et al. | Nov 2004 | A1 |
20040228203 | Koo | Nov 2004 | A1 |
20040230932 | Dickmann | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20040250989 | Im et al. | Dec 2004 | A1 |
20040256638 | Perego et al. | Dec 2004 | A1 |
20040257847 | Matsui et al. | Dec 2004 | A1 |
20040257857 | Yamamoto et al. | Dec 2004 | A1 |
20040260957 | Jeddeloh et al. | Dec 2004 | A1 |
20040264255 | Royer | Dec 2004 | A1 |
20040268161 | Ross | Dec 2004 | A1 |
20050018495 | Bhakta et al. | Jan 2005 | A1 |
20050021874 | Georgiou et al. | Jan 2005 | A1 |
20050024963 | Jakobs et al. | Feb 2005 | A1 |
20050027928 | Avraham et al. | Feb 2005 | A1 |
20050028038 | Pomaranski et al. | Feb 2005 | A1 |
20050034004 | Bunker et al. | Feb 2005 | A1 |
20050036350 | So et al. | Feb 2005 | A1 |
20050041504 | Perego et al. | Feb 2005 | A1 |
20050044303 | Perego et al. | Feb 2005 | A1 |
20050044305 | Jakobs et al. | Feb 2005 | A1 |
20050047192 | Matsui et al. | Mar 2005 | A1 |
20050071543 | Ellis et al. | Mar 2005 | A1 |
20050078532 | Ruckerbauer et al. | Apr 2005 | A1 |
20050081085 | Ellis et al. | Apr 2005 | A1 |
20050086548 | Haid et al. | Apr 2005 | A1 |
20050099834 | Funaba et al. | May 2005 | A1 |
20050102590 | Norris et al. | May 2005 | A1 |
20050105318 | Funaba et al. | May 2005 | A1 |
20050108460 | David | May 2005 | A1 |
20050127531 | Tay et al. | Jun 2005 | A1 |
20050132158 | Hampel et al. | Jun 2005 | A1 |
20050135176 | Ramakrishnan et al. | Jun 2005 | A1 |
20050138267 | Bains et al. | Jun 2005 | A1 |
20050138304 | Ramakrishnan et al. | Jun 2005 | A1 |
20050139977 | Nishio et al. | Jun 2005 | A1 |
20050141199 | Chiou et al. | Jun 2005 | A1 |
20050149662 | Perego | Jul 2005 | A1 |
20050152212 | Yang et al. | Jul 2005 | A1 |
20050156934 | Perego et al. | Jul 2005 | A1 |
20050166026 | Ware et al. | Jul 2005 | A1 |
20050193163 | Perego | Sep 2005 | A1 |
20050193183 | Barth et al. | Sep 2005 | A1 |
20050194676 | Fukuda et al. | Sep 2005 | A1 |
20050194991 | Dour et al. | Sep 2005 | A1 |
20050195629 | Leddige et al. | Sep 2005 | A1 |
20050201063 | Lee et al. | Sep 2005 | A1 |
20050204111 | Natarajan | Sep 2005 | A1 |
20050207255 | Perego et al. | Sep 2005 | A1 |
20050210196 | Perego et al. | Sep 2005 | A1 |
20050223179 | Perego et al. | Oct 2005 | A1 |
20050224948 | Lee et al. | Oct 2005 | A1 |
20050232049 | Park | Oct 2005 | A1 |
20050235119 | Sechrest et al. | Oct 2005 | A1 |
20050235131 | Ware | Oct 2005 | A1 |
20050237838 | Kwak et al. | Oct 2005 | A1 |
20050243635 | Schaefer | Nov 2005 | A1 |
20050246558 | Ku | Nov 2005 | A1 |
20050249011 | Maeda | Nov 2005 | A1 |
20050259504 | Murtugh et al. | Nov 2005 | A1 |
20050263312 | Bolken et al. | Dec 2005 | A1 |
20050265506 | Foss et al. | Dec 2005 | A1 |
20050269715 | Yoo | Dec 2005 | A1 |
20050278474 | Perersen et al. | Dec 2005 | A1 |
20050281096 | Bhakta et al. | Dec 2005 | A1 |
20050281123 | Bell et al. | Dec 2005 | A1 |
20050283572 | Ishihara | Dec 2005 | A1 |
20050285174 | Saito et al. | Dec 2005 | A1 |
20050286334 | Saito et al. | Dec 2005 | A1 |
20050289292 | Morrow et al. | Dec 2005 | A1 |
20050289317 | Liou et al. | Dec 2005 | A1 |
20060002201 | Janzen | Jan 2006 | A1 |
20060010339 | Klein | Jan 2006 | A1 |
20060026484 | Hollums | Feb 2006 | A1 |
20060038597 | Becker et al. | Feb 2006 | A1 |
20060039204 | Cornelius | Feb 2006 | A1 |
20060039205 | Cornelius | Feb 2006 | A1 |
20060041711 | Miura et al. | Feb 2006 | A1 |
20060041730 | Larson | Feb 2006 | A1 |
20060044909 | Kinsley et al. | Mar 2006 | A1 |
20060044913 | Klein et al. | Mar 2006 | A1 |
20060049502 | Goodwin et al. | Mar 2006 | A1 |
20060050574 | Streif et al. | Mar 2006 | A1 |
20060056244 | Ware | Mar 2006 | A1 |
20060062047 | Bhakta et al. | Mar 2006 | A1 |
20060067141 | Perego et al. | Mar 2006 | A1 |
20060085616 | Zeighami et al. | Apr 2006 | A1 |
20060087900 | Bucksch et al. | Apr 2006 | A1 |
20060090031 | Kirshenbaum et al. | Apr 2006 | A1 |
20060090054 | Choi et al. | Apr 2006 | A1 |
20060106951 | Bains | May 2006 | A1 |
20060112214 | Yeh | May 2006 | A1 |
20060112219 | Chawla et al. | May 2006 | A1 |
20060117152 | Amidi et al. | Jun 2006 | A1 |
20060117160 | Jackson et al. | Jun 2006 | A1 |
20060118933 | Haba | Jun 2006 | A1 |
20060120193 | Casper | Jun 2006 | A1 |
20060123265 | Ruckerbauer et al. | Jun 2006 | A1 |
20060126369 | Raghuram | Jun 2006 | A1 |
20060129712 | Raghuram | Jun 2006 | A1 |
20060129740 | Ruckerbauer et al. | Jun 2006 | A1 |
20060129755 | Raghuram | Jun 2006 | A1 |
20060133173 | Jain et al. | Jun 2006 | A1 |
20060136791 | Nierle | Jun 2006 | A1 |
20060149982 | Vogt | Jul 2006 | A1 |
20060174082 | Bellows et al. | Aug 2006 | A1 |
20060176744 | Stave | Aug 2006 | A1 |
20060179262 | Brittain et al. | Aug 2006 | A1 |
20060179333 | Brittain et al. | Aug 2006 | A1 |
20060179334 | Brittain et al. | Aug 2006 | A1 |
20060180926 | Mullen et al. | Aug 2006 | A1 |
20060181953 | Rotenberg et al. | Aug 2006 | A1 |
20060195631 | Rajamani | Aug 2006 | A1 |
20060198178 | Kinsley et al. | Sep 2006 | A1 |
20060203590 | Mori et al. | Sep 2006 | A1 |
20060206738 | Jeddeloh et al. | Sep 2006 | A1 |
20060233012 | Sekiguchi et al. | Oct 2006 | A1 |
20060236165 | Cepulis et al. | Oct 2006 | A1 |
20060236201 | Gower et al. | Oct 2006 | A1 |
20060248261 | Jacob et al. | Nov 2006 | A1 |
20060248387 | Nicholson et al. | Nov 2006 | A1 |
20060262586 | Solomon et al. | Nov 2006 | A1 |
20060294295 | Fukuzo | Dec 2006 | A1 |
20070005998 | Jain et al. | Jan 2007 | A1 |
20070050530 | Rajan | Mar 2007 | A1 |
20070058471 | Rajan et al. | Mar 2007 | A1 |
20070070669 | Tsern | Mar 2007 | A1 |
20070088995 | Tsern et al. | Apr 2007 | A1 |
20070091696 | Niggemeier et al. | Apr 2007 | A1 |
20070106860 | Foster, Sr. et al. | May 2007 | A1 |
20070136537 | Doblar et al. | Jun 2007 | A1 |
20070162700 | Fortin et al. | Jul 2007 | A1 |
20070188997 | Hockanson et al. | Aug 2007 | A1 |
20070192563 | Rajan et al. | Aug 2007 | A1 |
20070195613 | Rajan et al. | Aug 2007 | A1 |
20070204075 | Rajan et al. | Aug 2007 | A1 |
20070216445 | Raghavan et al. | Sep 2007 | A1 |
20070247194 | Jain | Oct 2007 | A1 |
20070279084 | Oh et al. | Dec 2007 | A1 |
20070288683 | Panabaker et al. | Dec 2007 | A1 |
20070288686 | Arcedera et al. | Dec 2007 | A1 |
20070288687 | Panabaker et al. | Dec 2007 | A1 |
20080002447 | Gulachenski et al. | Jan 2008 | A1 |
20080010435 | Smith et al. | Jan 2008 | A1 |
20080025108 | Rajan et al. | Jan 2008 | A1 |
20080025122 | Schakel et al. | Jan 2008 | A1 |
20080025136 | Rajan et al. | Jan 2008 | A1 |
20080025137 | Rajan et al. | Jan 2008 | A1 |
20080027697 | Rajan et al. | Jan 2008 | A1 |
20080027702 | Rajan et al. | Jan 2008 | A1 |
20080027703 | Rajan et al. | Jan 2008 | A1 |
20080028135 | Rajan et al. | Jan 2008 | A1 |
20080028136 | Schakel et al. | Jan 2008 | A1 |
20080028137 | Schakel et al. | Jan 2008 | A1 |
20080031030 | Rajan et al. | Feb 2008 | A1 |
20080031072 | Rajan et al. | Feb 2008 | A1 |
20080037353 | Rajan et al. | Feb 2008 | A1 |
20080056014 | Rajan et al. | Mar 2008 | A1 |
20080062773 | Rajan et al. | Mar 2008 | A1 |
20080065820 | Gillingham et al. | Mar 2008 | A1 |
20080082763 | Rajan et al. | Apr 2008 | A1 |
20080086588 | Danilak et al. | Apr 2008 | A1 |
20080089034 | Hoss et al. | Apr 2008 | A1 |
20080098277 | Hazelzet | Apr 2008 | A1 |
20080103753 | Rajan et al. | May 2008 | A1 |
20080104314 | Rajan et al. | May 2008 | A1 |
20080109206 | Rajan et al. | May 2008 | A1 |
20080109595 | Rajan et al. | May 2008 | A1 |
20080109597 | Schakel et al. | May 2008 | A1 |
20080109598 | Schakel et al. | May 2008 | A1 |
20080115006 | Smith et al. | May 2008 | A1 |
20080120443 | Rajan et al. | May 2008 | A1 |
20080120458 | Gillingham et al. | May 2008 | A1 |
20080123459 | Rajan et al. | May 2008 | A1 |
20080126624 | Prete et al. | May 2008 | A1 |
20080126687 | Rajan et al. | May 2008 | A1 |
20080126688 | Rajan et al. | May 2008 | A1 |
20080126689 | Rajan et al. | May 2008 | A1 |
20080126690 | Rajan et al. | May 2008 | A1 |
20080126692 | Rajan et al. | May 2008 | A1 |
20080133825 | Rajan et al. | Jun 2008 | A1 |
20080155136 | Hishino | Jun 2008 | A1 |
20080159027 | Kim | Jul 2008 | A1 |
20080170425 | Rajan | Jul 2008 | A1 |
20080195894 | Schreck et al. | Aug 2008 | A1 |
20080215832 | Allen et al. | Sep 2008 | A1 |
20080239857 | Rajan et al. | Oct 2008 | A1 |
20080239858 | Rajan et al. | Oct 2008 | A1 |
20080256282 | Guo et al. | Oct 2008 | A1 |
20090024789 | Rajan et al. | Jan 2009 | A1 |
20090024790 | Rajan et al. | Jan 2009 | A1 |
20090109613 | Legen et al. | Apr 2009 | A1 |
20090216939 | Smith et al. | Aug 2009 | A1 |
20090285031 | Rajan et al. | Nov 2009 | A1 |
20090290442 | Rajan | Nov 2009 | A1 |
20100005218 | Gower et al. | Jan 2010 | A1 |
20100020585 | Rajan | Jan 2010 | A1 |
20100257304 | Rajan et al. | Oct 2010 | A1 |
20100271888 | Rajan | Oct 2010 | A1 |
20100281280 | Rajan et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
102004051345 | May 2006 | DE |
102004053316 | May 2006 | DE |
102005036528 | Feb 2007 | DE |
0644547 | Mar 1995 | EP |
62121978 | Jun 1987 | JP |
01171047 | Jul 1989 | JP |
03-029357 | Feb 1991 | JP |
03029357 | Feb 1991 | JP |
03276487 | Dec 1991 | JP |
03286234 | Dec 1991 | JP |
07-141870 | Jun 1995 | JP |
08077097 | Mar 1996 | JP |
08077097 | Mar 1996 | JP |
11-149775 | Jun 1999 | JP |
2002025255 | Jan 2002 | JP |
3304893 | May 2002 | JP |
2006236388 | Sep 2006 | JP |
1020040062717 | Jul 2004 | KR |
WO 9505676 | Feb 1995 | WO |
WO9900734 | Jan 1999 | WO |
WO0045270 | Aug 2000 | WO |
WO0190900 | Nov 2001 | WO |
WO0197160 | Dec 2001 | WO |
WO2004051645 | Jun 2004 | WO |
WO2007002324 | Jan 2007 | WO |
WO 2007038225 | Apr 2007 | WO |
WO2008063251 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080027697 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11461420 | Jul 2006 | US |
Child | 11553372 | US |