The present material relates to a semiconductor integrated circuit device, and more particularly to a memory circuit incorporating multiple column decoder connections.
In
Bitlines for a byte of memory locations are selected by a group of eight bitline select transistors. For instance, for BYTE 0, eight bitline select transistors BLST07, BLST06, . . . , BLST00 are selected in parallel. Other sets of eight bitline select transistors (BLST17, BLST16, . . . , BLST10; . . . ; BLSTn7, BLSTn6, . . . , BLSTn0) operate similarly. A bitline select transistor is typically an NMOS field effect transistor. At any time, one of the n+1 byte select lines (BS0, BS1, . . . , BSn) is activated enabling connection of one byte of bitlines to a set of eight global bitlines (GBL7, GBL6, . . . , GBL0). A byte select controller 150 ensures that only one byte select line is activated at a time. Only a single byte is selected at one time. The byte select controller 150 ensures a single byte is selected by only enabling one of the byte select lines (BS0, BS1, . . . , BSn) at a time.
The global bitlines provide connection for a single bit position across all bytes of the array of memory locations. The global bitline (GBL7) for bit position seven, for instance, connects to a bitline in the seventh bit position (BL07, BL17, . . . , BLn7) of any byte selected in the memory array. Eight bit select transistors (BST7, BST6, . . . , BST0) provide connection of the global bitlines to a source line 188. A global bitline connection is achieved when one of eight respective bit select lines (BSL7, BSL6, . . . , BSL0) at a time receives a select signal from a bit select controller 185. The source line 188 connects to an input of a sense amplifier 195 and an output of a write data loading logic block 190. The sense amplifier 195 and the write data loading logic block 190 are the circuits used in a read operation and a write operation respectively.
With reference to
In the case of a large memory and correspondingly large global bitlines, any one of the global bitlines may become charged to a high voltage level during a write cycle. During extremely low frequency operation and due to capacitive losses, a high voltage level on a global bitline may be discharged over time to a voltage level low enough to be recognized as a low logic level. No active source maintains the high voltage level on the global bitline until a successive write cycle at the same bit position. The global bit line is coupled to a corresponding column latch during each of the eight write cycles of the associated byte. On a succeeding access, due to discharging of the global bitline, a low logic level will be coupled to a column latch. The global bit line has sufficiently large capacitance, that when charge sharing occurs during coupling to the relatively small capacitance of the column latch, the low logic level on the global bit line effectively writes a low logic state to the column latch.
A bitline selection network is composed of a plurality of bitlines and one or more global bitlines. The bitlines provide access to memory cells for read and write operations. The bitlines are grouped into bytes with eight bitlines per byte. A bitline is connected to a global bitline through a bitline select transistor. Each of the bitline select transistors is activated one at a time by a bitline select controller. At most one bitline is activated at a time. There need not be a bitline activated at all times. In certain modes and under certain conditions there may be no bitline selected. This may occur for example, during a test mode or power on condition. Activation of each bitline select transistor provides a connection to a global bitline which in turn connects to a sense amplifier and a write data loading logic block. The sense amplifier and the write data loading logic block are used in read and write operations respectively. With a complete selection of a bitline either the write data loading logic block may be used to program a memory cell or the sense amplifier used to read a memory cell.
With reference to
A bitline select controller 350 ensures that at most only one bitline select transistor is activated at a time. The bitline select controller 350 connects to each of the bitline select transistors (BLST07, BLST06; . . . ; BLSTn0) through the respective bitline select lines (BLS07, BLS06, . . . , BLS00; BLS17, BLS16, . . . , BLS10; . . . ; BLSn7, BLSn6, . . . , BLSn0). The global bitlines provide connection for a single bit position across all bytes of the memory location array. The global bitline (GBL7) for bit position seven, for instance, connects to a bitline in the seventh bit position (BL07; BL17; . . . ; BLn7) of any byte in the memory array. Eight bit select transistors (BST7, BST6, . . . , BST0) provide connection of the global bitlines to a source line 388. A global bitline connects to the source line 388 when one of eight respective bit select lines (BSL7, BSL6, . . . , BSL0) at a time receives a select signal from a bit select controller 385. The source line 388 connects to an input of a sense amplifier 395 and an output of a write data loading logic block 390. The sense amplifier 395 and the write data loading logic block 390 are the circuits used in a read operation and a write operation respectively.
With reference to
With reference to
A bitline select controller 350 ensures that at most one bitline select transistor is activated at a time. The bitline select controller 350 connects to each of the bitline select transistors (BLST07, BLST06, . . . , BLSTn0) through the respective bitline select lines (BLS07, BLS06, . . . , BLS00; BLS17, BLS16, . . . , BLS10; . . . ; BLSn7, BLSn6, . . . , BLSn0). The global bitline provides a common connection for all bit positions across all bytes of the memory location array. The global bitline GBL connects to a source line 588. The source line 588 connects to an input of a sense amplifier 395 and an output of the write data loading logic block 390. The sense amplifier 395 and the write data loading logic block 390 are the circuits used in a read operation and a write operation respectively.
With reference to
With reference to
Although certain circuits and logic structures are shown as exemplary embodiments, a skilled artisan will recognize that other approaches exist for effecting particular circuit elements, such as switches. For instance, although a bitline selection switch is exemplified as an n-type enhancement-mode insulated-gate field-effect transistor, an artisan of circuit design could readily adapt a junction field-affect transistor, a depletion-mode insulated-gate field-effect transistor, or an p-type enhancement-mode insulated-gate field-effect transistor to effect a similar switching result.
Number | Name | Date | Kind |
---|---|---|---|
4394748 | Campbell, Jr. | Jul 1983 | A |
4779272 | Kohda et al. | Oct 1988 | A |
4888734 | Lee et al. | Dec 1989 | A |
5034926 | Taura et al. | Jul 1991 | A |
5182725 | Andoh et al. | Jan 1993 | A |
5198998 | Kobatake | Mar 1993 | A |
5457650 | Sugiura et al. | Oct 1995 | A |
5708605 | Sato | Jan 1998 | A |
5748528 | Campardo | May 1998 | A |
5818761 | Onakado et al. | Oct 1998 | A |
6141250 | Kashimura | Oct 2000 | A |
6747898 | Abedifard | Jun 2004 | B2 |
6987703 | Tanaka | Jan 2006 | B2 |
7099211 | Jeong et al. | Aug 2006 | B2 |
20030117848 | Hoang | Jun 2003 | A1 |
20040004860 | Abedifard | Jan 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060280020 A1 | Dec 2006 | US |