The present invention relates to a data storage technology, and more particularly to a memory for a voltage regulator circuit, in which a supply voltage generated by the voltage regulator circuit is used as a programming voltage.
Non-volatile memory is capable of storing data without being supplied with external electrical power. Because of having the feature of no external power consumption, the non-volatile memory is particularly applicable to be used in portable apparatuses.
The non-volatile memory can have three operations: read, write and erase; wherein the write operation is also referred to as the program operation. Basically, the three operations of the non-volatile memory require respective different voltages. Because the non-volatile memory highly demands a more accurate programming voltage level while executing the program operation, the associated programming voltage is required to be much accurate accordingly.
The present invention provides a memory, in which a supply voltage used as a programming voltage is generated. The memory avoids the effect of temperature and manufacturing variations of the components, disposed on the transmission path of the programming voltage, on the programming voltage.
The present invention further provides a decoder for the memory, comprising an input terminal and a plurality of output terminals, the decoder being configured to have the output terminals thereof electrically coupled to the source lines.
The present invention further provides a voltage regulator circuit for the memory, configured to generate a feedback signal according to a signal outputted from one output terminal of the decoder and a control signal, and consequently adjust the value of the supply voltage according to the feedback signal.
An embodiment of the present invention provides a memory, which includes a memory array, a decoder and a voltage regulator circuit. The memory array includes a plurality of source lines and a plurality of memory units, and each of the source lines is electrically coupled to a respective group of memory units. The decoder includes an input terminal and a plurality of output terminals. The decoder is configured to have the output terminals thereof electrically coupled to the source lines, respectively. The voltage regulator circuit is configured to provide a supply voltage to the input terminal of the decoder and electrically coupled to the output terminals of the decoder. The voltage regulator circuit is configured to generate a feedback signal according to a signal outputted from one output terminal of the decoder and a control signal, and consequently adjust the value of the supply voltage according to the feedback signal. In addition, the memory further includes a supply voltage switch electrically coupled between an output terminal of the voltage regulator circuit and the input terminal of the decoder and configured to receive the supply voltage and a predetermined voltage and consequently selectively output, according to a control command, either the supply voltage or the predetermined voltage to the input terminal of the decoder.
In the embodiment of present invention, the control signal is generated according to a comparison result, the comparison result indicates the number of different bits existing between output data and input data of the memory array, and the output data are storage data stored in a plurality of memory units of the memory array processed by a program operation according to the input data.
In summary, in the memory according to the present invention, the supply voltage generated by the voltage regulator circuit is used as a programming voltage. Because the voltage regulator circuit is electrically coupled to the output terminals of the decoder and is configured to generate a feedback signal according to a signal outputted from one output terminal of the decoder and the control signal, and consequently adjust the value of the supply voltage according to the feedback signal of the voltage regulator circuit, the memory avoids the effect of temperature and manufacturing variations of the components, disposed on the transmission path of the programming voltage, on the programming voltage.
The embodiments of present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The supply voltage switch 160, electrically coupled between an output terminal of the supply voltage generation circuit 120 and the input terminal 171 of the decoder 170, is configured to receive a supply voltage PV1 and a predetermined voltage PV2 and consequently selectively output, according to a control command CM, either the supply voltage PV1 or the predetermined voltage PV2 to the input terminal 171 of the decoder 170. In this embodiment, the supply voltage PV1 is used as a programming voltage; and the predetermined voltage PV2 is used as, for example, a readout voltage.
The supply voltage generation circuit 120 includes a comparison unit 130, a voltage level control unit 140 and a voltage regulator circuit 150. The comparison unit 130 is configured to compare the input data and the output data of the memory array 180 to each other and thereby generating a comparison result CR accordingly. The aforementioned output data are the storage data stored in a plurality of memory unit 182 of the memory array 180 processed by a program operation according to the aforementioned input data; and the comparison result CR indicates the number of different bits existing between the output data and the input data. In addition, the voltage level control unit 140 is configured to generate a control signal CS according to the comparison result CR. The voltage regulator circuit 150 is configured to provide the supply voltage PV1 for the memory array 180 and adjust the value of the supply voltage PV1 according to the control signal CS.
In addition, for obtaining of the aforementioned input data and the output data, the comparison unit 130 is further electrically coupled to the data input/output interface 110, from which to receive the input data and the output data; wherein the data input/output interface 110 is further configured to latch the aforementioned input data. In this embodiment, the data input/output interface 110 further includes an input data transmission unit 112 and an output data transmission unit 114; specifically, the input data transmission unit 112 is configured to transmit and latch the aforementioned input data, and the output data transmission unit 114 is configured to transmit the aforementioned output data.
One exemplified operation process of the supply voltage generation circuit 120 executing the program operation on four memory units 182 is described in the following description. Please refer to
Afterwards, the supply voltage generation circuit 120 first obtains the latched input data from the data input/output interface 110 and the output data transmitted to the data input/output interface 110, and then compares the input data and the output data to each other and thereby generating the comparison result CR. Specifically, the power supply voltage generating circuit 120 is configured to adjust the value of the supply voltage PV1 according to the comparison result CR if the comparison result CR indicates that there is at least one bit of different data existing between the aforementioned output data and the input data, due to the fact that the programming voltage required by less than four memory units 182 is different to that required by four memory units 182.
For example, if the comparison result CR indicates that there are two bits of different data existing between the aforementioned output data and the input data, the supply voltage generation circuit 120 is configured to lower the supply voltage PV1 to have a voltage value corresponding to the programming voltage required by two memory units 182. Consequently, the two memory units 182 stored with error data can process the program operation again according to the adjusted programming voltage so as to have the correct data stored therein. In other words, the supply voltage PV1 is adjusted based on the number of different bits. The more number of different bits that there are, the higher the supply voltage PV1 is to be; whereas, the less number of different bits that there are, the lower the supply voltage PV1 thereby becomes. And, the different bits will not increase in the program sequence. In addition, it is understood that the comparison operation is performed on the aforementioned input data and the output data repeatedly until when there is no more of any bit of different data therebetween to be found. Moreover, the voltage level control unit 140 is not limited to receive the comparison result CR derived from the comparison unit 130 only; in other words, the voltage level control unit 140 may be configured to receive a comparison result CR′ derived from outside of the memory 100 as depicted in
Based on the aforementioned description, it is understood that the supply voltage generation circuit 120 is capable of dynamically adjusting the value of the supply voltage PV1 according to the load (that is, the number of the memory unit 182 required to be driven); and consequently, the supply voltage generation circuit 120 can provide more accurate supply voltage PV1 used as a programming voltage.
The circuit design of each component in the supply voltage generation circuit 120 is described in the following description. In addition, it is understood that the comparison unit 130 in
The D-type flip-flops 136 each have a data input terminal D, a clock signal input terminal CLK, a reset signal input terminal R and a data output terminal Q. Each D-type flip-flop 136 is configured to have the data input terminal D thereof for receiving an output signal of one respective NAND gate 134. These D-type flip-flops 136 are configured to have the clock signal input terminals CLK thereof for receiving a clock signal CK; wherein the clock signal CK is generated only when the aforementioned input data and the aforementioned output are required to be compared to each other. In addition, these D-type flip-flops 136 are configured to have the reset signal input terminals R thereof for receiving a reset signal RS. Each D-type flip-flop 136 is configured to have the data output terminal Q thereof for providing an output signal (such as the signals Q1˜Q4); wherein these output signals of these D-type flip-flops 136 corporately form the comparison result CR. As illustrated in
In addition, the voltage level control unit 140 in
The voltage regulator circuit 150 in
In addition, each switch 153 has a first terminal 153-1, a second terminal 153-2 and a control terminal 153-3. Specifically, each switch 153 is configured to have the first terminal 153-1 and the second terminal 153-2 thereof electrically coupled to two terminals of one respective resistor 152-1 in the voltage divider circuit 152, respectively, and is selectively being turned on according to a signal received by the control terminal 153-3 thereof. Specifically, the switch control circuit 154 is electrically coupled to the control terminals 153-3 of the switches 153 and configured to selectively turn on the switches 153 according to the control signal CS outputted from the voltage level control unit 140. The voltage comparator 155 has a positive input terminal +, a negative input terminal − and an output terminal. The voltage comparator 155 is configured to have the positive input terminal + thereof for receiving a reference voltage VREF, the negative input terminal − thereof electrically coupled to an electrical connection node of two respective resistors 152-1 in the voltage divider circuit 152, and the output terminal thereof electrically coupled to the gate of the P-type transistor 151; wherein the electrical connection node is configured to provide a feedback signal FB.
Additionally, in order to avoid the effect of the temperature/or manufacturing variations of the components, disposed on the transmission path of the programming voltage, on the programming voltage, the voltage regulator circuit in the power supply voltage regulator circuit associated with the present invention can employ various feedback manners, as the circuit designs illustrated in
In addition, the switches 453 each have a first terminal 453-1, a second terminal 453-2 and a control terminal 453-3. Specifically, each switch 453 is configured to have the first terminal 453-1 and the second terminal 453-2 thereof electrically coupled to two terminals of one respective resistor 452-1 in the voltage divider circuit 452, respectively. The switch control circuit 454 is electrically coupled to the control terminals 453-3 of the switches 453 and is configured to selectively turn on the switches 453 according to the control signal CS outputted from the voltage level control unit 140. The voltage comparator 455 has a positive input terminal +, a negative input terminal − and an output terminal. The voltage comparator 455 is configured to have the positive input terminal + thereof for receiving a reference voltage VREF, the negative input terminal − thereof electrically coupled to an electrical connection node of two specific resistors 452-1 in the voltage divider circuit 452, and the output terminal thereof electrically coupled to the gate of the P-type transistor 451; wherein the electrical connection node is configured to provide the aforementioned feedback signal FB.
In addition, the voltage divider circuit 652 includes a plurality of resistors 652-1 coupled in series. The voltage divider circuit 652 is configured to have one terminal thereof electrically coupled to the output terminal 656-2 of the selection circuit 656 and an another terminal thereof electrically coupled to a reference voltage (e.g., a ground voltage GND). The switches 653 each have a first terminal 653-1, a second terminal 653-2 and a control terminal 653-3. Specifically, each switch 653 is configured to have the first terminal 653-1 and the second terminal 653-2 thereof electrically coupled to two terminals of one respective resistor 652-1 in the voltage divider circuit 652, respectively. The switch control circuit 654 is electrically coupled to the control terminals 653-3 of the switches 653 and is configured to selectively turn on the switches 653 according to the control signal CS.
The voltage comparator 655 has a positive input terminal +, a negative input terminal − and an output terminal. The voltage comparator 655 is configured to have the positive input terminal + thereof for receiving a reference voltage VREF, the negative input terminal − electrically coupled to an electrical connection node of two specific resistors 652-1 in the voltage divider circuit 652, and the output terminal thereof electrically coupled to the gate of the P-type transistor 651; wherein the electrical connection node is configured to provide the aforementioned feedback signal FB.
According to the descriptions of the aforementioned embodiments, an operation method of the aforementioned supply voltage generation circuits for a memory array can be summarized to have a plurality of basic operation steps by those ordinarily skilled in the art as illustrated in
In summary, the supply voltage generation circuit and the operation method of the supply voltage generation circuit according to the present invention first generates a comparison result by comparing input data to output data of a memory array; wherein the output data are storage data stored in a plurality of memory units of the memory array processed by a program operation according to the input data, and the comparison result indicates the number of different bits existing between the output data and the input data. Accordingly, the value of the supply voltage can be adjusted according to the comparison result if the comparison result indicates that there is at least one different bit existing between the input data and the output data. Thus, the supply voltage generation circuit and the operation method of the supply voltage generation circuit according to the present invention each are capable of providing a more accurate supply voltage used as a programming voltage.
Moreover, in the memory according to the present invention, the supply voltage generated by the voltage regulator circuit is used as a programming voltage. Because the voltage regulator circuit is further electrically coupled to the output terminals of the decoder and is configured to generate a feedback signal according to a signal outputted from one output terminal of the decoder and the control signal and consequently adjust the value of the supply voltage according to the feedback signal of the voltage regulator circuit, the memory can avoid the effect of temperature and manufacturing variations of the components, disposed on the transmission path of the programming voltage, on the programming voltage.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
This application is a divisional of, and claims the benefit of U.S. Nonprovisional application Ser. No. 13/652,422 entitled “MEMORY, SUPPLY VOLTAGE GENERATION CIRCUIT, AND OPERATION METHOD OF A SUPPLY VOLTAGE GENERATION CIRCUIT USED FOR A MEMORY ARRAY” filed Oct. 15, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3663828 | Low | May 1972 | A |
3818402 | Golaski | Jun 1974 | A |
4163944 | Chambers | Aug 1979 | A |
4245355 | Pascoe | Jan 1981 | A |
4409608 | Yoder | Oct 1983 | A |
4816784 | Rabjohn | Mar 1989 | A |
5159205 | Gorecki | Oct 1992 | A |
5208725 | Akcasu | May 1993 | A |
5212653 | Tanaka | May 1993 | A |
5406447 | Miyazaki | Apr 1995 | A |
5446309 | Adachi | Aug 1995 | A |
5583359 | Ng | Dec 1996 | A |
5637900 | Ker | Jun 1997 | A |
5760456 | Grzegorek | Jun 1998 | A |
5808330 | Rostoker | Sep 1998 | A |
5923225 | De Los Santos | Jul 1999 | A |
5959820 | Ker | Sep 1999 | A |
6008102 | Alford | Dec 1999 | A |
6081146 | Shiochi | Jun 2000 | A |
6172378 | Hull | Jan 2001 | B1 |
6194739 | Ivanov | Feb 2001 | B1 |
6246271 | Takada | Jun 2001 | B1 |
6285578 | Huang | Sep 2001 | B1 |
6291872 | Wang | Sep 2001 | B1 |
6370372 | Molnar | Apr 2002 | B1 |
6407412 | Iniewski | Jun 2002 | B1 |
6427226 | Mallick | Jul 2002 | B1 |
6448858 | Helms | Sep 2002 | B1 |
6452442 | Laude | Sep 2002 | B1 |
6456221 | Low | Sep 2002 | B2 |
6461914 | Roberts | Oct 2002 | B1 |
6480137 | Kulkarni | Nov 2002 | B2 |
6483188 | Yue | Nov 2002 | B1 |
6486765 | Katayanagi | Nov 2002 | B1 |
6509805 | Ochiai | Jan 2003 | B2 |
6518165 | Yoon | Feb 2003 | B1 |
6521939 | Yeo | Feb 2003 | B1 |
6545547 | Fridi | Apr 2003 | B2 |
6560306 | Duffy | May 2003 | B1 |
6588002 | Lampaert | Jul 2003 | B1 |
6593838 | Yue | Jul 2003 | B2 |
6603360 | Kim | Aug 2003 | B2 |
6608363 | Fazelpour | Aug 2003 | B1 |
6611223 | Low | Aug 2003 | B2 |
6625077 | Chen | Sep 2003 | B2 |
6630897 | Low | Oct 2003 | B2 |
6639298 | Chaudhry | Oct 2003 | B2 |
6653868 | Oodaira | Nov 2003 | B2 |
6668358 | Friend | Dec 2003 | B2 |
6700771 | Bhattacharyya | Mar 2004 | B2 |
6720608 | Lee | Apr 2004 | B2 |
6724677 | Su | Apr 2004 | B1 |
6756656 | Lowther | Jun 2004 | B2 |
6795001 | Roza | Sep 2004 | B2 |
6796017 | Harding | Sep 2004 | B2 |
6798011 | Adan | Sep 2004 | B2 |
6810242 | Molnar | Oct 2004 | B2 |
6822282 | Randazzo | Nov 2004 | B2 |
6822312 | Sowlati | Nov 2004 | B2 |
6833756 | Ranganathan | Dec 2004 | B2 |
6841847 | Sia | Jan 2005 | B2 |
6847572 | Lee | Jan 2005 | B2 |
6853272 | Hughes | Feb 2005 | B1 |
6876056 | Tilmans | Apr 2005 | B2 |
6885534 | Ker | Apr 2005 | B2 |
6901126 | Gu | May 2005 | B1 |
6905889 | Lowther | Jun 2005 | B2 |
6909149 | Russ | Jun 2005 | B2 |
6927664 | Nakatani | Aug 2005 | B2 |
6958522 | Clevenger | Oct 2005 | B2 |
6967876 | Rolandi | Nov 2005 | B2 |
6992934 | Sarin et al. | Jan 2006 | B1 |
7009252 | Lin | Mar 2006 | B2 |
7027276 | Chen | Apr 2006 | B2 |
7205612 | Cai | Apr 2007 | B2 |
7262069 | Chung | Aug 2007 | B2 |
7365627 | Yen | Apr 2008 | B2 |
7368761 | Lai | May 2008 | B1 |
7405642 | Hsu | Jul 2008 | B1 |
7672100 | Van Camp | Mar 2010 | B2 |
7889566 | Kang | Feb 2011 | B2 |
8315089 | Kang et al. | Nov 2012 | B2 |
20020019123 | Ma | Feb 2002 | A1 |
20020036545 | Fridi | Mar 2002 | A1 |
20020188920 | Lampaert | Dec 2002 | A1 |
20030076636 | Ker | Apr 2003 | A1 |
20030127691 | Yue | Jul 2003 | A1 |
20030183403 | Kluge | Oct 2003 | A1 |
20050068112 | Glenn | Mar 2005 | A1 |
20050068113 | Glenn | Mar 2005 | A1 |
20050087787 | Ando | Apr 2005 | A1 |
20060006431 | Jean | Jan 2006 | A1 |
20060108694 | Hung | May 2006 | A1 |
20060267102 | Cheng | Nov 2006 | A1 |
20070102745 | Hsu | May 2007 | A1 |
20070210416 | Hsu | Sep 2007 | A1 |
20070234554 | Hung | Oct 2007 | A1 |
20070246801 | Hung | Oct 2007 | A1 |
20070249294 | Wu | Oct 2007 | A1 |
20070296055 | Yen | Dec 2007 | A1 |
20080094166 | Hsu | Apr 2008 | A1 |
20080185679 | Hsu | Aug 2008 | A1 |
20080189662 | Nandy | Aug 2008 | A1 |
20080200132 | Hsu | Aug 2008 | A1 |
20080299738 | Hsu | Dec 2008 | A1 |
20080303623 | Hsu | Dec 2008 | A1 |
20090029324 | Clark | Jan 2009 | A1 |
20090201625 | Liao | Aug 2009 | A1 |
20100142283 | Ha | Jun 2010 | A1 |
20100279484 | Wang | Nov 2010 | A1 |
20130222051 | Chiu et al. | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 13652422 | Oct 2012 | US |
Child | 14225435 | US |