This application claims the benefit of Korean Patent Application No. 10-2016-0168004, filed on Dec. 9, 2016, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
Inventive concepts relate to a memory module, and more particularly, to a memory module including a plurality of memory chips that are classified into groups, such that memory chips in a same memory group receive the same clock signals.
A computer may utilize various types of memories to store data. Respective memories may be mounted directly on a mainboard in a computer. However, in order to resolve problems regarding size and complexity of a computer, a memory module for mounting a plurality of memories thereon may be used. However, as more memory modules are mounted onto connectors of a mainboard, factors including impedance discontinuity due to the connectors may deteriorate integrity of signals and may interfere with a high-speed operation. Therefore, overcoming these concerns may be necessary or desirable.
Inventive concepts provides a memory module for ensuring the integrity of controls signal and clock signals transmitted to a semiconductor memory device and including signal lines, through which the control signals and the clock signals propagate, efficiently arranged for easy fabrication of the memory module.
In one example embodiment of inventive concepts, there is provided a memory module comprising a first memory group and a second memory group, each comprising a plurality of memory chips; a buffer chip configured to output a control signal, first clock signals, and second clock signals; a control signal line connected to the buffer chip, at least some memory chips of the plurality of chips of the first memory group, and at least some memory chips of the plurality of chips of the second memory group; a first clock signal line through which the plurality of first clock signals are configured to propagate from the buffer chip to the at least some memory chips of the plurality of memory chips of the first memory group; and a second clock signal line through which second clock signals are configured to propagate from the buffer chip to the at least some memory chips of the plurality of memory chips of the second memory group. At least some distances that the first clock signals propagate from the buffer chip to the at least some memory chips of the plurality of memory chips of the first memory group through the first clock signal line are identical to one another, and at least some distances that the second clock signals propagate from the buffer chip to the at least some memory chips of the plurality of memory chips of the second memory group through the second clock signal line are identical to one another.
In one example embodiment of inventive concepts, there is provided a memory module comprising a first memory group and a second memory group, each comprising a plurality of memory chips; a buffer chip configured to output control signals, first clock signals, and second clock signals; a first control signal line connected to the buffer chip, at least some memory chips of the plurality of memory chips of the first memory group, and at least some memory chips of the plurality of memory chips of the second memory group and configured to transmit the control signal from the buffer chip to the first and second memory groups, a first clock signal line configured to transmit the first clock signals to the plurality of memory chips of the first memory group; and a second clock signal line configured to transmit the second clock signals to the plurality of memory chips of the second memory group. Distances from the buffer chip to the at least some memory chips of the plurality of memory chips of the first memory group is different from distances from the buffer chip to the at least some memory chips of the plurality of memory chips of second memory group.
In one example embodiment of inventive concepts, there is provided A semiconductor memory system comprising a memory module, the memory module including a printed circuit board, a first memory group and a second memory group on the printed circuit board, each of the first memory group and the second memory group comprising a plurality of memory chips, and buffer chip configured to output first clock signals to the first memory group and second clock signals to the second memory group. At least some distances that the first clock signals propagate from the buffer chip to at least some memory chips of the first memory group are identical to one another, and at least some distances that the second clock signals propagate from the buffer chip to at least some memory chips of the second memory group are identical to one another.
Example embodiments of inventive concepts will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring to
The socket 2100 may be attached on the substrate 2400. The memory module 1000 may be mounted in the semiconductor memory system 2000 through the socket 2100, and may be electrically connected to other components of the semiconductor memory system 2000 through the socket 2100. For example, the memory module 1000 may be electrically connected to the memory controller 2200 through the socket 2100 and the substrate 2400. Although two sockets 2100 are shown in
According to an example embodiment of inventive concepts, the memory controller 2200 may output a control signal to the memory module 1000 to control the memory module 1000 mounted in the semiconductor memory system 2000 and may receive data from the memory module 1000. The processing unit 2300 may control the memory controller 2200 in order to write and/or read data to and/or from the memory module 1000. For example, the processing unit 2300 may transmit data to be written to the memory module 1000 to the memory controller 2200, and the memory controller 2200 may output an appropriate command signal to the memory module 1000 in order to write the data received from the processing unit 2300 to the memory module 1000.
The memory module 1000 may include a buffer chip 100 and a plurality of memory chips. The plurality of memory chips may be or may include dynamic random access memory (DRAM) chips including DRAM cells. Alternatively, the plurality of memory chips may include other memory cells that are randomly accessible, such as magnetic RAM (MRAM) cells, spin transfer torque magnetic RAM (STT-MRAM) cells, phase change RAM (PRAM) cells, and resistive RAM (RRAM) cells.
As described below with reference to
Referring to
The buffer chip 100, the first through fifth memory groups G_1 through G_5 and the sixth through tenth memory groups G_6 through G_10 may be on a substrate, e.g., a printed circuit board (PCB). For example, as shown in
Each of, or at least some of, the first through fifth memory groups G_1 through G_5 and the sixth through tenth memory groups G_6 through G_10 may include a plurality of memory chips. For example, as shown in
The buffer chip 100 may buffer and forward a control signal and a clock signal received from a memory controller outside the memory module 1000. The buffer chip 100 may output a first control signal C/A_1 and first through fifth clock signals CLK_1 through CLK_5 to the plurality of memory chips included in the first through fifth memory groups G_1 through G_5. A second control signal C/A_2 and sixth through tenth clock signals CLK_6 through CLK_10 may be provided to the plurality of memory chips included in the sixth through tenth memory groups G_6 through G_10. The first control signal C/A_1 and the second control signal C/A_2 may include signals for controlling operations of the plurality of memory chips. For example, the first control signal C/A_1 and the second control signal C/A_2 may include command/address signals.
A first control signal line C/AL_1 may be connected to the buffer chip 100 and the first through fifth memory groups G_1 through G_5. The buffer chip 100 may output the first control signals C/A_1 to the first through fifth memory groups G_1 through G_5 through the first control signal line C/AL_1. Therefore, the first through fifth memory groups G_1 through G_5 may sequentially receive the first control signals C/A_1 transmitted through the first control signal line C/AL_1.
A second control signal line C/AL_2 may be connected to the buffer chip 100 and the sixth through tenth memory groups G_6 through G_10. The buffer chip 100 may output the second control signal C/A_2 to the sixth through tenth memory groups G_6 through G_10 through the second control signal line C/AL_2. Therefore, the sixth through tenth memory groups G_6 through G_10 may sequentially receive the second control signal C/A_2 transmitted through the second control signal line C/AL_2.
Since the first through fifth memory groups G_1 through G_5 and the sixth through tenth memory groups G_6 through G_10 are connected to different control signal lines, the first through fifth memory groups G_1 through G_5 and the sixth through tenth memory groups G_6 through G_10 may receive different command/address signals. For example, the first control signal C/A_1 and the second control signal C/A_2 may be identical to or different from each other. As shown in
Referring to
As described above regarding the first clock signal propagation distance L_1, distances that the second through fifth clock signals CLK_2 through CLK_5 propagate from the buffer chip 100 to the plurality of memory chips included in the second through fifth memory groups G_2 through G_5 through the second through fifth clock signal lines CLKL_2 through CLKL_5 are also identical to one another and will be referred to as second through fifth propagation distances L_2 through L_5, respectively. Therefore, each of, or at least some of, the first through fifth memory groups G_1 through G_5 may receive the same clock signals at a same timing. Timings of signals received by memory groups will be described below in detail with reference to
The sixth through tenth memory groups G_6 through G_10 of
Referring to
The plurality of memory chips included in each the first through fifth memory groups G_1 through G_5 may be synchronized with rising edges of the first through fifth clock signals CLK_1 through CLK_5 received by the plurality of memory chips and latch the first control signals C/A_1. Therefore, timings at which the first through fifth clock signals CLK_1 through CLK_5 arrive at the first through fifth memory groups G_1 through G_5 may be determined based on the first through fifth time delays D_1 through D_5, and the first through fifth clock signal propagation distances L_1 through L_5 may also be determined based on the first through fifth time delay D_1 through D_5. Therefore, the buffer chip 100 may adjust timings for outputting the first through fifth clock signals CLK_1 through CLK_5 based on the first through fifth time delays D_1 through D_5 and the first through fifth clock signals propagation distances L_1 through L_5.
Accordingly, the memory module 1000 may include clock signal lines that are arranged, such that distances that clock signals transmitted from the buffer chip 100 propagate to respective groups of a plurality of memory chips included in the memory module 1000 are identical to one another. For example, memory groups may be classified based on distances from the buffer chip 100 to the plurality of memory chips of the respective memory groups, and the memory module 1000 may include clock signal lines that are arranged, such that distances that clock signals transmitted from the buffer chip 100 to the respective memory groups propagate are identical to one another.
The memory module 1000 according to an example embodiment of inventive concepts includes memory groups that are classified such that distances from the buffer chip 100 to respective memory chips or time delays of control signals transmitted from the buffer chip 100 are identical to one another. The memory module 1000 may include control signal lines connected to the respective memory groups. The buffer chip 100 may control the timings at which the buffer chip 100 output the clock signals and control signals so that the respective memory groups receive the same clock signals and same control signals. Therefore, a control signal line may be more easily routed in a limited space and the number of memory chips connected to one control signal line may be reduced.
When or if the number of memory chips connected to one control signal line increases, the load of the control signal line increases. Therefore, a clock signal may be delayed and the integrity of the clock signal may not be ensured. As described above, the memory module 1000 according to an example embodiment of inventive concepts may help to ensure the integrity of a clock signal in a relative sense. Detailed descriptions thereof will be given below with reference to
Referring to
Each of, or at least some of, the first through fifth memory groups G_1A through G_5A and the sixth through tenth memory groups G_6A through G_10A may include a plurality of memory chips. The plurality of memory chips included in the first through fifth memory groups G_1A through G_5A and the sixth through tenth memory groups G_6A through G_10A may be arranged in two rows and arranged on the top and bottom surfaces of the PCB. Therefore, each memory group may include a total of four memory chips.
A first control signal line C/AL_1A may be connected to the buffer chip 100 and the first through fifth memory groups G_1A through G_5A. The buffer chip 100 may output the first control signals C/A_1 to the first through fifth memory groups G_1A through G_5A through the first control signal line C/AL_1A. Therefore, the first through fifth memory groups G_1A through G_5A may sequentially receive the first control signals C/A_1 transmitted through the first control signal line C/AL_1A.
First through fifth clock signal lines CLKL_1A through CLKL_5A may transmit the first through fifth clock signals CLK_1 through CLK_5 output from the buffer chip 100 to the first through fifth memory groups G_1A through G_5A, respectively. The distances that the first through fifth clock signals CLK_1 through CLK_5 propagate from the buffer chip 100 to the plurality of memory chips included in the first through fifth memory groups G_1A through G_5A may be substantially identical to one another for each memory group. Therefore, memory chips included in a same memory group may receive the same clock signals at a same time.
The distances that the first control signals C/A_1 propagate through the first control signal line C/AL_1A to the plurality of memory chips included in the first through fifth memory groups G_1A through G_5A may be different from one another, and thus time points at which the first control signals C/A_1 arrive at the first through fifth memory groups G_A through G_5A may be different from one another. Since the first control signals C/A_1 output from the buffer chip 100 sequentially arrive at the first through fifth memory groups G_1A through G_5A, the first control signals C/A_1 may arrive at first through fifth memory groups G_1A through G_5A after the first through fifth time delays from the time points at which the first control signals C/A_1 are output from the buffer chip 100, respectively. Based on the first through fifth time delays, respective timings at which the first through fifth clock signals CLK_1 through CLK_5 arrive at first through fifth memory groups G_1A through G_5A may be determined.
The respective distances that the first through fifth clock signals CLK_1 through CLK_5 propagate from the buffer chip 100 to the first through fifth memory groups G_1A through G_5A may be determined based on the first through fifth time delays. The buffer chip 100 may adjust timings for outputting the first through fifth clock signals CLK_1 through CLK_5 based on the first through fifth time delays and respective distances that the first through fifth clock signals CLK_1 through CLK_5 propagate from the buffer chip 100 to the first through fifth memory groups G_1A through G_5A.
The descriptions of the first through fifth memory groups G_1A through G_5A, the first control signal line C/AL_1A, and the first through fifth clock signal lines CLKL_1A through CLKL_5A are equally applicable to the sixth through tenth memory groups G_6A through G_10A, a second control signal line C/AL_2A, and sixth through tenth clock signal lines CLKL_6A through CLKL_10A.
Referring to
The second clock signal line CLKL_2A may transfer the second clock signal CLK_2 output from the buffer chip 100 to the memory chip C_2 and the memory chip C_2′ of the second memory group G_2A. Although
The second clock signal line CLKL_2A may include a first via structure CLKL_2_H_V1 and a second via structure CLKL_2_H_V2. The first via structure CLKL_2_H_V1 may interconnect the buffer chip 100 and the horizontal pattern CLKL_2_H, whereas the second via structure CLKL_2_H_V2 may interconnect the memory chip C_2A and the horizontal pattern CLKL_2_H. Therefore, the memory chip C_2A attached to the first layer 11 and the memory chip C_2′A attached to the fourth layer 14 may receive the second clock signals CLK_2 through the second via structure CLKL_2_H_V2.
A branching point NV may be formed at a point where the horizontal pattern CLKL_2_H and the second via structure CLKL_2_H_V2 meet each other. The length of the second via structure CLKL_2_H_V2 from the branching point NV to the memory chip C_2A and the length of the second via structure CLKL_2_H_V2 from the branching point NV to the memory chip C_2′ may both be a, thus being substantially identical to each other. Therefore, the memory chip C_2A and the memory chip C_2′ may receive the second clock signals CLK_2 transmitted from the buffer chip 100 at substantially same time points.
In the memory module 1000A according to an example embodiment of inventive concepts, a plurality of memory chips included in a same group may be controlled to receive the same clock signals. For example, memory groups may be classified based on distances from the buffer chip 100. In this embodiment, it is easy to implement clock signal lines connected to the memory chips included in each memory group to have substantially a same length, and the appropriate number of memory chips included in one group may be maintained. Therefore, the increase of the load of a clock signal line due to the increase of the number of memory chips connected to the clock signal line may be prevented or reduced, and thus the integrity of a clock signal may be ensured.
Although
Referring to
Each of, or at least some of, the first through third memory groups G_1B through G_3B and the fourth through sixth memory groups G_4B through G_6B may include a plurality of memory chips. The plurality of memory chips included in the first through third memory groups G_1B through G_3B and the fourth through sixth memory groups G_4B through G_6B may be arranged in one row and mounted on the topmost layer and the bottommost layer of the PCB. The number of memory chips included in each memory group may not be the same. For example, the first memory group G_1B, the second memory group G_2B, the fourth memory group G_4B, and the fifth memory group G_5B may include four memory chips each, whereas the third memory group G_3B and the sixth memory group G_6B may include two memory chips each. However, inventive concepts is not limited thereto, and the number of memory chips included in each memory group may be the same.
The first control signal line C/AL_1B may be connected to the buffer chip 100 and first through third memory groups G_1B through G_3B. The buffer chip 100 may output the first control signals C/A_1 to the first through third memory groups G_1B through G_3B through the first control signal line C/AL_1B. Therefore, the first through third memory groups G_1B through G_3B may sequentially receive the first control signals C/A_1 transmitted through the first control signal line C/AL_1B.
Distances that the first control signals C/A_1 propagate from the buffer chip 100 to the plurality of memory chips of the first memory group G_1B through the first control signal line C/AL_B may be identical to one another and will be referred to as a first distance. Furthermore, distances that the first control signals C/A_1 propagate from the buffer chip 100 to the plurality of memory chips of the second memory group G_2B through the first control signal line C/AL_B may be identical to one another and will be referred to as a second distance. Furthermore, distances that the first control signals C/A_1 propagate from the buffer chip 100 to the plurality of memory chips included in each of, or at least some of, the third through sixth memory groups G_3B through G_6B may also be substantially identical to one another.
The first through third clock signal lines CLKL_1B and CLKL_3B may transmit the first through third clock signals CLK_1 and CLK_3 output from the buffer chip 100 to the first through third memory groups G_1B and G_3B, respectively. Propagation distances of the first through third clock signals CLK_1 through CLK_3 from the buffer chip 100 to the plurality of memory chips included in each of, or at least some of, the first through third memory groups G_1B through G_3B may be substantially identical to one another for each of, or at least some of, the first through third memory groups G_1B through G_3B. Therefore, memory chips included in a same memory group may receive the same clock signals at a same time point.
Distances that the first control signals C/A_1 propagate to the plurality of memory chips included in each of the first through third memory groups G_1B through G_3B through the first control signal line C/AL_1B may be different from one another, and thus time points at which the first control signals C/A_1 arrive at the first through third memory groups G_1B through G_3B may be different from one another. The first control signals C/A_1 output from the buffer chip 100 may sequentially arrive at the first through third memory groups G_1B through G_3B after first through third time delays, respectively. Based on the first through third time delays, respective timings at which the first through third clock signals CLK_1 through CLK_3 arrive at the first through third memory groups G_1B through G_3B may be determined.
The distances that the first through third clock signal CLK_1 through CLK_3 propagate from the buffer chip 100 to the first through third memory groups G_1B through G_3B may be determined based on first through third time delays. The buffer chip 100 may adjust timings for outputting the first through third clock signals CLK_1 through CLK_3 based on the first through third time delays and the distances that the first through third clock signals CLK_1 through CLK_3 propagate from the buffer chip 100 to the first through third memory groups G_1B through G_3B.
The descriptions of the first through third memory groups G_1B through G_3B, the first control signal line C/AL_1B, and the first through third clock signal lines CLKL_1B through CLKL_3B are equally applicable to fourth through sixth memory groups G_4B through G_6B, a second control signal line C/AL_2B, and fourth through sixth clock signal lines CLKL_4B through CLKL_6B.
Referring to
The first clock signal line CLKL_1B may transmit the first clock signal CLK_1 output from the buffer chip 100 to the plurality of memory chips C_1B, C_2B, C_1B′, and C_2B′ of the first memory group G_1B. Like the second clock signal line CLKL_2A of
The first clock signal line CLKL_1B may be branched at a branching point NVB and connected to a plurality of memory chips C_1B, C_2B, C_1B′, and C_2B′ of the first memory group G_1B, respectively. The length of the first clock signal line CLKL_1B from the branching point NVB to the memory chip C_1B, the length of the first clock signal line CLKL_1B from the branching point NVB to the memory chip C_2B, the length of the first clock signal line CLKL_B from the branching point NVB to the memory chip C_1B′, and the length of the first clock signal line CLKL_1B from the branching point NVB to the memory chip C_2B′ may all be b, thus being substantially identical to one another. Therefore, the plurality of memory chips C_1B, C_2B, C_1B′, and C_2B′ of the first memory group G_1B may receive the first clock signals CLK_1 transmitted from the buffer chip 100 at substantially same time points.
In the memory module 1000B according to an example embodiment of inventive concepts, a plurality of memory chips included in a same group may be controlled to receive the same clock signals. For example, memory chips corresponding to a same time delays based on time elapsed for control signals to propagate from the buffer chip 100 to the memory chips may constitute one group. Since a clock signal line is for each group, the clock signal line may be more easily routed. When a plurality of memory chips are managed as a group and clock signals are transmitted thereto, the number of memory chips connected to one clock signal line may be limited to the number of memory chips included in the group. Therefore, as described below with reference to
Although
Referring to
In both the comparative example and the present example embodiment, as the frequency of a clock signal increases, the voltages of signals transmitted from the buffer chip 100 to the plurality of memory chips decrease. However, as compared with the present example embodiment, the voltages of signals decrease sharply as the frequency of a clock signal increases. Since a memory module is desirable to transmit a high-frequency signal in order to operate at a high speed, it is clear that the integrity of clock signal transmitted during a high-speed operation is not ensured in the comparative example. On the contrary, in the present example embodiment, since high-frequency clock signals may be transmitted while maintaining a constant voltage, a memory module according to the present example embodiment may be used even during a high-speed operation.
In the comparative example, five memory chips are connected to one clock signal line. Since each memory chip becomes a load to the clock signal line, it may become more and more difficult to transmit a clock signal as the number of memory chips connected to the clock signal line increases. On the contrary, in the present example embodiment, since four memory chips are connected to one clock signal line, loads to the clock signal line are relatively small as compared with the comparative example, and thus the integrity of clock signals may be ensured. This may also be applied to the memory modules 1000 and 1000B of
Therefore, since the memory modules 1000, 1000A, and 1000B according to example embodiments of inventive concepts classify a plurality of memory chips into a group, clock signal lines may be more easily routed and the integrity of clock signals may be ensured.
Referring to
In the computing system 5000, a memory module according to an example embodiment of inventive concepts may be mounted as the RAM 5200. The memory module mounted as the RAM 5200 may be or may include one of the memory modules 1000, 1000A, and 1000B described above with reference to
The CPU 5100 may perform certain calculations or tasks. The CPU 5100 may communicate with the user interface 5300 and the non-volatile memory 5400 through the bus 5500.
The user interface 5300 may include an input unit, e.g., a keyboard, a keypad, a mouse, etc., for receiving an input signal from a user and a output unit, e.g., a printer, a display device, etc., for providing an output signal to a user.
The non-volatile memory 540 may include a non-volatile memory, such as an electrically erasable programmable read-only memory (EEPROM), a flash memory, a phase change random access memory (PRAM), a resistance random access memory (RRAM), a nano floating gate memory (NFGM), a polymer random access memory (PoRAM), a magnetic random access memory (MRAM), and a ferroelectric random access memory (FRAM), or a magnetic disk, for example.
The computing system 5000 may further include ports capable of communicating with a video card, a sound card, a memory card, a USB device, or other electronic devices. The computing system 5000 may be implemented as a personal computer or a portable electronic device, such as a laptop computer, a mobile phone, a personal digital assistant (PDA), and a camera.
While inventive concepts has been particularly shown and described with reference to example embodiments thereof, it will be understood that various changes in form and details may be made therein without departing from the spirit and scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0168004 | Dec 2016 | KR | national |