The present invention relates to a memory module, and more particularly to a memory module with chip hold-down fixture that allows differently sized chips to removably mount thereon.
In the existing chip packaging process, each packaged chip is subjected to test, so that chips with stable operating function or efficiency are screened and selected to ensure good quality of the produced chips and reduce the bad yield as well as the subsequent warranty cost of the electronic products using the chips.
With the quickly developed semiconductor packaging technique, there are many different types of chip packages available for various electronic products. Since differently packaged chips could not be tested using the same type of chip test device, a chip manufacturer has to change the design for the signal contacts 40, the holding means, and other elements in the chip sockets 30 from time to time to adapt to the chips to be tested. These changes in the design of the chip sockets 30 might encounter many technical bottlenecks and would increase the manufacturing and managing costs.
Meanwhile, a conventional memory module usually includes a plurality of memory chips directly soldered to a circuit board. In the event of any damaged or defective memory chip on the memory module, it is difficult to repair or replace the damaged or defective memory chip.
It is therefore a primary object of the present invention to provide a memory module with chip hold-down fixture that may be connected to a motherboard of a computer for use or to other test devices to serve as a testing fixture.
Another object of the present invention is to provide a memory module with chip hold-down fixture that allows differently sized chips to be easily removably mounted on the memory module.
To achieve the above and other objects, the memory module with chip hold-down fixture according to the present invention includes a substrate having circuits, electronic elements, and a plurality of circuit contacts provided thereon; a plurality of sockets provided on one surface of the substrate; and a hold-down fixture assembled to a top of each socket. Each of the sockets defines a receiving space, on a bottom of which a plurality of conductive terminals are provided for electrically connecting to the circuit contacts on the substrate. The socket is symmetrically provided at two opposite end walls with a retaining section each. The hold-down fixture is provided at two opposite endwalls with a receiving section each corresponding to the retaining section on the socket, and at two lateral sides with a press portion each. The hold-down fixture is assembled to the top of one or more sockets through engagement of the receiving sections with the retaining sections, so that the press portions on the hold-down fixture are pressed against chips separately positioned in the receiving spaces of the sockets for the chips to contact with and electrically connect to the conductive terminals in the sockets.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
The substrate 1 may be a printed circuit board, on which necessary circuits, electronic elements, and a plurality of contacts for electrically connected to the sockets 2 are provided. An electrical connection section 11 is provided along a selected edge of the substrate 1 for quickly inserting onto the motherboard or other test devices.
The sockets 2 are insulating seats provided on a surface of the substrate 1 for receiving a chip each. Please refer to FIGS. 1 to 4 at the same time. Each of the sockets 2 defines a receiving space 21, on a bottom of which a plurality of conductive terminals 22 are provided for electrically connecting to a plurality of circuit contacts provided on the substrate 1. The socket 2 is symmetrically provided on outer sides of two opposite end walls with a retaining section 23 each. The receiving-space 21 may be a recess or a through opening. The conductive terminals 22 may be arranged in two rows located at two lateral sides on the bottom of the receiving space 21 (see
Please refer to FIGS. 1 to 4. The hold-down fixture 3 may be formed by way of pressing a sheet metal into a substantially U-shaped member having two downward symmetrical end walls. Alternatively, the hold-down fixture 3 may be differently shaped, so long as it provides the same holding down function. The hold-down fixture 3 is provided on the two symmetrical end walls with a receiving section 31 each. The hold-down fixture 3 has two lateral sides that downward extend by a predetermined distance to form a press portion 32 each, a lower edge of which is formed into a press end 33 for pressing against a chip 50 positioned in the socket 2. The receiving section 31 may be one or more through holes 311 corresponding to the beveled tenons 231.
When the receiving sections 31 on the hold-down fixture 3 engage with the retaining sections 23 on the socket 2, the hold-down fixture 3 is held to a top of the socket 2 to press against the chip 50 positioned in the receiving space 21 of the socket 2, so that the chip 50 is electrically connected to the conductive terminals 22.
To use the memory module with chip hold-down fixture according to the first embodiment of the present invention, first position chips 50 in the receiving spaces 21 of the sockets 2 one by one, so that an external conducting section on each of the chips 50 is in contact with and electrically connected to the contact sections 221 of the conductive terminals 22. Then, position the hold-down fixture 3 on the top of each socket 2 to engage the receiving sections 31 (that is, the through holes 311) on the two end walls of the hold-down fixture 3 with the retaining sections 23 (that is, the beveled tenons 231) on the two end walls of the socket 2, so that the press ends 33 at the two lateral sides of the hold-down fixture 3 are tightly pressed against the chip 50 for the latter to locate in place and firmly contact with the conductive terminals 22 in the socket 2. With the above arrangements, the hold-down fixture 3 may be easily and firmly assembled to the socket 2. Moreover, since the chip 50 in each socket 2 is always downward pressed against the conductive terminals 22 in the socket 2 by the press ends 33 of the hold-down fixture 3, it is not necessary to change the structural design of the socket 2 due to any change in the size of the chip 50. As a result, the same memory module of the present invention may be used to receive or test chips 50 of different sizes to thereby largely reduce costs for making and managing testing fixtures.
Please refer to