This patent application is based on and claims priority pursuant to 35 U.S.C. § 119(a) to Japanese Patent Application No. 2017-015925, filed on Jan. 31, 2017, in the Japan Patent Office, the entire disclosure of which is incorporated by reference herein.
Aspects of the present disclosure relate to a micro electro mechanical systems (MEMS) device.
Along with the development of microscopic technology, MEMS devices and compact machines incorporating the MEMS devices have received attention. As an MEMS device, for example, an optical modulator referred to as a grating light valve (GLV; registered trademark) is known.
The GLV has a structure in which a plurality of elastic ribbon-shaped elements (ribbon elements) having mirror-processed surfaces are one-dimensionally arranged. A voltage is applied to a portion between each ribbon element and a substrate including an electrode facing the ribbon element to exert electrostatic attraction, thus displacing the ribbon element to be attracted toward the substrate. The GLV is applied to, for example, an image display apparatus, such as a small-sized projector, and is known to be applicable to two-dimensional image generation using optical scanning means, such as a rotating mirror, based on the light from the GLV.
The MEMS device (hereinafter also referred to as a MEMS ribbon device) having a plurality of ribbon elements, such as GLV, displaces the plurality of ribbon elements to allow the one-dimensionally arranged ribbon elements to function as a diffraction grating to modulate the diffracted light. In an optical modulator including such a MEMS ribbon device, one ribbon element has a very small size of several micrometers×several tens to several hundreds of micrometers and can be driven at high speed.
Conventionally, the amount of displacement of the MEMS ribbon device in the height direction is controlled based on binary values corresponding to a case where the driving force is not applied to a ribbon element and a case where the driving force is applied to the ribbon element.
Moreover, there is proposed a modulator as an optical modulator operable alone or in combination with another modulator, for example, and having a structure in which ribbon elements are divided into two groups, and having a means for independently changing the heights of the ribbon elements.
Meanwhile, there has been a trend, in recent years, of bringing MEMS ribbon devices to new applications, such as optical switches and spectroscopes. In bringing MEMS ribbon devices to new applications, there have been researched multi-valued control of stopping a ribbon element with any displacement amount.
In an aspect of the present disclosure, there is provided a MEMS device that includes a plurality of ribbon elements, a securing portion, and a plurality of connecting portions. The securing portion supports the plurality of ribbon elements. The plurality of connecting portions are disposed on ends of each of the plurality of ribbon elements and connect each of the plurality of ribbon elements to the securing portion. An angle formed by a longitudinal extending line of each of the plurality of ribbon elements and each of the plurality of connecting portions is greater than 0° in a planar direction of each of the plurality of ribbon elements.
The aforementioned and other aspects, features, and advantages of the present disclosure would be better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The accompanying drawings are intended to depict embodiments of the present disclosure and should not be interpreted to limit the scope thereof. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
In describing embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve similar results.
Although the embodiments are described with technical limitations with reference to the attached drawings, such description is not intended to limit the scope of the disclosure and all of the components or elements described in the embodiments of this disclosure are not necessarily indispensable.
Referring now to the drawings, embodiments of the present disclosure are described below. In the drawings for explaining the following embodiments, the same reference codes are allocated to elements (members or components) having the same function or shape and redundant descriptions thereof are omitted below.
A detailed description is provided of configurations according to embodiments of
A MEMS device (MEMS ribbon device 10) according to a first embodiment of the present disclosure includes a plurality of ribbon elements (ribbon elements 11), a securing portion (securing portion 13) to support the plurality of ribbon elements, and connecting portions (connecting portions 12) positioned on both ends of each of the ribbon elements to connect each ribbon element and the securing portion. An angle formed by a longitudinal extending line of a ribbon element and each connecting portion is greater than 0° in a planar direction of the ribbon element. Note that the above-described components enclosed by the parentheses indicate reference numerals and application examples in the present embodiment.
First, an example of a basic configuration of the MEMS ribbon device and the spectral performance of the MEMS ribbon device are described.
The ribbon element 11 is a fine structural body, such as a silicon nitride film, and has functions of both a reflection plate and an electrode. The ribbon element 11 has opposed ends supported by the securing portion 13 and is stretched over an electrode 21 (common electrode) provided on a substrate 20. Application of a voltage between the ribbon element 11 and the substrate 20 including the electrode 21 allows the ribbon element 11 to bend toward the substrate 20 due to static electricity. In a state where no voltage is applied, the ribbon element 11 returns to the original state by high tension inherent to the silicon nitride film.
Although
The spectroscopic function in the case where the plurality of ribbon elements 11 (defined as ribbon elements 11a and 11b) are provided will be described with reference to
In this case, since an optical path difference (BC−AD) exists in the light reflected by the adjacent ribbon elements 11a and 11b, the diffraction angle having maximum reflection intensity changes for each of wavelengths. The diffraction grating equation at this time can be expressed by the following Formula (1), and a wavelength λ satisfying Formula (1) is detected in the angle β direction. In Formula (1), m is an integer.
d(sin α−sin β)=mλ (1)
Displacing the ribbon elements 11a and 11b in the vertical direction continuously changes the optical path difference. As illustrated in
The diffraction grating equation at this time can be expressed by the following Formula (2). In Formula (2), in is an integer, and z is the displacement amount of the diffraction grating.
d(sin α−sin β)+z(cos α+cos β)=mλ (2)
That is, a spectroscopic sensor can be obtained that is capable of detecting at the detector 30 light having a wavelength λ1=d (sin α−sin β)/m from the above-described Formula (1) in the example of
As illustrated in
In the MEMS ribbon device 10 illustrated in
As illustrated in
On the basis of this result, the MEMS ribbon device 10 according to the present embodiment is intended to set the angle θ formed between the longitudinal extending line of the ribbon element 11 and the connecting portion 12 to a value at least greater than 0° (θ>0°) to reduce the deflection of the ribbon element 11. It is more preferable that the angle θ formed between the longitudinal extending line of the ribbon element 11 and the connecting portion 12 is close to 90°, and the angle θ is most preferably 90°. Note that, although each of
The MEMS ribbon device 10 according to the first embodiment includes the plurality of ribbon elements 11, the securing portion 13 to support both ends of each of the ribbon elements 11, and the connecting portions 12 connecting each of the ribbon elements 11 and the securing portion 13. In the present embodiment, an exemplary case of the three ribbon elements 11 is illustrate. Note that the number of the ribbon elements 11 is not limited to three and may be any suitable number of two or greater.
The MEMS ribbon device 10 sets the angle formed between the longitudinal extending line of each ribbon element 11 and the connecting portion 12 to 90° to reduce the bending moment of the ribbon element 11 in the longitudinal direction L acting on the ribbon element 11 so as to suppress deflection deformation of the ribbon element 11. While
In a case where the length of the connecting portion 12 is not uniform in the individual ribbon elements 11, this would make the relationship between the displacement amount and the driving force different between the individual ribbon elements 11. Therefore, in order to obtain a desired displacement amount and behavior at each of the ribbon elements 11, there would be a need to provide an independent input signal to each of the ribbon elements 11, leading to complicated control.
To avoid this, it is preferable to equalize the length of the connecting portion 12 of each ribbon element 11. In the present embodiment, in order to equalize the length of the connecting portion 12 of each ribbon element 11, the positions at which the connecting portions 12 are supported by the securing portion 13 are configured to be different from each other. That is, the securing portion 13 has a shape with steps to adjust the amount of protrusion toward the ribbon elements 11.
The shape of the securing portion 13 having steps, for example, as illustrated in
In the MEMS ribbon device 10 illustrated in
Herein, ε0 is a dielectric constant of vacuum, S is the electrode area, g is an initial gap between the connecting portion 12 and the electrode 21 provided on the substrate 20, z is a displacement amount at the tip of the connecting portion 12 on the ribbon element 11 side, and V is a voltage.
The spring restoring force of the connecting portion 12 is expressed by the following Formula (4) (Expression 2).
Herein, F is the Young's modulus of the connecting portion 12, w is a width of the connecting portion 12, t is a thickness of the connecting portion 12, and l is a length of the connecting portion 12.
From the proportion of Formulas (3) and (4), the relationship between the displacement amount z on the ribbon element 11 side of the connecting portion 12 and the voltage V is determined. For example, when the dimensions of the connecting portion 12 are w=20 μm, t=1 μm, 1=1000 μm, and the material of the connecting portion 12 is silicon, a displacement of about 2.5 μm can be obtained with a voltage of 20V.
In the conventional MEMS ribbon device controlled with binary values, application of a driving force brings the ribbon element into contact with the surface facing the ribbon element to maintain the flatness of the ribbon in typical cases. However, in a case of controlling the displacement amount of the MEMS ribbon device in the height direction with multiple values, it is difficult to bring the ribbon element into contact with the facing surface, leading to the occurrence of deflection in the ribbon element.
The occurrence of deflection in the ribbon element makes the height different between both ends of the ribbon element and in the vicinity of the center, hindering uniformity in the characteristic of the emitted light, leading to increased noise light included in the emitted light (emission light noise).
Hence, the MEMS ribbon device 10 according to the first embodiment described above can reduce the deflection of the ribbon element 11 and suppress the noise light mixed with the emitted light. Moreover, the lengths of the connecting portions 12 can be equalized in all the ribbon elements 11, thus avoiding complicating control of the ribbon element 11.
While the first embodiment is an exemplary case where the connecting portion 12 and the ribbon element 11 are substantially on a same level, application is also possible to the MEMS ribbon device having a configuration in which the portion of the connecting portion 12 directly below which the electrode 21 is provided is raised relative to the securing portion 13 (shape in which the connecting portion 12 at both ends is raised and a zone including the ribbon element 11 is projecting).
Hereinafter, the MEMS ribbon device according to another embodiment of the present disclosure is described. Descriptions common to the above-described embodiment are omitted as appropriate.
In a case where the MEMS ribbon device is GLV, for example, the thickness of the ribbon element 11 is extremely thin as several hundreds of nanometers or less and the length of the ribbon element 11 is 500 μm or less. Accordingly, when the device is applied to a case where incident light having a spot diameter of about several millimeters is controlled by a single device, the quantity of emitted light might decrease to increase the noise light in some cases.
Hence, the MEMS ribbon device 10 according to the second embodiment includes the plurality of ribbon elements 11, the securing portion 13 that supports both ends of each of the ribbon elements 11, and the connecting portions 12 that connects each of the ribbon elements 11 and the securing portion 13, and a piezoelectric material 15 is film-formed on at least a portion of the surface of the connecting portion 12. While the examples of
In the MEMS ribbon device 10 according to the second embodiment, when a voltage is applied to the piezoelectric material 15, the piezoelectric material 15 is deformed (as indicated by a shift from reference numerals 15 to 15′ in
In the MEMS ribbon device 10 illustrated in
Herein, the subscripts p and c indicate the piezoelectric material 15 and the connecting portion 12, respectively. Additionally, I represents a moment of inertia of area.
For example, in a case where the piezoelectric constant d is 165 m/V, the dimensions of the piezoelectric material 15 are w=10 μm, t=2 μm, 1=1000 μm, the dimensions of the connecting portion 12 are w=20 μm, t=20 μm, 1=1000 μm, and the material of the connecting portion 12 is silicon, it is possible to obtain a displacement of about 2.5 μm with a voltage of 20V. In a case where the piezoelectric material 15 is film-formed on the surface of the connecting portion 12 as described above, sufficient displacement can be obtained even with the increased thickness of each of the connecting portion 12 and the ribbon element 11. Such a configuration can increase the length of the ribbon element 11. For example, sufficient displacement can be obtained even with the thickness of several tens of micrometers in each of the connecting portion 12 and the ribbon element 11, and thus, the ribbon element 11 can be extended to the length of several millimeters.
With the MEMS ribbon device 10 according to the second embodiment described above, the piezoelectric material 15 is film-formed on the surface of the connecting portion 12 to displace the ribbon element 11 utilizing expansion and contraction of the piezoelectric material 15, making it possible to increase the thickness of the ribbon element 11, and thus to achieve the extended length of the ribbon element 11.
Moreover, unlike the example of the first embodiment, using the piezoelectric material 15 would eliminate the necessity of providing the electrode 21, thus allowing the opening 22 to be formed in the lower space of the ribbon element 11. This makes it possible to be applied not merely to the case using reflected light but also to the case of using transmitted light achieving the sufficient amount of emitted light.
In a case where the MEMS ribbon device 10 is driven by the electrostatic attractive force, the connecting portion 12 and the ribbon element 11 form a single-layer structure of the same material as described in the first embodiment. However, In the system in which the MEMS ribbon device 10 is driven using the piezoelectric material 15 as described in the second embodiment, the connecting portion 12 typically has a five-layer structure including an insulating film, an upper electrode, a piezoelectric material, a lower electrode, and a silicon layer in this order, and the ribbon element 11 typically has a three-layer structure including an insulating film, a reflecting film, and a silicon layer in this order. Similarly, in a method that drives the MEMS ribbon device 10 using a temperature change described below and a method that drives MEMS ribbon device 10 by generating an electromagnetic force, the connecting portion 12 and the ribbon element 11 typically have mutually different structures.
The MEMS ribbon device 10 according to the third embodiment includes the plurality of ribbon elements 11, the securing portion 13 that supports both ends of each of the ribbon elements 11, and the connecting portions 12 that connect each of the ribbon elements 11 and the securing portion 13. Another material having a linear expansion coefficient different from a linear expansion coefficient of the connecting portion 12 is film-formed on at least a portion of the surface of the connecting portion 12. The material having a linear expansion coefficient different from a linear expansion coefficient of the connecting portion 12, which is to be film-formed on the surface of the connecting portion 12, is hereinafter referred to as a film formation material 16. While the example of
In the MEMS ribbon device 10, the connecting portion 12 is deformed by using the expansion/contraction difference between the connecting portion 12 and the film formation material 16 due to the temperature change so as to generate displacement of the ribbon element 11 in the vertical direction. As the temperature change, for example, a temperature change due to energization heating can be used.
In the MEMS ribbon device 10 illustrated in
Herein, the subscripts m and c indicate the film formation material 16 and the connecting portion 12, respectively. Additionally, α is a linear expansion coefficient.
For example, in a case where the material of the connecting portion 12 is silicon and the film formation material 16 is aluminum, and when the dimensions of the film formation material 16 are w=10 μm, t=0.5 μm, 1=1000 μm and the dimensions of the connecting portion 12 are w=20 μm, t=20 μm, 1=1000 μm, a displacement of about 2.5 μm occurs with a change of 100° C. in temperature.
With the MEMS ribbon device 10 according to the third embodiment described above, a material having a linear expansion coefficient different from a linear expansion coefficient of the connecting portion 12 is film-formed on the surface of the connecting portion 12, and the expansion/contraction difference between the connecting portion 12 and the film formation material 16 due to the temperature change is utilized to enable displacement of the ribbon element 11.
Moreover, similarly to the second embodiment, using the film formation material 16 would also eliminate the necessity of providing the electrode 21, thus allowing an opening 22 to be formed in the lower space of the ribbon element 11. This makes it possible to be applied not merely to the case using reflected light but also to the case of using transmitted light, achieving the sufficient amount of emitted light.
In the first to third embodiments, the ribbon element 11 and the connecting portion 12 have a U-shaped configuration and are supported by the securing portion 13. Alternatively, it is also allowable to configure such that the ribbon elements 11 and the connecting portion 12 are connected to the securing portion 13 in a point-symmetrical positional relationship with respect to a center point of the ribbon element 11.
The MEMS ribbon device 10 according to the fourth embodiment includes the plurality of ribbon elements 11, the securing portions 13 that supports both ends of each of the ribbon elements 11, and the connecting portions 12 that connect each of the ribbon elements 11 and the securing portion 13. The connecting portions 12 at both ends of the ribbon element 11 are connected to the securing portions 13 on the opposite sides across the ribbon element 11.
The MEMS ribbon device 10 according to the fourth embodiment described above can equalize the lengths of the ribbon elements 11 as illustrated in
The driving system of the ribbon element illustrated in
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the embodiments described above, and a variety of modifications can naturally be made within the scope of the present disclosure.
For example, while the above-described embodiments include, as a driving system of the ribbon element 11, the system based on electrostatic attraction (first embodiment), the system using the piezoelectric material 15 (second embodiment), and the system using a material having different linear expansion coefficient (third embodiment), the driving system is not limited to these, and other driving systems can also be used. For example, it is possible to use an electromagnetic driving system that drives the ribbon element 11, in which a permanent magnet is provided in the vicinity of the connecting portion 12, a coil is provided in a region including the surface of the connecting portion 12 excluding the surface of the ribbon element 11, and an electromagnetic force is generated by energization of the coil.
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that, within the scope of the above teachings, the present disclosure may be practiced otherwise than as specifically described herein. With some embodiments having thus been described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the scope of the present disclosure and appended claims, and all such modifications are intended to be included within the scope of the present disclosure and appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-015925 | Jan 2017 | JP | national |