Micro-electromechanical systems (MEMS) include small mechanical devices performing electrical and mechanical functions that are fabricated using photo-lithography techniques similar to techniques used to fabricate integrated circuits. Some MEMS devices are sensors that can detect motion such as an accelerometer or detect angular rate such as a gyroscope. A capacitive MEMS gyroscope undergoes a change in capacitance in response to a change in angular rate.
This document discusses, among other things, apparatus and methods quadrature cancelation of sense information from a micro-electromechanical system (MEMS) device, such as a MEMS gyroscope. In certain examples, a quadrature cancellation apparatus can include a drive charge amplifier configured to couple to a proof mass of a MEMS device and to provide oscillation motion information, a first sense charge amplifier configured to couple to the proof mass and to provide first sense information of a first movement of the MEMS device, a first programmable amplifier configured to receive the oscillation motion information and provide amplified oscillation motion information, a first summer configured to cancel quadrature error of the first sense information using the first sense information and the amplified oscillation motion information to provide quadrature-corrected first sense information, a phase shifter configured to receive the oscillation motion information and to provide carrier information, and a first multiplier configured to provide demodulated first sense information using the quadrature-corrected first sense information and the carrier information.
This overview is intended to provide a general overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
The present inventors have recognized, among other things, apparatus and methods to cancel quadrature error in a detected microelectromechanical system (MEMS) gyroscope axis rotational signal (e.g., an x-axis rotational signal, etc.), to create a demodulation carrier from a detected MEMS oscillation signal, and to demodulate the MEMS gyroscope axis rotational signal. The apparatus and methods disclosed herein can increase MEMS gyroscope performance, decrease power consumption, and, in certain examples, decrease silicon area with respect to existing MEMS devices.
In an example, delay-matched charge amplifiers can be used for both a MEMS oscillation signal and a corresponding axis rotational signal, and the amplified MEMS oscillation signal can then be used to cancel quadrature error in the corresponding axis rotational signal. Because charge amplifiers generally track each other over process, voltage, or temperature (PVT) variations, the delay-matched charge amplifiers, in this example, can increase MEMS gyroscope performance over the range of operating conditions.
In an example, a programmable passive amplifier and summer for quadrature error cancellation can be integrated to provide passive quadrature error cancellation and carrier demodulation. In certain examples, the gain (α1) of the amplifier and the summer can be PVT compensated for higher performance. Moreover, passive components, in the amplifier, the summer, or otherwise, can minimize signal distortion and gain/phase variation with respect to PVT changes. In certain examples, the amplifier and the summer can be merged into a simple switch matrix, reducing the overall silicon area of the device.
In an example, the passive multiplier can perform demodulation before the post-amplifier portion of the device, including, for example, the baseband buffer. Cancellation of quadrature error before entering the post-amplifier portion of the device can reduce the dynamic range requirements and, in turn, the power consumption of the baseband amplifier or one or more other post-amplifier components. Further, cancellation of quadrature error before entering the post-amplifier portion of the device can reduce phase shifter accuracy requirement of the device.
Further, in certain examples, the apparatus and methods disclosed herein can include a selectable 0/90-degree phase shifter that can greatly simplify production test of the device. In an example, the phase shifter can be set to 0-degrees during test and the gain (α1) of the amplifier can be adjusted until the root mean squared (RMS) value of the baseband amplifier is minimized, ensuring accurate quadrature cancellation when the phase shifter is set back at 90-degrees.
The apparatus and methods disclosed herein can, among other things, increase MEMS gyroscope performance in zero-rate drive, increase MEMS gyroscope sensitivity linearity (e.g., using passive quadrature error cancellation and rate signal demodulation), reduce linearity and power consumption requirements of the baseband amplifier (e.g., by cancelling quadrature error before demodulation/baseband amplification), and reduce the phase-shift accuracy requirement on the 0/90-degree phase shifter, simplifying production of the device.
In an example, the MEMS device 100 can include a first charge amplifier (AMP1) configured to amplify a received MEMS oscillation signal (the quadrature error signal). A second charge amplifier (AMPX) can be configured to amplify a received MEMS x-axis rotational signal, which can also include a potential quadrature error signal.
In an example, a programmable gain path (α1) and a summer can be used to cancel quadrature error in the x-axis rotational signal. In an example, similar components and methods can be used to cancel quadrature errors in one or more other axis.
In an example, a 0/90-degree phase shifter and a comparator can be used to create a demodulation signal for the x-axis rotational signal, and a multiplier can be used to demodulate the x-axis rotational signal.
In an example, resistors (Rq, Rin, Rfb) can define a gain path (α1) and the gain through a baseband amplifier (AMP). In certain examples, summation/quadrature cancellation can be realized at input nodes to the baseband amplifier (virtual ground), and multiplication can be realized using simple switches.
In other examples, one or more other components can be used to implement the gain path (α1), summation/quadrature cancellation, or multiplication, such as capacitor charge summation and switching, etc.
In Example 1, a quadrature cancellation apparatus can include a drive charge amplifier configured to couple to a proof mass of a MEMS device and to provide oscillation motion information, a first sense charge amplifier configured to couple to the proof mass and to provide first sense information of a first movement of the MEMS device, a first programmable amplifier configured to receive the oscillation motion information and provide amplified oscillation motion information, a first summer configured to cancel quadrature error of the first sense information using the first sense information and the amplified oscillation motion information to provide quadrature-corrected first sense information, a phase shifter configured to receive the oscillation motion information and to provide carrier information, and a first multiplier configured to provide demodulated first sense information using the quadrature-corrected first sense information and the carrier information.
In Example 2, the apparatus of Example 1 optionally includes a first baseband buffer configured to receive the demodulated first sense information and to provide buffered first sense information.
In Example 3, a first switch matrix of any one or more of Examples 1-2 optionally includes the first summer and the first multiplier.
In Example 4, the drive charge amplifier and the first sense charge amplifier of any one or more of Examples 1-3 optionally include delay-matched amplifiers.
In Example 5, the phase shifter of any one or more of Examples 1-4 optionally is programmable to provide about 90 degrees of phase shift in a first state and about zero degrees of phase shift in a second, calibration state.
In Example 6, the apparatus of any one or more of Examples 1-5 optionally includes a second sense charge amplifier configured to couple to the proof mass and to provide second sense information of a second movement of the MEMS device, a second programmable amplifier configured to receive the oscillation motion information and provide amplified oscillation motion information, a second summer configured to cancel quadrature error of the second sense information using the second sense information and the amplified oscillation motion information to provide quadrature-corrected second sense information, and a second multiplier configured to provide demodulated second sense information using the quadrature-corrected second sense information and the carrier information.
In Example 7, the apparatus of any one or more of Examples 1-6 optionally includes a second baseband buffer configured to receive the demodulated second sense information and to provide buffered second sense information.
In Example 8, a second switch matrix of any one or more of Examples 1-7 optionally includes the second summer and the second multiplier.
In Example 9, the drive charge amplifier and the second sense charge amplifier of any one or more of Examples 1-8 optionally include delay-matched amplifiers.
In Example 10, a method for canceling quadrature error of a MEMS device signal can include providing oscillation motion information using a drive charge amplifier coupled to a proof mass of a MEMS device, providing first sense information using a first sense charge amplifier coupled to the proof mass, the first sense information corresponding to a first movement of the MEMS device, providing amplified oscillation motion information using a first programmable amplifier and the oscillation motion information, canceling first quadrature error of the first sense information using a first summer and the amplified oscillation motion information to provide quadrature-corrected first sense information, shifting a phase of the oscillation motion information using a phase shifter to provide carrier information, and demodulating the quadrature-corrected first sense information using a first multiplier, the quadrature-corrected first sense information, and the carrier information to provide demodulated first sense information.
In Example 11, the method of any one or more of Examples 1-10 optionally includes buffering the demodulated first sense information using a first baseband buffer to provide buffered first sense information.
In Example 12, the canceling first quadrature error of the first sense information using a first summer and the demodulating the quadrature-corrected first sense information using a first multiplier of any one or more of Examples 1-11 optionally includes using a first switch matrix including the first summer and the first multiplier.
In Example 13, the providing oscillation motion information using a drive charge amplifier coupled to a proof mass of a MEMS device and the providing first sense information using a first sense charge amplifier coupled to the proof mass of any one or more of Examples 1-12 optionally includes using a drive charge amplifier and a first sense charge amplifier that are delay-matched to each other.
In Example 14, the shifting a phase of the oscillation motion information using a phase shifter to provide carrier information of any one or more of Examples 1-13 optionally includes shifting a phase of the oscillation motion information 90 degrees using a first state of the phase shifter to provide the carrier information.
In Example 15, the method of any one or more of Examples 1-14 optionally includes shifting a phase of the oscillation motion information zero degrees using a second state of the phase shifter to calibrate a gain of the first programmable amplifier.
In Example 16, a micro-electromechanical system (MEMS) system can include a MEMS gyroscope having a proof mass, and a quadrature cancellation circuit configured to provide movement information of the MEMS gyroscope. The quadrature cancellation can include a drive charge amplifier configured to couple to the proof mass and to provide oscillation motion information, a first sense charge amplifier configured to couple to the proof mass and to provide first sense information of a first movement of the MEMS device, a first programmable amplifier configured to receive the oscillation motion information and provide amplified oscillation motion information, a first summer configured to cancel quadrature error of the first sense information using the first sense information and the amplified oscillation motion information to provide quadrature-corrected first sense information, a phase shifter configured to receive the oscillation motion information and to provide carrier information, and a first multiplier configured to provide demodulated first sense information using the quadrature-corrected first sense information and the carrier information.
In Example 17, the system of any one or more of Examples 1-16 optionally includes a first baseband buffer configured to receive the demodulated first sense information and to provide buffered first sense information, wherein the movement information includes the buffered first sense information.
In Example 18, the quadrature cancellation circuit of any one or more of Examples 1-17 optionally includes a second sense charge amplifier configured to couple to the proof mass and to provide second sense information of a second movement of the MEMS device, a second programmable amplifier configured to receive the oscillation motion information and provide amplified oscillation motion information, a second summer configured to cancel quadrature error of the second sense information using the second sense information and the amplified oscillation motion information to provide quadrature-corrected second sense information, a second multiplier configured to provide demodulated second sense information using the quadrature-corrected second sense information and the carrier information, and a second baseband buffer configured to receive the demodulated second sense information and to provide buffered second sense information, wherein the movement information includes the buffered second sense information, and wherein the first movement and the second movement are not parallel to each other.
In Example 19, a first switch matrix of any one or more of Examples 1-18 optionally includes the first summer and the first multiplier.
In Example 20, the drive charge amplifier and the first sense charge amplifier of any one or more of Examples 1-19 optionally include delay-matched amplifiers.
Example 21 can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1 through 21 to include, subject matter that can include means for performing any one or more of the functions of Examples 1 through 21, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1 through 21.
The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.
All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, the code can be tangibly stored on one or more volatile or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application claims the benefit of priority under 35 U.S.C. 119(e) to Tao et al., U.S. Provisional Patent Application Ser. No. 61/623,423, entitled, “METHOD OF QUADRATURE CANCELLATION AND SIGNAL DEMODULATION IN MEMS GYROSCOPE,”filed Apr. 12, 2012, hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3231729 | Stern | Jan 1966 | A |
4511848 | Watson | Apr 1985 | A |
4896156 | Garverick | Jan 1990 | A |
5481914 | Ward | Jan 1996 | A |
5487305 | Ristic et al. | Jan 1996 | A |
5491604 | Nguyen et al. | Feb 1996 | A |
5600064 | Ward | Feb 1997 | A |
5656778 | Roszhart | Aug 1997 | A |
5659195 | Kaiser et al. | Aug 1997 | A |
5703292 | Ward | Dec 1997 | A |
5723790 | Andersson | Mar 1998 | A |
5751154 | Tsugai | May 1998 | A |
5760465 | Alcoe et al. | Jun 1998 | A |
5765046 | Watanabe et al. | Jun 1998 | A |
5894091 | Kubota | Apr 1999 | A |
5912499 | Diem et al. | Jun 1999 | A |
5992233 | Clark | Nov 1999 | A |
6131457 | Sato | Oct 2000 | A |
6214644 | Glenn | Apr 2001 | B1 |
6230566 | Lee et al. | May 2001 | B1 |
6236096 | Chang et al. | May 2001 | B1 |
6250157 | Touge | Jun 2001 | B1 |
6253612 | Lemkin et al. | Jul 2001 | B1 |
6301965 | Chu et al. | Oct 2001 | B1 |
6351996 | Nasiri et al. | Mar 2002 | B1 |
6366468 | Pan | Apr 2002 | B1 |
6370937 | Hsu | Apr 2002 | B2 |
6390905 | Korovin et al. | May 2002 | B1 |
6501282 | Dummermuth et al. | Dec 2002 | B1 |
6504385 | Hartwell | Jan 2003 | B2 |
6516651 | Geen | Feb 2003 | B1 |
6553835 | Hobbs et al. | Apr 2003 | B1 |
6629448 | Cvancara | Oct 2003 | B1 |
6654424 | Thomae et al. | Nov 2003 | B1 |
6664941 | Itakura et al. | Dec 2003 | B2 |
6722206 | Takada | Apr 2004 | B2 |
6725719 | Cardarelli | Apr 2004 | B2 |
6737742 | Sweterlitsch | May 2004 | B2 |
6781231 | Minervini et al. | Aug 2004 | B2 |
6848304 | Geen | Feb 2005 | B2 |
7051590 | Lemkin | May 2006 | B1 |
7054778 | Geiger et al. | May 2006 | B2 |
7093487 | Mochida | Aug 2006 | B2 |
7166910 | Minervini et al. | Jan 2007 | B2 |
7173402 | Chen et al. | Feb 2007 | B2 |
7202552 | Zhe et al. | Apr 2007 | B2 |
7210351 | Lo et al. | May 2007 | B2 |
7216525 | Schroeder | May 2007 | B2 |
7221767 | Mullenborn et al. | May 2007 | B2 |
7240552 | Acar et al. | Jul 2007 | B2 |
7258011 | Nasiri et al. | Aug 2007 | B2 |
7258012 | Xie et al. | Aug 2007 | B2 |
7266349 | Kappes | Sep 2007 | B2 |
7293460 | Zarabadi et al. | Nov 2007 | B2 |
7301212 | Mian et al. | Nov 2007 | B1 |
7305880 | Caminada et al. | Dec 2007 | B2 |
7339384 | Peng et al. | Mar 2008 | B2 |
7358151 | Araki et al. | Apr 2008 | B2 |
7436054 | Zhe | Oct 2008 | B2 |
7444869 | Johnson et al. | Nov 2008 | B2 |
7449355 | Lutz et al. | Nov 2008 | B2 |
7451647 | Matsuhisa et al. | Nov 2008 | B2 |
7454967 | Skurnik | Nov 2008 | B2 |
7481110 | Handrich | Jan 2009 | B2 |
7518493 | Bryzek et al. | Apr 2009 | B2 |
7539003 | Ray | May 2009 | B2 |
7544531 | Grosjean | Jun 2009 | B1 |
7565839 | Stewart | Jul 2009 | B2 |
7595648 | Ungaretti et al. | Sep 2009 | B2 |
7600428 | Robert et al. | Oct 2009 | B2 |
7616078 | Prandi et al. | Nov 2009 | B2 |
7622782 | Chu et al. | Nov 2009 | B2 |
7694563 | Durante et al. | Apr 2010 | B2 |
7706149 | Yang et al. | Apr 2010 | B2 |
7781249 | Laming et al. | Aug 2010 | B2 |
7795078 | Ramakrishna et al. | Sep 2010 | B2 |
7817331 | Moidu | Oct 2010 | B2 |
7851925 | Theuss et al. | Dec 2010 | B2 |
7859352 | Sutton | Dec 2010 | B2 |
7950281 | Hammerschmidt | May 2011 | B2 |
7965067 | Grönthal et al. | Jun 2011 | B2 |
8004354 | Pu et al. | Aug 2011 | B1 |
8006557 | Yin et al. | Aug 2011 | B2 |
8026771 | Kanai et al. | Sep 2011 | B2 |
8037755 | Nagata et al. | Oct 2011 | B2 |
8113050 | Acar et al. | Feb 2012 | B2 |
8171792 | Sameshima | May 2012 | B2 |
8201449 | Ohuchi et al. | Jun 2012 | B2 |
8250921 | Nasiri et al. | Aug 2012 | B2 |
8256290 | Mao | Sep 2012 | B2 |
8375789 | Prandi et al. | Feb 2013 | B2 |
8378756 | Huang et al. | Feb 2013 | B2 |
8421168 | Allen et al. | Apr 2013 | B2 |
8476970 | Mokhtar et al. | Jul 2013 | B2 |
8497746 | Visconti et al. | Jul 2013 | B2 |
8508290 | Elsayed et al. | Aug 2013 | B2 |
8643382 | Steele et al. | Feb 2014 | B2 |
8661898 | Watson | Mar 2014 | B2 |
8710599 | Marx et al. | Apr 2014 | B2 |
8739626 | Acar | Jun 2014 | B2 |
8742964 | Kleks et al. | Jun 2014 | B2 |
8754694 | Opris et al. | Jun 2014 | B2 |
8763459 | Brand et al. | Jul 2014 | B2 |
8813564 | Acar | Aug 2014 | B2 |
8978475 | Acar | Mar 2015 | B2 |
9003882 | Ayazi et al. | Apr 2015 | B1 |
9006846 | Bryzek et al. | Apr 2015 | B2 |
9052335 | Coronato | Jun 2015 | B2 |
9062972 | Acar et al. | Jun 2015 | B2 |
9069006 | Opris et al. | Jun 2015 | B2 |
9094027 | Tao et al. | Jul 2015 | B2 |
9095072 | Bryzek et al. | Jul 2015 | B2 |
9156673 | Bryzek et al. | Oct 2015 | B2 |
9246018 | Acar | Jan 2016 | B2 |
9278845 | Acar | Mar 2016 | B2 |
9278846 | Acar | Mar 2016 | B2 |
9352961 | Acar et al. | May 2016 | B2 |
20010022106 | Kato et al. | Sep 2001 | A1 |
20020021059 | Knowles et al. | Feb 2002 | A1 |
20020083757 | Geen | Jul 2002 | A1 |
20020117728 | Brosnihhan et al. | Aug 2002 | A1 |
20020178831 | Takada | Dec 2002 | A1 |
20020189352 | Reeds, III et al. | Dec 2002 | A1 |
20020196445 | Mcclary et al. | Dec 2002 | A1 |
20030033850 | Challoner et al. | Feb 2003 | A1 |
20030038415 | Anderson et al. | Feb 2003 | A1 |
20030061878 | Pinson | Apr 2003 | A1 |
20030196475 | Wyse | Oct 2003 | A1 |
20030200807 | Hulsing, II | Oct 2003 | A1 |
20030222337 | Stewart | Dec 2003 | A1 |
20040051508 | Hamon et al. | Mar 2004 | A1 |
20040085096 | Ward | May 2004 | A1 |
20040085784 | Salama et al. | May 2004 | A1 |
20040088127 | M'closkey et al. | May 2004 | A1 |
20040119137 | Leonardi et al. | Jun 2004 | A1 |
20040177689 | Cho et al. | Sep 2004 | A1 |
20040211258 | Geen | Oct 2004 | A1 |
20040219340 | McNeil et al. | Nov 2004 | A1 |
20040231420 | Xie et al. | Nov 2004 | A1 |
20040251793 | Matsuhisa | Dec 2004 | A1 |
20050005698 | McNeil et al. | Jan 2005 | A1 |
20050097957 | Mcneil et al. | May 2005 | A1 |
20050139005 | Geen | Jun 2005 | A1 |
20050189635 | Humpston et al. | Sep 2005 | A1 |
20050274181 | Kutsuna et al. | Dec 2005 | A1 |
20060032308 | Acar et al. | Feb 2006 | A1 |
20060034472 | Bazarjani et al. | Feb 2006 | A1 |
20060043608 | Bernier et al. | Mar 2006 | A1 |
20060097331 | Hattori | May 2006 | A1 |
20060112764 | Higuchi | Jun 2006 | A1 |
20060137457 | Zdeblick | Jun 2006 | A1 |
20060141786 | Boezen et al. | Jun 2006 | A1 |
20060207328 | Zarabadi et al. | Sep 2006 | A1 |
20060213265 | Weber | Sep 2006 | A1 |
20060213266 | French et al. | Sep 2006 | A1 |
20060213268 | Asami et al. | Sep 2006 | A1 |
20060246631 | Lutz et al. | Nov 2006 | A1 |
20060283245 | Konno et al. | Dec 2006 | A1 |
20070013052 | Zhe et al. | Jan 2007 | A1 |
20070034005 | Acar et al. | Feb 2007 | A1 |
20070040231 | Harney et al. | Feb 2007 | A1 |
20070042606 | Wang et al. | Feb 2007 | A1 |
20070047744 | Harney et al. | Mar 2007 | A1 |
20070071268 | Harney et al. | Mar 2007 | A1 |
20070085544 | Viswanathan | Apr 2007 | A1 |
20070099327 | Hartzell et al. | May 2007 | A1 |
20070113653 | Nasiri et al. | May 2007 | A1 |
20070114643 | DCamp et al. | May 2007 | A1 |
20070165888 | Weigold | Jul 2007 | A1 |
20070180908 | Seeger | Aug 2007 | A1 |
20070205492 | Wang | Sep 2007 | A1 |
20070214883 | Durante et al. | Sep 2007 | A1 |
20070214891 | Robert et al. | Sep 2007 | A1 |
20070220973 | Acar | Sep 2007 | A1 |
20070222021 | Yao | Sep 2007 | A1 |
20070284682 | Laming et al. | Dec 2007 | A1 |
20080022762 | Skurnik | Jan 2008 | A1 |
20080049230 | Chin et al. | Feb 2008 | A1 |
20080079120 | Foster et al. | Apr 2008 | A1 |
20080079444 | Denison | Apr 2008 | A1 |
20080081398 | Lee et al. | Apr 2008 | A1 |
20080083958 | Wei et al. | Apr 2008 | A1 |
20080083960 | Chen et al. | Apr 2008 | A1 |
20080092652 | Acar | Apr 2008 | A1 |
20080122439 | Burdick et al. | May 2008 | A1 |
20080157238 | Hsiao | Jul 2008 | A1 |
20080157301 | Ramakrishna et al. | Jul 2008 | A1 |
20080169811 | Viswanathan | Jul 2008 | A1 |
20080202237 | Hammerschmidt | Aug 2008 | A1 |
20080245148 | Fukumoto | Oct 2008 | A1 |
20080247585 | Leidl et al. | Oct 2008 | A1 |
20080251866 | Belt et al. | Oct 2008 | A1 |
20080253057 | Rijks et al. | Oct 2008 | A1 |
20080284365 | Sri-Jayantha et al. | Nov 2008 | A1 |
20080290756 | Huang | Nov 2008 | A1 |
20080302559 | Leedy | Dec 2008 | A1 |
20080314147 | Nasiri | Dec 2008 | A1 |
20090007661 | Nasiri et al. | Jan 2009 | A1 |
20090056443 | Netzer | Mar 2009 | A1 |
20090064780 | Coronato et al. | Mar 2009 | A1 |
20090064781 | Ayazi et al. | Mar 2009 | A1 |
20090072663 | Ayazi et al. | Mar 2009 | A1 |
20090085191 | Najafi et al. | Apr 2009 | A1 |
20090114016 | Nasiri et al. | May 2009 | A1 |
20090140606 | Huang | Jun 2009 | A1 |
20090166827 | Foster et al. | Jul 2009 | A1 |
20090175477 | Suzuki et al. | Jul 2009 | A1 |
20090183570 | Acar et al. | Jul 2009 | A1 |
20090194829 | Chung et al. | Aug 2009 | A1 |
20090217757 | Nozawa | Sep 2009 | A1 |
20090263937 | Ramakrishna et al. | Oct 2009 | A1 |
20090266163 | Ohuchi et al. | Oct 2009 | A1 |
20090272189 | Acar et al. | Nov 2009 | A1 |
20100019393 | Hsieh et al. | Jan 2010 | A1 |
20100024548 | Cardarelli | Feb 2010 | A1 |
20100038733 | Minervini | Feb 2010 | A1 |
20100044853 | Dekker et al. | Feb 2010 | A1 |
20100052082 | Lee | Mar 2010 | A1 |
20100058864 | Hsu et al. | Mar 2010 | A1 |
20100072626 | Theuss et al. | Mar 2010 | A1 |
20100077858 | Kawakubo et al. | Apr 2010 | A1 |
20100089154 | Ballas et al. | Apr 2010 | A1 |
20100122579 | Hsu et al. | May 2010 | A1 |
20100126269 | Coronato et al. | May 2010 | A1 |
20100132461 | Hauer | Jun 2010 | A1 |
20100155863 | Weekamp | Jun 2010 | A1 |
20100194615 | Lu | Aug 2010 | A1 |
20100206074 | Yoshida et al. | Aug 2010 | A1 |
20100212425 | Hsu et al. | Aug 2010 | A1 |
20100224004 | Suminto et al. | Sep 2010 | A1 |
20100231452 | Babakhani | Sep 2010 | A1 |
20100236327 | Mao et al. | Sep 2010 | A1 |
20100263445 | Hayner et al. | Oct 2010 | A1 |
20100294039 | Geen | Nov 2010 | A1 |
20110023605 | Tripoli et al. | Feb 2011 | A1 |
20110030473 | Acar | Feb 2011 | A1 |
20110030474 | Kuang et al. | Feb 2011 | A1 |
20110031565 | Marx et al. | Feb 2011 | A1 |
20110074389 | Knierim et al. | Mar 2011 | A1 |
20110094302 | Schofield et al. | Apr 2011 | A1 |
20110120221 | Yoda | May 2011 | A1 |
20110121413 | Allen et al. | May 2011 | A1 |
20110146403 | Rizzo Piazza Roncoroni et al. | Jun 2011 | A1 |
20110147859 | Tanaka et al. | Jun 2011 | A1 |
20110179868 | Kaino et al. | Jul 2011 | A1 |
20110192226 | Hayner et al. | Aug 2011 | A1 |
20110201197 | Nilsson et al. | Aug 2011 | A1 |
20110234312 | Lachhwani et al. | Sep 2011 | A1 |
20110265564 | Acar et al. | Nov 2011 | A1 |
20110285445 | Huang et al. | Nov 2011 | A1 |
20110316048 | Ikeda et al. | Dec 2011 | A1 |
20120126349 | Horning et al. | May 2012 | A1 |
20120162947 | O'donnell et al. | Jun 2012 | A1 |
20120326248 | Daneman et al. | Dec 2012 | A1 |
20130051586 | Stephanou et al. | Feb 2013 | A1 |
20130098153 | Trusov et al. | Apr 2013 | A1 |
20130099836 | Shaeffer et al. | Apr 2013 | A1 |
20130139591 | Acar | Jun 2013 | A1 |
20130139592 | Acar | Jun 2013 | A1 |
20130192364 | Acar | Aug 2013 | A1 |
20130192369 | Acar et al. | Aug 2013 | A1 |
20130199263 | Egretzberger et al. | Aug 2013 | A1 |
20130199294 | Townsend | Aug 2013 | A1 |
20130221457 | Conti et al. | Aug 2013 | A1 |
20130247666 | Acar | Sep 2013 | A1 |
20130247668 | Bryzek | Sep 2013 | A1 |
20130250532 | Bryzek et al. | Sep 2013 | A1 |
20130257487 | Opris et al. | Oct 2013 | A1 |
20130263641 | Opris et al. | Oct 2013 | A1 |
20130263665 | Opris et al. | Oct 2013 | A1 |
20130265070 | Kleks et al. | Oct 2013 | A1 |
20130265183 | Kleks et al. | Oct 2013 | A1 |
20130268227 | Opris | Oct 2013 | A1 |
20130268228 | Opris | Oct 2013 | A1 |
20130270657 | Acar et al. | Oct 2013 | A1 |
20130270660 | Bryzek et al. | Oct 2013 | A1 |
20130271228 | Tao et al. | Oct 2013 | A1 |
20130277772 | Bryzek et al. | Oct 2013 | A1 |
20130277773 | Bryzek et al. | Oct 2013 | A1 |
20130283911 | Ayazi et al. | Oct 2013 | A1 |
20130298671 | Acar et al. | Nov 2013 | A1 |
20130328139 | Acar | Dec 2013 | A1 |
20130341737 | Bryzek et al. | Dec 2013 | A1 |
20140070339 | Marx | Mar 2014 | A1 |
20140190258 | Donadel | Jul 2014 | A1 |
20140275857 | Toth et al. | Sep 2014 | A1 |
20140306773 | Kim | Oct 2014 | A1 |
20150059473 | Jia | Mar 2015 | A1 |
20150114112 | Valzasina et al. | Apr 2015 | A1 |
20150185012 | Acar | Jul 2015 | A1 |
20160003618 | Boser | Jan 2016 | A1 |
20160161256 | Lee et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1068444 | Jan 1993 | CN |
1198587 | Nov 1998 | CN |
1206110 | Jan 1999 | CN |
1221210 | Jun 1999 | CN |
1272622 | Nov 2000 | CN |
102156201 | Aug 2001 | CN |
1389704 | Jan 2003 | CN |
1532524 | Sep 2004 | CN |
1595062 | Mar 2005 | CN |
1595063 | Mar 2005 | CN |
1603842 | Apr 2005 | CN |
1617334 | May 2005 | CN |
1659810 | Aug 2005 | CN |
1693181 | Nov 2005 | CN |
1780732 | May 2006 | CN |
1813192 | Aug 2006 | CN |
1816747 | Aug 2006 | CN |
1818552 | Aug 2006 | CN |
1886669 | Dec 2006 | CN |
1905167 | Jan 2007 | CN |
1948906 | Apr 2007 | CN |
101038299 | Sep 2007 | CN |
101044684 | Sep 2007 | CN |
101059530 | Oct 2007 | CN |
101067555 | Nov 2007 | CN |
101069099 | Nov 2007 | CN |
101078736 | Nov 2007 | CN |
101171665 | Apr 2008 | CN |
101180516 | May 2008 | CN |
101198874 | Jun 2008 | CN |
101213461 | Jul 2008 | CN |
101217263 | Jul 2008 | CN |
101239697 | Aug 2008 | CN |
101257000 | Sep 2008 | CN |
101270988 | Sep 2008 | CN |
101316462 | Dec 2008 | CN |
101329446 | Dec 2008 | CN |
101426718 | May 2009 | CN |
101459866 | Jun 2009 | CN |
101519183 | Sep 2009 | CN |
101520327 | Sep 2009 | CN |
101561275 | Oct 2009 | CN |
101634662 | Jan 2010 | CN |
101638211 | Feb 2010 | CN |
101639487 | Feb 2010 | CN |
101666813 | Mar 2010 | CN |
101738496 | Jun 2010 | CN |
101813480 | Aug 2010 | CN |
101839718 | Sep 2010 | CN |
101055180 | Oct 2010 | CN |
101855516 | Oct 2010 | CN |
101858928 | Oct 2010 | CN |
101916754 | Dec 2010 | CN |
101922934 | Dec 2010 | CN |
201688848 | Dec 2010 | CN |
102109345 | Jun 2011 | CN |
102332894 | Jan 2012 | CN |
102337541 | Feb 2012 | CN |
102364671 | Feb 2012 | CN |
102597699 | Jul 2012 | CN |
103209922 | Jul 2013 | CN |
103210278 | Jul 2013 | CN |
103221331 | Jul 2013 | CN |
103221332 | Jul 2013 | CN |
103221333 | Jul 2013 | CN |
103221778 | Jul 2013 | CN |
103221779 | Jul 2013 | CN |
103221795 | Jul 2013 | CN |
103238075 | Aug 2013 | CN |
103363969 | Oct 2013 | CN |
103363983 | Oct 2013 | CN |
103364590 | Oct 2013 | CN |
103364593 | Oct 2013 | CN |
103368503 | Oct 2013 | CN |
103368562 | Oct 2013 | CN |
103368577 | Oct 2013 | CN |
103376099 | Oct 2013 | CN |
103376102 | Oct 2013 | CN |
203261317 | Oct 2013 | CN |
103403495 | Nov 2013 | CN |
200301454 | Nov 2013 | CN |
203275441 | Nov 2013 | CN |
203275442 | Nov 2013 | CN |
203349832 | Dec 2013 | CN |
203349834 | Dec 2013 | CN |
103663344 | Mar 2014 | CN |
203683082 | Jul 2014 | CN |
203719664 | Jul 2014 | CN |
104094084 | Oct 2014 | CN |
104105945 | Oct 2014 | CN |
104220840 | Dec 2014 | CN |
104272062 | Jan 2015 | CN |
103221778 | Mar 2016 | CN |
104272062 | May 2016 | CN |
112011103124 | Dec 2013 | DE |
102013014881 | Mar 2014 | DE |
0638782 | Feb 1995 | EP |
1055910 | Nov 2000 | EP |
1335185 | Aug 2003 | EP |
1460380 | Sep 2004 | EP |
1521086 | Apr 2005 | EP |
1688705 | Aug 2006 | EP |
1832841 | Sep 2007 | EP |
1860402 | Nov 2007 | EP |
2053413 | Apr 2009 | EP |
2096759 | Sep 2009 | EP |
2259019 | Dec 2010 | EP |
2466257 | Jun 2012 | EP |
0989927 | Apr 1997 | JP |
09089927 | Apr 1997 | JP |
10239347 | Sep 1998 | JP |
1164002 | Mar 1999 | JP |
2000046560 | Feb 2000 | JP |
2005024310 | Jan 2005 | JP |
2005114394 | Apr 2005 | JP |
2005294462 | Oct 2005 | JP |
3882972 | Feb 2007 | JP |
2007024864 | Feb 2007 | JP |
2008294455 | Dec 2008 | JP |
2009075097 | Apr 2009 | JP |
2009186213 | Aug 2009 | JP |
2009192458 | Aug 2009 | JP |
2009260348 | Nov 2009 | JP |
2010025898 | Feb 2010 | JP |
2010506182 | Feb 2010 | JP |
1020110055449 | May 2011 | KR |
1020130052652 | May 2013 | KR |
1020130052653 | May 2013 | KR |
1020130054441 | May 2013 | KR |
1020130055693 | May 2013 | KR |
1020130057485 | May 2013 | KR |
1020130060338 | Jun 2013 | KR |
1020130061181 | Jun 2013 | KR |
101311966 | Sep 2013 | KR |
1020130097209 | Sep 2013 | KR |
101318810 | Oct 2013 | KR |
1020130037462 | Oct 2013 | KR |
1020130112789 | Oct 2013 | KR |
1020130112792 | Oct 2013 | KR |
1020130112804 | Oct 2013 | KR |
1020130113385 | Oct 2013 | KR |
1020130113386 | Oct 2013 | KR |
1020130113391 | Oct 2013 | KR |
1020130116189 | Oct 2013 | KR |
1020130116212 | Oct 2013 | KR |
101332701 | Nov 2013 | KR |
1020130139914 | Dec 2013 | KR |
1020130142116 | Dec 2013 | KR |
101352827 | Jan 2014 | KR |
1020140034713 | Mar 2014 | KR |
I255341 | May 2006 | TW |
WO-9311415 | Jun 1993 | WO |
WO-9503534 | Feb 1995 | WO |
WO-0107875 | Feb 2001 | WO |
WO-0175455 | Oct 2001 | WO |
WO-2008014246 | Jan 2008 | WO |
WO-2008059757 | May 2008 | WO |
WO-2008087578 | Jul 2008 | WO |
WO-2009038924 | Mar 2009 | WO |
WO-2009050578 | Apr 2009 | WO |
WO-2009156485 | Dec 2009 | WO |
WO-2011016859 | Feb 2011 | WO |
WO-2011016859 | Feb 2011 | WO |
WO-2011107542 | Sep 2011 | WO |
WO-2012037492 | Mar 2012 | WO |
WO-2012037492 | Mar 2012 | WO |
WO-2012037501 | Mar 2012 | WO |
WO-2012037501 | Mar 2012 | WO |
WO-2012037536 | Mar 2012 | WO |
WO-2012037537 | Mar 2012 | WO |
WO-2012037538 | Mar 2012 | WO |
WO-2012037539 | Mar 2012 | WO |
WO-2012037539 | Mar 2012 | WO |
WO-2012037540 | Mar 2012 | WO |
WO-2012040194 | Mar 2012 | WO |
WO-2012040211 | Mar 2012 | WO |
WO-2012040245 | Mar 2012 | WO |
WO-2012040245 | Mar 2012 | WO |
WO-2013115967 | Aug 2013 | WO |
WO-2013116356 | Aug 2013 | WO |
WO-2013116514 | Aug 2013 | WO |
WO-2013116522 | Aug 2013 | WO |
Entry |
---|
Explanation of phase shifters from “Microwaves 101” website downloaded Aug. 4, 2016. |
Definition of baseband signal downloaded from “Tech Terms” website Jul. 15, 2016. |
“Chinese Application Serial No. 201180055630.3, Office Action mailed Jul. 10, 2015”, w/ English Claims, 8 pgs. |
“Chinese Application Serial No. 201180055630.3, Response filed Sep. 25, 2015 to Office Action mailed Jul. 10, 2015”, w/ English Claims, 14 pgs. |
“Chinese Application Serial No. 201180055792.7, Office Action mailed Jul. 21, 2015”, w/ English Translation, 5 pgs. |
“Chinese Application Serial No. 201180055823.9, Office Action mailed Nov. 17, 2015”, w/ English Translation, 8 pgs. |
“Chinese Application Serial No. 201180055823.9,Response filed Aug. 3, 2015 to Office Action mailed Mar. 19, 2015”, w/ English Translation, 14 pgs. |
“Chinese Application Serial No. 201180055845.5, Office Action mailed Aug. 5, 2015”, w/ English Translation, 5 pgs. |
“Chinese Application Serial No. 201180055845.5, Response filed Nov. 20, 2015 to Office Action mailed Aug. 5, 2015”, With English Claims, 9 pgs. |
“Chinese Application Serial No. 201180055845.5,Response filed Jul. 13, 2015 to Office Action mailed Mar. 4, 2015”, w/ English Translation, 17 pgs. |
“Chinese Application Serial No. 201310115550.3, Response filed Sep. 30, 2015 to Office Action mailed May 22, 2015”, w/ English Claims, 15 pgs. |
“Chinese Application Serial No. 201310119730.9, Office Action mailed Jan. 29, 2016”, w/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201310119806.8, Office Action mailed Jul. 3, 2015”, w/ English Claims, 12 pgs. |
“Chinese Application Serial No. 201310119806.8, Response filed Jan. 18, 2016 to Office Action mailed Jul. 3, 2015”, (English Translation of Claims), 11 pgs. |
“Chinese Application Serial No. 201310119986.X, Office Action mailed Dec. 18, 2015”, w/ English Translation, 6 pgs. |
“Chinese Application Serial No. 201310119986.X, Response filed Sep. 25, 2015 to Office Action mailed May 12, 2015”, w/ English Claims, 7 pgs. |
“Chinese Application Serial No. 201310120172.8, Office Action mailed Nov. 3, 2015”, w/ English Translation, 11 pgs. |
“Chinese Application Serial No. 201310127961.4, Response filed Sep. 2, 2015 to Office Action mailed May 6, 2015”, w/ English Claims, 19 pgs. |
“Chinese Application Serial No. 201310128046.7, Office Action mailed Jul. 23, 2015”, w/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201310128046.7, Response filed Oct. 14, 2015 to Office Action mailed Jul. 23, 2015”, w/ English Claims, 23 pgs. |
“Chinese Application Serial No. 201310415336.X, Office Action mailed Jul. 3, 2015”, w/ English Claims, 9 pgs. |
“Chinese Application Serial No. 201310415336.X, Response filed Jan. 18, 2016 to Office Action mailed Jul. 3, 2015”, (English Translation of Claims), 11 pgs. |
“Chinese Application Serial No. 201380007523.2, Office Action mailed Dec. 31, 2015”, w/ English Translation, 12 pgs. |
“Chinese Application Serial No. 201380007577.9, Office Action mailed Dec. 21, 2015”, w/ English Translation, 9 pgs. |
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 26, 2015 to Office Action mailed Jun. 10, 2015”, w/ English Claims, 9 pgs. |
“Chinese Application Serial No. 201380007615.0, Response filed Jan. 5, 2016 to Office Action mailed May 6, 2015”, w/ English Claims, 13 pgs. |
“Chinese Application Serial No. 201380007615.0, Response filed Nov. 23, 2015 to Office Action mailed May 6, 2015”, With English Claims, 15 pgs. |
“European Application Serial No. 11826069.4, Extended European Search Report mailed Jul. 23, 2015”, 8 pgs. |
“European Application Serial No. 11827347.3, Extended European Search Report mailed Jul. 31, 2015”, 6 pgs. |
“European Application Serial No. 11827357.2, Extended European Search Report mailed Aug. 26, 2015”, 4 pgs. |
“European Application Serial No. 13001694.2, Extended European Search Report mailed Oct. 2, 2015”, 8 pgs. |
“European Application Serial No. 13001695.9, Response filed Aug. 24, 2015 to Extended European Search Report mailed Jan. 22, 2015”, 9 pgs. |
“European Application Serial No. 13001720.5, Extended European Search Report mailed Aug. 20, 2015”, 7 pgs. |
“European Application Serial No. 13001918.5, Extended European Search Report mailed Dec. 3, 2015”, 8 pgs. |
“Chinese Application Serial No. 201180044919.5, Office Action mailed Jun. 25, 2015”, w/ English Translation, 8 pgs. |
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jun. 4, 2015”, w/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201310115550.3, Office Action mailed May 22, 2015”, w/ English Claims, 8 pgs. |
“Chinese Application Serial No. 201310119986.X, Office Action mailed May 12, 2015”, w/ English Claims, 14 pgs. |
“Chinese Application Serial No. 201380007588.7, Office Action mailed Jun. 10, 2015”, w/ English Claims, 7 pgs. |
“Chinese Application Serial No. 201380007615.0, Office Action mailed May 6, 2015”, w/ English Claims, 7 pgs. |
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs. |
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs. |
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, 8 pgs. |
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs. |
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs. |
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs. |
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs. |
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs. |
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs. |
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs. |
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs. |
“European Application Serial No. 11827384.6, Extended European Search Report mailed Nov. 12, 2014”, 6 pgs. |
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs. |
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942. |
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98. |
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs. |
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs. |
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs. |
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs. |
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, 3 pgs. |
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs. |
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs. |
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs. |
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs. |
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs. |
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 27, 2013”, 8 pgs. |
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs. |
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs. |
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs. |
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs. |
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug. 29, 2013”, w/English Claims, 22 pgs. |
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs. |
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs. |
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs. |
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs. |
“Chinese Application Serial No. 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs. |
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs. |
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs. |
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs. |
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs. |
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs. |
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs. |
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs. |
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs. |
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs. |
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs. |
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs. |
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs. |
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs. |
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs. |
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs. |
“European Application Serial No. 13001692.6, European Search Report mailed Jul. 24, 2013”, 5 pgs. |
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6, 2013”, 4 pgs. |
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs. |
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs. |
“International Application Serial No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs. |
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs. |
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs. |
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs. |
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs. |
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Jun. 26, 2013”, w/English Claims, 11 pgs. |
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs. |
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs. |
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364. |
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55. |
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297. |
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864. |
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf?. . . >, (Jan. 1, 2004), 123 pgs. |
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs. |
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs. |
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs. |
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs. |
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs. |
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs. |
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg. |
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs. |
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs. |
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg. |
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs. |
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs. |
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs. |
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs. |
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs. |
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs. |
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs. |
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs. |
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs. |
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs. |
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs. |
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs. |
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs. |
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs. |
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs. |
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs. |
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs. |
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs. |
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs. |
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs. |
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4. |
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811. |
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs. |
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289. |
“DigiSiMic™ Digital Silicon Microphone Pulse Part No. TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs. |
“EPCOS MEMS Microphone With TSV”, 1 pg. |
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs. |
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs. |
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May, 14, 2013”, 3 pgs. |
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages. |
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages. |
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, (2010), 2 pgs. |
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110. |
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178. |
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206. |
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224. |
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245. |
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs. |
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 30, 2015”, with English translation of claims, 5 pgs. |
“Chinese Application Serial No. 201180054796.3, Response filed Nov. 19, 2014 to Office Action mailed Sep. 4, 2014”, with English translation of claims, 7 pgs. |
“Chinese Application Serial No. 201180054796.3, Response filed Apr. 14, 2015 to Office Action mailed Jan. 30, 2015”, w/ English Claims, 30 pgs. |
“Chinese Application Serial No. 201180055309.5, Office Action mailed Jan. 8, 2015”, with English translation of claims, 5 pgs. |
“Chinese Application Serial No. 201180055630.3, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs. |
“Chinese Application Serial No. 201180055630.3, Response filed Apr. 20, 2015 to Office Action mailed Dec. 22, 2014”, w/ English Claims, 10 pgs. |
“Chinese Application Serial No. 201180055792.7, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs. |
“Chinese Application Serial No. 201180055792.7, Response filed May 5, 2015 to Office Action mailed Dec. 22, 2014”, w/ English Claims, 15 pgs. |
“Chinese Application Serial No. 201180055794.6, Office Action mailed Dec. 17, 2014”, with English translation of claims, 9 pgs. |
“Chinese Application Serial No. 201180055794.6, Response filed May 4, 2015 to Office Action mailed Dec. 17, 2014”, w/ English Claims, 15 pgs. |
“Chinese Application Serial No. 201180055823.9, Office Action mailed Mar. 19, 2015”, w/ English Claims, 8 pgs. |
“Chinese Application Serial No. 201180055845.5, Office Action mailed Mar. 4, 2015”, w/ English Claims, 8 pgs. |
“Chinese Application Serial No. 2013101188456, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs. |
“Chinese Application Serial No. 201310119472.4, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs. |
“Chinese Application Serial No. 201310119730.9, Office Action mailed May 4, 2015”, w/ English Claims, 8 pgs. |
“Chinese Application Serial No. 201310127961.4, Office Action mailed May 6, 2015”, w/ English Claims, 7 pgs. |
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 24, 2014”, with English translation, 3 pgs. |
“Chinese Application Serial No. 201380007615.0, Response filed Oct. 24, 2014”, with English translation, 3 pgs. |
“European Application Serial No. 11826067.8, Response filed Apr. 27, 2015 to Extended European Search Report mailed Oct. 6, 2014”, 32 pgs. |
“European Application Serial No. 11826068.6, Response filed Feb. 9, 2015”, 30 pgs. |
“European Application Serial No. 11826071.0, Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 4 pgs. |
“European Application Serial No. 11826071.0, Response filed Apr. 13, 2015 to Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 5 pgs. |
“European Application Serial No. 13001695.9, Extended European Search Report mailed Jan. 22, 2015”, 8 pgs. |
“European Application Serial No. 13001719.7, Response filed Jan. 21, 2015”, 29 pgs. |
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 26, 2014”, w/English Claims, 11 pgs. |
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs. |
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs. |
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs. |
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs. |
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs. |
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs. |
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs. |
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs. |
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs. |
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs. |
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs. |
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs. |
Sebastiano, Fabio, et al., “A 1.2-V 10-μW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 C (3) From -70 C to 125 C”, IEEE Journal of Solid-State Circuits, vol. 45, No. 12, Dec. 2010, (Dec. 1, 2010), 2591-2601. |
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1, 2010), 1416-1418. |
“U.S. Appl. No. 14/658,579, Non Final Office Action mailed Mar. 16, 2016”, 5 pgs. |
“U.S. Appl. No. 15/005,783 Preliminary Amendment Filed May, 26, 2016”, 9 pgs. |
“Chinese Application Serial No. 201180044919.5, Office Action mailed Apr. 25, 2016”, w/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201180044919.5, Response filed May 12, 2016 to Office Action mailed Apr. 25, 2016”, w/ English Translation, 13 pgs. |
“Chinese Application Serial No. 2011800556303, Office Action mailed May 16, 2016”, (English Translation), 9 pgs. |
“Chinese Application Serial No. 201180055630.3, Office Action mailed Dec. 7, 2015”, W/ English Translation, 5 pgs. |
“Chinese Application Serial No. 201180055630.3, Response filed Feb. 19, 2016 to Office Action mailed Dec. 7, 2015”, W/ English Translation of Claim, 10 pgs. |
“Chinese Application Serial No. 201180055823.9, Response filed Feb. 2, 2016 to Office Action mailed Nov. 17, 2015”, (English Translation of Claims), 15 pgs. |
“Chinese Application Serial No. 201310119730.9, Response filed Jun. 13, 2016 to Office Action mailed Jan. 29, 2016”, 19 pgs. |
“Chinese Application Serial No. 201310119806.8, Office Action mailed May 13, 2016”, w/ English Translation, 8 pgs. |
“Chinese Application Serial No. 201310119986.X, Response filed Apr. 29, 2016 to Office Action mailed Dec. 18, 2015”, (English Translation of Claims), 14 pgs. |
“Chinese Application Serial No. 201310120172.8, Response filed May 18, 2016 to Office Action mailed Nov. 3, 2015”, with English translation of claims, 21 pgs. |
“Chinese Application Serial No. 201310415336.X, Office Action mailed Apr. 26, 2016”, w/ English Translation, 11 pgs. |
“Chinese Application Serial No. 201380007523.2, Response filed May 31, 2016 to Office Action mailed Dec. 31, 2015”, with English translation of claims, 16 pgs. |
“Chinese Application Serial No. 201380007577.9, Response filed May 5, 2016 to Office Action mailed Dec. 21, 2015”, w/ English Claims, 17pgs. |
“European Application Serial No. 11826043.9, Extended European Search Report mailed Feb. 23, 2016”, 6 pgs. |
“European Application Serial No. 11826069.4, Response filed Feb. 22, 2016 to Extended European Search Report mailed Jul. 23, 2015”, W/ English Translation, 26 pgs. |
“European Application Serial No. 13001917.7, Extended European Search Report mailed Apr. 11, 2016”, 5 pgs. |
“Korean Application Serial No. 2012-7005729, Office Action mailed May 3, 2016”, w/ English Claims, 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20130269413 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61623423 | Apr 2012 | US |